/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #ifdef HAVE_CUDA using namespace cvtest; ////////////////////////////////////////////////////////////////////////// // StereoBM struct StereoBM : testing::TestWithParam { cv::gpu::DeviceInfo devInfo; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(StereoBM, Regression) { cv::Mat left_image = readImage("stereobm/aloe-L.png", cv::IMREAD_GRAYSCALE); cv::Mat right_image = readImage("stereobm/aloe-R.png", cv::IMREAD_GRAYSCALE); cv::Mat disp_gold = readImage("stereobm/aloe-disp.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(left_image.empty()); ASSERT_FALSE(right_image.empty()); ASSERT_FALSE(disp_gold.empty()); cv::gpu::StereoBM_GPU bm(0, 128, 19); cv::gpu::GpuMat disp; bm(loadMat(left_image), loadMat(right_image), disp); EXPECT_MAT_NEAR(disp_gold, disp, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Calib3D, StereoBM, ALL_DEVICES); ////////////////////////////////////////////////////////////////////////// // StereoBeliefPropagation struct StereoBeliefPropagation : testing::TestWithParam { cv::gpu::DeviceInfo devInfo; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(StereoBeliefPropagation, Regression) { cv::Mat left_image = readImage("stereobp/aloe-L.png"); cv::Mat right_image = readImage("stereobp/aloe-R.png"); cv::Mat disp_gold = readImage("stereobp/aloe-disp.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(left_image.empty()); ASSERT_FALSE(right_image.empty()); ASSERT_FALSE(disp_gold.empty()); cv::gpu::StereoBeliefPropagation bp(64, 8, 2, 25, 0.1f, 15, 1, CV_16S); cv::gpu::GpuMat disp; bp(loadMat(left_image), loadMat(right_image), disp); cv::Mat h_disp(disp); h_disp.convertTo(h_disp, disp_gold.depth()); EXPECT_MAT_NEAR(disp_gold, h_disp, 0.0); } INSTANTIATE_TEST_CASE_P(GPU_Calib3D, StereoBeliefPropagation, ALL_DEVICES); ////////////////////////////////////////////////////////////////////////// // StereoConstantSpaceBP struct StereoConstantSpaceBP : testing::TestWithParam { cv::gpu::DeviceInfo devInfo; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(StereoConstantSpaceBP, Regression) { cv::Mat left_image = readImage("csstereobp/aloe-L.png"); cv::Mat right_image = readImage("csstereobp/aloe-R.png"); cv::Mat disp_gold; if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20)) disp_gold = readImage("csstereobp/aloe-disp.png", cv::IMREAD_GRAYSCALE); else disp_gold = readImage("csstereobp/aloe-disp_CC1X.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(left_image.empty()); ASSERT_FALSE(right_image.empty()); ASSERT_FALSE(disp_gold.empty()); cv::gpu::StereoConstantSpaceBP csbp(128, 16, 4, 4); cv::gpu::GpuMat disp; csbp(loadMat(left_image), loadMat(right_image), disp); cv::Mat h_disp(disp); h_disp.convertTo(h_disp, disp_gold.depth()); EXPECT_MAT_SIMILAR(disp_gold, h_disp, 1e-4); } INSTANTIATE_TEST_CASE_P(GPU_Calib3D, StereoConstantSpaceBP, ALL_DEVICES); /////////////////////////////////////////////////////////////////////////////////////////////////////// // transformPoints struct TransformPoints : testing::TestWithParam { cv::gpu::DeviceInfo devInfo; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(TransformPoints, Accuracy) { cv::Mat src = randomMat(cv::Size(1000, 1), CV_32FC3, 0, 10); cv::Mat rvec = randomMat(cv::Size(3, 1), CV_32F, 0, 1); cv::Mat tvec = randomMat(cv::Size(3, 1), CV_32F, 0, 1); cv::gpu::GpuMat dst; cv::gpu::transformPoints(loadMat(src), rvec, tvec, dst); ASSERT_EQ(src.size(), dst.size()); ASSERT_EQ(src.type(), dst.type()); cv::Mat h_dst(dst); cv::Mat rot; cv::Rodrigues(rvec, rot); for (int i = 0; i < h_dst.cols; ++i) { cv::Point3f res = h_dst.at(0, i); cv::Point3f p = src.at(0, i); cv::Point3f res_gold( rot.at(0, 0) * p.x + rot.at(0, 1) * p.y + rot.at(0, 2) * p.z + tvec.at(0, 0), rot.at(1, 0) * p.x + rot.at(1, 1) * p.y + rot.at(1, 2) * p.z + tvec.at(0, 1), rot.at(2, 0) * p.x + rot.at(2, 1) * p.y + rot.at(2, 2) * p.z + tvec.at(0, 2)); ASSERT_POINT3_NEAR(res_gold, res, 1e-5); } } INSTANTIATE_TEST_CASE_P(GPU_Calib3D, TransformPoints, ALL_DEVICES); /////////////////////////////////////////////////////////////////////////////////////////////////////// // ProjectPoints struct ProjectPoints : testing::TestWithParam { cv::gpu::DeviceInfo devInfo; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(ProjectPoints, Accuracy) { cv::Mat src = randomMat(cv::Size(1000, 1), CV_32FC3, 0, 10); cv::Mat rvec = randomMat(cv::Size(3, 1), CV_32F, 0, 1); cv::Mat tvec = randomMat(cv::Size(3, 1), CV_32F, 0, 1); cv::Mat camera_mat = randomMat(cv::Size(3, 3), CV_32F, 0.5, 1); camera_mat.at(0, 1) = 0.f; camera_mat.at(1, 0) = 0.f; camera_mat.at(2, 0) = 0.f; camera_mat.at(2, 1) = 0.f; cv::gpu::GpuMat dst; cv::gpu::projectPoints(loadMat(src), rvec, tvec, camera_mat, cv::Mat(), dst); ASSERT_EQ(1, dst.rows); ASSERT_EQ(MatType(CV_32FC2), MatType(dst.type())); std::vector dst_gold; cv::projectPoints(src, rvec, tvec, camera_mat, cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)), dst_gold); ASSERT_EQ(dst_gold.size(), static_cast(dst.cols)); cv::Mat h_dst(dst); for (size_t i = 0; i < dst_gold.size(); ++i) { cv::Point2f res = h_dst.at(0, (int)i); cv::Point2f res_gold = dst_gold[i]; ASSERT_LE(cv::norm(res_gold - res) / cv::norm(res_gold), 1e-3f); } } INSTANTIATE_TEST_CASE_P(GPU_Calib3D, ProjectPoints, ALL_DEVICES); /////////////////////////////////////////////////////////////////////////////////////////////////////// // SolvePnPRansac struct SolvePnPRansac : testing::TestWithParam { cv::gpu::DeviceInfo devInfo; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(SolvePnPRansac, Accuracy) { cv::Mat object = randomMat(cv::Size(5000, 1), CV_32FC3, 0, 100); cv::Mat camera_mat = randomMat(cv::Size(3, 3), CV_32F, 0.5, 1); camera_mat.at(0, 1) = 0.f; camera_mat.at(1, 0) = 0.f; camera_mat.at(2, 0) = 0.f; camera_mat.at(2, 1) = 0.f; std::vector image_vec; cv::Mat rvec_gold; cv::Mat tvec_gold; rvec_gold = randomMat(cv::Size(3, 1), CV_32F, 0, 1); tvec_gold = randomMat(cv::Size(3, 1), CV_32F, 0, 1); cv::projectPoints(object, rvec_gold, tvec_gold, camera_mat, cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)), image_vec); cv::Mat rvec, tvec; std::vector inliers; cv::gpu::solvePnPRansac(object, cv::Mat(1, (int)image_vec.size(), CV_32FC2, &image_vec[0]), camera_mat, cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)), rvec, tvec, false, 200, 2.f, 100, &inliers); ASSERT_LE(cv::norm(rvec - rvec_gold), 1e-3); ASSERT_LE(cv::norm(tvec - tvec_gold), 1e-3); } INSTANTIATE_TEST_CASE_P(GPU_Calib3D, SolvePnPRansac, ALL_DEVICES); //////////////////////////////////////////////////////////////////////////////// // reprojectImageTo3D PARAM_TEST_CASE(ReprojectImageTo3D, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi) { cv::gpu::DeviceInfo devInfo; cv::Size size; int depth; bool useRoi; virtual void SetUp() { devInfo = GET_PARAM(0); size = GET_PARAM(1); depth = GET_PARAM(2); useRoi = GET_PARAM(3); cv::gpu::setDevice(devInfo.deviceID()); } }; GPU_TEST_P(ReprojectImageTo3D, Accuracy) { cv::Mat disp = randomMat(size, depth, 5.0, 30.0); cv::Mat Q = randomMat(cv::Size(4, 4), CV_32FC1, 0.1, 1.0); cv::gpu::GpuMat dst; cv::gpu::reprojectImageTo3D(loadMat(disp, useRoi), dst, Q, 3); cv::Mat dst_gold; cv::reprojectImageTo3D(disp, dst_gold, Q, false); EXPECT_MAT_NEAR(dst_gold, dst, 1e-5); } INSTANTIATE_TEST_CASE_P(GPU_Calib3D, ReprojectImageTo3D, testing::Combine( ALL_DEVICES, DIFFERENT_SIZES, testing::Values(MatDepth(CV_8U), MatDepth(CV_16S)), WHOLE_SUBMAT)); #endif // HAVE_CUDA