// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html #include "test_precomp.hpp" #include "opencv2/ts/ocl_test.hpp" namespace opencv_test { namespace { // debug function template inline static void print_pts(const T& c) { for (const auto& one_pt : c) { cout << one_pt << " "; } cout << endl; } // debug function template inline static void print_pts_2(vector& cs) { int cnt = 0; cout << "Contours:" << endl; for (const auto& one_c : cs) { cout << cnt++ << " : "; print_pts(one_c); } }; // draw 1-2 px blob with orientation defined by 'kind' template inline static void drawSmallContour(Mat& img, Point pt, int kind, int color_) { const T color = static_cast(color_); img.at(pt) = color; switch (kind) { case 1: img.at(pt + Point(1, 0)) = color; break; case 2: img.at(pt + Point(1, -1)) = color; break; case 3: img.at(pt + Point(0, -1)) = color; break; case 4: img.at(pt + Point(-1, -1)) = color; break; case 5: img.at(pt + Point(-1, 0)) = color; break; case 6: img.at(pt + Point(-1, 1)) = color; break; case 7: img.at(pt + Point(0, 1)) = color; break; case 8: img.at(pt + Point(1, 1)) = color; break; default: break; } } inline static void drawContours(Mat& img, const vector>& contours, const Scalar& color = Scalar::all(255)) { for (const auto& contour : contours) { for (size_t n = 0, end = contour.size(); n < end; ++n) { size_t m = n + 1; if (n == end - 1) m = 0; line(img, contour[m], contour[n], color, 1, LINE_8); } } } //================================================================================================== // Test parameters - mode + method typedef testing::TestWithParam> Imgproc_FindContours_Modes1; // Draw random rectangle and find contours // TEST_P(Imgproc_FindContours_Modes1, rectangle) { const int mode = get<0>(GetParam()); const int method = get<1>(GetParam()); const size_t ITER = 100; RNG rng = TS::ptr()->get_rng(); for (size_t i = 0; i < ITER; ++i) { SCOPED_TRACE(cv::format("i=%zu", i)); const Size sz(rng.uniform(640, 1920), rng.uniform(480, 1080)); Mat img(sz, CV_8UC1, Scalar::all(0)); Mat img32s(sz, CV_32SC1, Scalar::all(0)); const Rect r(Point(rng.uniform(1, sz.width / 2 - 1), rng.uniform(1, sz.height / 2)), Point(rng.uniform(sz.width / 2 - 1, sz.width - 1), rng.uniform(sz.height / 2 - 1, sz.height - 1))); rectangle(img, r, Scalar::all(255)); rectangle(img32s, r, Scalar::all(255), FILLED); const vector ext_ref {r.tl(), r.tl() + Point(0, r.height - 1), r.br() + Point(-1, -1), r.tl() + Point(r.width - 1, 0)}; const vector int_ref {ext_ref[0] + Point(0, 1), ext_ref[0] + Point(1, 0), ext_ref[3] + Point(-1, 0), ext_ref[3] + Point(0, 1), ext_ref[2] + Point(0, -1), ext_ref[2] + Point(-1, 0), ext_ref[1] + Point(1, 0), ext_ref[1] + Point(0, -1)}; const size_t ext_perimeter = r.width * 2 + r.height * 2; const size_t int_perimeter = ext_perimeter - 4; vector> contours; vector> chains; vector hierarchy; // run functionn if (mode == RETR_FLOODFILL) if (method == 0) findContours(img32s, chains, hierarchy, mode, method); else findContours(img32s, contours, hierarchy, mode, method); else if (method == 0) findContours(img, chains, hierarchy, mode, method); else findContours(img, contours, hierarchy, mode, method); // verify results if (mode == RETR_EXTERNAL) { if (method == 0) { ASSERT_EQ(1U, chains.size()); } else { ASSERT_EQ(1U, contours.size()); if (method == CHAIN_APPROX_NONE) { EXPECT_EQ(int_perimeter, contours[0].size()); } else if (method == CHAIN_APPROX_SIMPLE) { EXPECT_MAT_NEAR(Mat(ext_ref), Mat(contours[0]), 0); } } } else { if (method == 0) { ASSERT_EQ(2U, chains.size()); } else { ASSERT_EQ(2U, contours.size()); if (mode == RETR_LIST) { if (method == CHAIN_APPROX_NONE) { EXPECT_EQ(int_perimeter - 4, contours[0].size()); EXPECT_EQ(int_perimeter, contours[1].size()); } else if (method == CHAIN_APPROX_SIMPLE) { EXPECT_MAT_NEAR(Mat(int_ref), Mat(contours[0]), 0); EXPECT_MAT_NEAR(Mat(ext_ref), Mat(contours[1]), 0); } } else if (mode == RETR_CCOMP || mode == RETR_TREE) { if (method == CHAIN_APPROX_NONE) { EXPECT_EQ(int_perimeter, contours[0].size()); EXPECT_EQ(int_perimeter - 4, contours[1].size()); } else if (method == CHAIN_APPROX_SIMPLE) { EXPECT_MAT_NEAR(Mat(ext_ref), Mat(contours[0]), 0); EXPECT_MAT_NEAR(Mat(int_ref), Mat(contours[1]), 0); } } else if (mode == RETR_FLOODFILL) { if (method == CHAIN_APPROX_NONE) { EXPECT_EQ(int_perimeter + 4, contours[0].size()); } else if (method == CHAIN_APPROX_SIMPLE) { EXPECT_EQ(int_ref.size(), contours[0].size()); EXPECT_MAT_NEAR(Mat(ext_ref), Mat(contours[1]), 0); } } } } } } // Draw many small 1-2px blobs and find contours // TEST_P(Imgproc_FindContours_Modes1, small) { const int mode = get<0>(GetParam()); const int method = get<1>(GetParam()); const size_t DIM = 1000; const Size sz(DIM, DIM); const int num = (DIM / 10) * (DIM / 10); // number of 10x10 squares Mat img(sz, CV_8UC1, Scalar::all(0)); Mat img32s(sz, CV_32SC1, Scalar::all(0)); vector pts; int extra_contours_32s = 0; for (int j = 0; j < num; ++j) { const int kind = j % 9; Point pt {(j % 100) * 10 + 4, (j / 100) * 10 + 4}; drawSmallContour(img, pt, kind, 255); drawSmallContour(img32s, pt, kind, j + 1); pts.push_back(pt); // NOTE: for some reason these small diagonal contours (NW, SE) // result in 2 external contours for FLOODFILL mode if (kind == 8 || kind == 4) ++extra_contours_32s; } { vector> contours; vector> chains; vector hierarchy; if (mode == RETR_FLOODFILL) { if (method == 0) { findContours(img32s, chains, hierarchy, mode, method); ASSERT_EQ(pts.size() * 2 + extra_contours_32s, chains.size()); } else { findContours(img32s, contours, hierarchy, mode, method); ASSERT_EQ(pts.size() * 2 + extra_contours_32s, contours.size()); } } else { if (method == 0) { findContours(img, chains, hierarchy, mode, method); ASSERT_EQ(pts.size(), chains.size()); } else { findContours(img, contours, hierarchy, mode, method); ASSERT_EQ(pts.size(), contours.size()); } } } } // Draw many nested rectangles and find contours // TEST_P(Imgproc_FindContours_Modes1, deep) { const int mode = get<0>(GetParam()); const int method = get<1>(GetParam()); const size_t DIM = 1000; const Size sz(DIM, DIM); const size_t NUM = 249U; Mat img(sz, CV_8UC1, Scalar::all(0)); Mat img32s(sz, CV_32SC1, Scalar::all(0)); Rect rect(1, 1, 998, 998); for (size_t i = 0; i < NUM; ++i) { rectangle(img, rect, Scalar::all(255)); rectangle(img32s, rect, Scalar::all((double)i + 1), FILLED); rect.x += 2; rect.y += 2; rect.width -= 4; rect.height -= 4; } { vector> contours {{{0, 0}, {1, 1}}}; vector> chains {{1, 2, 3}}; vector hierarchy; if (mode == RETR_FLOODFILL) { if (method == 0) { findContours(img32s, chains, hierarchy, mode, method); ASSERT_EQ(2 * NUM, chains.size()); } else { findContours(img32s, contours, hierarchy, mode, method); ASSERT_EQ(2 * NUM, contours.size()); } } else { const size_t expected_count = (mode == RETR_EXTERNAL) ? 