import sys import os import cv2 as cv def add_argument(zoo, parser, name, help, required=False, default=None, type=None, action=None, nargs=None): if len(sys.argv) <= 1: return modelName = sys.argv[1] if os.path.isfile(zoo): fs = cv.FileStorage(zoo, cv.FILE_STORAGE_READ) node = fs.getNode(modelName) if not node.empty(): value = node.getNode(name) if not value.empty(): if value.isReal(): default = value.real() elif value.isString(): default = value.string() elif value.isInt(): default = int(value.real()) elif value.isSeq(): default = [] for i in range(value.size()): v = value.at(i) if v.isInt(): default.append(int(v.real())) elif v.isReal(): default.append(v.real()) else: print('Unexpected value format') exit(0) else: print('Unexpected field format') exit(0) required = False if action == 'store_true': default = 1 if default == 'true' else (0 if default == 'false' else default) assert(default is None or default == 0 or default == 1) parser.add_argument('--' + name, required=required, help=help, default=bool(default), action=action) else: parser.add_argument('--' + name, required=required, help=help, default=default, action=action, nargs=nargs, type=type) def add_preproc_args(zoo, parser, sample): aliases = [] if os.path.isfile(zoo): fs = cv.FileStorage(zoo, cv.FILE_STORAGE_READ) root = fs.root() for name in root.keys(): model = root.getNode(name) if model.getNode('sample').string() == sample: aliases.append(name) parser.add_argument('alias', nargs='?', choices=aliases, help='An alias name of model to extract preprocessing parameters from models.yml file.') add_argument(zoo, parser, 'model', required=True, help='Path to a binary file of model contains trained weights. ' 'It could be a file with extensions .caffemodel (Caffe), ' '.pb (TensorFlow), .weights (Darknet), .bin (OpenVINO)') add_argument(zoo, parser, 'config', help='Path to a text file of model contains network configuration. ' 'It could be a file with extensions .prototxt (Caffe), .pbtxt or .config (TensorFlow), .cfg (Darknet), .xml (OpenVINO)') add_argument(zoo, parser, 'mean', nargs='+', type=float, default=[0, 0, 0], help='Preprocess input image by subtracting mean values. ' 'Mean values should be in BGR order.') add_argument(zoo, parser, 'scale', type=float, default=1.0, help='Preprocess input image by multiplying on a scale factor.') add_argument(zoo, parser, 'width', type=int, help='Preprocess input image by resizing to a specific width.') add_argument(zoo, parser, 'height', type=int, help='Preprocess input image by resizing to a specific height.') add_argument(zoo, parser, 'rgb', action='store_true', help='Indicate that model works with RGB input images instead BGR ones.') add_argument(zoo, parser, 'classes', help='Optional path to a text file with names of classes to label detected objects.') add_argument(zoo, parser, 'postprocessing', type=str, help='Post-processing kind depends on model topology.') add_argument(zoo, parser, 'background_label_id', type=int, default=-1, help='An index of background class in predictions. If not negative, exclude such class from list of classes.') def findFile(filename): if filename: if os.path.exists(filename): return filename fpath = cv.samples.findFile(filename, False) if fpath: return fpath samplesDataDir = os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', 'data', 'dnn') if os.path.exists(os.path.join(samplesDataDir, filename)): return os.path.join(samplesDataDir, filename) for path in ['OPENCV_DNN_TEST_DATA_PATH', 'OPENCV_TEST_DATA_PATH']: try: extraPath = os.environ[path] absPath = os.path.join(extraPath, 'dnn', filename) if os.path.exists(absPath): return absPath except KeyError: pass print('File ' + filename + ' not found! Please specify a path to ' '/opencv_extra/testdata in OPENCV_DNN_TEST_DATA_PATH environment ' 'variable or pass a full path to model.') exit(0)