/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include namespace opencv_test { namespace { BIGDATA_TEST(Imgproc_DistanceTransform, large_image_12218) { const int lls_maxcnt = 79992000; // labels's maximum count const int lls_mincnt = 1; // labels's minimum count int i, j, nz; Mat src(8000, 20000, CV_8UC1), dst, labels; for( i = 0; i < src.rows; i++ ) for( j = 0; j < src.cols; j++ ) src.at(i, j) = (j > (src.cols / 2)) ? 0 : 255; distanceTransform(src, dst, labels, cv::DIST_L2, cv::DIST_MASK_3, DIST_LABEL_PIXEL); double scale = (double)lls_mincnt / (double)lls_maxcnt; labels.convertTo(labels, CV_32SC1, scale); Size size = labels.size(); nz = cv::countNonZero(labels); EXPECT_EQ(nz, (size.height*size.width / 2)); } TEST(Imgproc_DistanceTransform, wide_image_22732) { Mat src = Mat::zeros(1, 4099, CV_8U); // 4099 or larger used to be bad Mat dist(src.rows, src.cols, CV_32F); distanceTransform(src, dist, DIST_L2, DIST_MASK_PRECISE, CV_32F); int nz = countNonZero(dist); EXPECT_EQ(nz, 0); } TEST(Imgproc_DistanceTransform, large_square_22732) { Mat src = Mat::zeros(8000, 8005, CV_8U), dist; distanceTransform(src, dist, DIST_L2, DIST_MASK_PRECISE, CV_32F); int nz = countNonZero(dist); EXPECT_EQ(dist.size(), src.size()); EXPECT_EQ(dist.type(), CV_32F); EXPECT_EQ(nz, 0); Point p0(src.cols-1, src.rows-1); src.setTo(1); src.at(p0) = 0; distanceTransform(src, dist, DIST_L2, DIST_MASK_PRECISE, CV_32F); EXPECT_EQ(dist.size(), src.size()); EXPECT_EQ(dist.type(), CV_32F); bool first = true; int nerrs = 0; for (int y = 0; y < dist.rows; y++) for (int x = 0; x < dist.cols; x++) { float d = dist.at(y, x); double dx = (double)(x - p0.x), dy = (double)(y - p0.y); float d0 = (float)sqrt(dx*dx + dy*dy); if (std::abs(d0 - d) > 1) { if (first) { printf("y=%d, x=%d. dist_ref=%.2f, dist=%.2f\n", y, x, d0, d); first = false; } nerrs++; } } EXPECT_EQ(0, nerrs) << "reference distance map is different from computed one at " << nerrs << " pixels\n"; } BIGDATA_TEST(Imgproc_DistanceTransform, issue_23895_3x3) { Mat src = Mat::zeros(50000, 50000, CV_8U), dist; distanceTransform(src.col(0), dist, DIST_L2, DIST_MASK_3); int nz = countNonZero(dist); EXPECT_EQ(nz, 0); } BIGDATA_TEST(Imgproc_DistanceTransform, issue_23895_5x5) { Mat src = Mat::zeros(50000, 50000, CV_8U), dist; distanceTransform(src.col(0), dist, DIST_L2, DIST_MASK_5); int nz = countNonZero(dist); EXPECT_EQ(nz, 0); } BIGDATA_TEST(Imgproc_DistanceTransform, issue_23895_5x5_labels) { Mat src = Mat::zeros(50000, 50000, CV_8U), dist, labels; distanceTransform(src.col(0), dist, labels, DIST_L2, DIST_MASK_5); int nz = countNonZero(dist); EXPECT_EQ(nz, 0); } TEST(Imgproc_DistanceTransform, max_distance_3x3) { Mat src = Mat::ones(1, 70000, CV_8U), dist; src.at(0, 0) = 0; distanceTransform(src, dist, DIST_L2, DIST_MASK_3); double minVal, maxVal; minMaxLoc(dist, &minVal, &maxVal); EXPECT_GE(maxVal, 65533); } TEST(Imgproc_DistanceTransform, max_distance_5x5) { Mat src = Mat::ones(1, 70000, CV_8U), dist; src.at(0, 0) = 0; distanceTransform(src, dist, DIST_L2, DIST_MASK_5); double minVal, maxVal; minMaxLoc(dist, &minVal, &maxVal); EXPECT_GE(maxVal, 65533); } TEST(Imgproc_DistanceTransform, max_distance_5x5_labels) { Mat src = Mat::ones(1, 70000, CV_8U), dist, labels; src.at(0, 0) = 0; distanceTransform(src, dist, labels, DIST_L2, DIST_MASK_5); double minVal, maxVal; minMaxLoc(dist, &minVal, &maxVal); EXPECT_GE(maxVal, 65533); } TEST(Imgproc_DistanceTransform, precise_long_dist) { static const int maxDist = 1 << 16; Mat src = Mat::ones(1, 70000, CV_8U), dist; src.at(0, 0) = 0; distanceTransform(src, dist, DIST_L2, DIST_MASK_PRECISE, CV_32F); Mat expected(src.size(), CV_32F); std::iota(expected.begin(), expected.end(), 0.f); expected.colRange(maxDist, expected.cols).setTo(maxDist); EXPECT_EQ(cv::norm(expected, dist, NORM_INF), 0); } }} // namespace