1U : 2 * NUM; if (method == 0) { findContours(img, chains, hierarchy, mode, method); ASSERT_EQ(expected_count, chains.size()); } else { findContours(img, contours, hierarchy, mode, method); ASSERT_EQ(expected_count, contours.size()); } } } } INSTANTIATE_TEST_CASE_P( , Imgproc_FindContours_Modes1, testing::Combine( testing::Values(RETR_EXTERNAL, RETR_LIST, RETR_CCOMP, RETR_TREE, RETR_FLOODFILL), testing::Values(0, CHAIN_APPROX_NONE, CHAIN_APPROX_SIMPLE, CHAIN_APPROX_TC89_L1, CHAIN_APPROX_TC89_KCOS))); //================================================================================================== typedef testing::TestWithParam> Imgproc_FindContours_Modes2; // Very approximate backport of an old accuracy test // TEST_P(Imgproc_FindContours_Modes2, new_accuracy) { const int mode = get<0>(GetParam()); const int method = get<1>(GetParam()); RNG& rng = TS::ptr()->get_rng(); const int blob_count = rng.uniform(1, 10); const Size sz(rng.uniform(640, 1920), rng.uniform(480, 1080)); const int blob_sz = 50; // prepare image Mat img(sz, CV_8UC1, Scalar::all(0)); vector rects; for (int i = 0; i < blob_count; ++i) { const Point2f center((float)rng.uniform(blob_sz, sz.width - blob_sz), (float)rng.uniform(blob_sz, sz.height - blob_sz)); const Size2f rsize((float)rng.uniform(1, blob_sz), (float)rng.uniform(1, blob_sz)); RotatedRect rect(center, rsize, rng.uniform(0.f, 180.f)); rects.push_back(rect); ellipse(img, rect, Scalar::all(100), FILLED); } // draw contours manually Mat cont_img(sz, CV_8UC1, Scalar::all(0)); for (int y = 1; y < sz.height - 1; ++y) { for (int x = 1; x < sz.width - 1; ++x) { if (img.at(y, x) != 0 && ((img.at(y - 1, x) == 0) || (img.at(y + 1, x) == 0) || (img.at(y, x + 1) == 0) || (img.at(y, x - 1) == 0))) { cont_img.at(y, x) = 255; } } } // find contours vector> contours; vector hierarchy; findContours(img, contours, hierarchy, mode, method); // 0 < contours <= rects EXPECT_GT(contours.size(), 0U); EXPECT_GE(rects.size(), contours.size()); // draw contours Mat res_img(sz, CV_8UC1, Scalar::all(0)); drawContours(res_img, contours); // compare resulting drawn contours with manually drawn contours const double diff1 = cvtest::norm(cont_img, res_img, NORM_L1) / 255; if (method == CHAIN_APPROX_NONE || method == CHAIN_APPROX_SIMPLE) { EXPECT_EQ(0., diff1); } } TEST_P(Imgproc_FindContours_Modes2, approx) { const int mode = get<0>(GetParam()); const int method = get<1>(GetParam()); const Size sz {500, 500}; Mat img = Mat::zeros(sz, CV_8UC1); for (int c = 0; c < 4; ++c) { if (c != 0) { // noise + filter + threshold RNG& rng = TS::ptr()->get_rng(); cvtest::randUni(rng, img, 0, 255); Mat fimg; boxFilter(img, fimg, CV_8U, Size(5, 5)); Mat timg; const int level = 44 + c * 42; // 'level' goes through: // 86 - some black speckles on white // 128 - 50/50 black/white // 170 - some white speckles on black cv::threshold(fimg, timg, level, 255, THRESH_BINARY); } else { // circle with cut const Point center {250, 250}; const int r {20}; const Point cut {r, r}; circle(img, center, r, Scalar(255), FILLED); rectangle(img, center, center + cut, Scalar(0), FILLED); } vector> contours; vector hierarchy; findContours(img, contours, hierarchy, mode, method); // TODO: check something } } // TODO: offset test // no RETR_FLOODFILL - no CV_32S input images INSTANTIATE_TEST_CASE_P( , Imgproc_FindContours_Modes2, testing::Combine(testing::Values(RETR_EXTERNAL, RETR_LIST, RETR_CCOMP, RETR_TREE), testing::Values(CHAIN_APPROX_NONE, CHAIN_APPROX_SIMPLE, CHAIN_APPROX_TC89_L1, CHAIN_APPROX_TC89_KCOS))); TEST(Imgproc_FindContours, link_runs) { const Size sz {500, 500}; Mat img = Mat::zeros(sz, CV_8UC1); // noise + filter + threshold RNG& rng = TS::ptr()->get_rng(); cvtest::randUni(rng, img, 0, 255); Mat fimg; boxFilter(img, fimg, CV_8U, Size(5, 5)); const int level = 135; cv::threshold(fimg, img, level, 255, THRESH_BINARY); vector> contours; vector hierarchy; findContoursLinkRuns(img, contours, hierarchy); if (cvtest::debugLevel >= 10) { print_pts_2(contours); Mat res = Mat::zeros(sz, CV_8UC1); drawContours(res, contours); imshow("res", res); imshow("img", img); waitKey(0); } } }} // namespace opencv_test