// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2019-2021 Intel Corporation #include "../test_precomp.hpp" #ifdef HAVE_INF_ENGINE #include #include #include #include #include #include #include #include "backends/ie/util.hpp" #include "backends/ie/giebackend/giewrapper.hpp" #ifdef HAVE_NGRAPH #if defined(__clang__) // clang or MSVC clang #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wunused-parameter" #elif defined(_MSC_VER) #pragma warning(push) #pragma warning(disable : 4100) # if _MSC_VER < 1910 # pragma warning(disable:4268) // Disable warnings of ngraph. OpenVINO recommends to use MSVS 2019. # pragma warning(disable:4800) # endif #elif defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif #include #endif namespace opencv_test { namespace { class TestMediaBGR final: public cv::MediaFrame::IAdapter { cv::Mat m_mat; using Cb = cv::MediaFrame::View::Callback; Cb m_cb; public: explicit TestMediaBGR(cv::Mat m, Cb cb = [](){}) : m_mat(m), m_cb(cb) { } cv::GFrameDesc meta() const override { return cv::GFrameDesc{cv::MediaFormat::BGR, cv::Size(m_mat.cols, m_mat.rows)}; } cv::MediaFrame::View access(cv::MediaFrame::Access) override { cv::MediaFrame::View::Ptrs pp = { m_mat.ptr(), nullptr, nullptr, nullptr }; cv::MediaFrame::View::Strides ss = { m_mat.step, 0u, 0u, 0u }; return cv::MediaFrame::View(std::move(pp), std::move(ss), Cb{m_cb}); } cv::util::any blobParams() const override { return std::make_pair({IE::Precision::U8, {1, 3, 300, 300}, IE::Layout::NCHW}, {{"HELLO", 42}, {"COLOR_FORMAT", InferenceEngine::ColorFormat::NV12}}); } }; class TestMediaNV12 final: public cv::MediaFrame::IAdapter { cv::Mat m_y; cv::Mat m_uv; public: TestMediaNV12(cv::Mat y, cv::Mat uv) : m_y(y), m_uv(uv) { } cv::GFrameDesc meta() const override { return cv::GFrameDesc{cv::MediaFormat::NV12, cv::Size(m_y.cols, m_y.rows)}; } cv::MediaFrame::View access(cv::MediaFrame::Access) override { cv::MediaFrame::View::Ptrs pp = { m_y.ptr(), m_uv.ptr(), nullptr, nullptr }; cv::MediaFrame::View::Strides ss = { m_y.step, m_uv.step, 0u, 0u }; return cv::MediaFrame::View(std::move(pp), std::move(ss)); } }; // FIXME: taken from DNN module static void initDLDTDataPath() { #ifndef WINRT static bool initialized = false; if (!initialized) { const char* omzDataPath = getenv("OPENCV_OPEN_MODEL_ZOO_DATA_PATH"); if (omzDataPath) cvtest::addDataSearchPath(omzDataPath); const char* dnnDataPath = getenv("OPENCV_DNN_TEST_DATA_PATH"); if (dnnDataPath) { // Add the dnnDataPath itself - G-API is using some images there directly cvtest::addDataSearchPath(dnnDataPath); cvtest::addDataSearchPath(dnnDataPath + std::string("/omz_intel_models")); } initialized = true; } #endif // WINRT } #if INF_ENGINE_RELEASE >= 2020010000 static const std::string SUBDIR = "intel/age-gender-recognition-retail-0013/FP32/"; #else static const std::string SUBDIR = "Retail/object_attributes/age_gender/dldt/"; #endif // FIXME: taken from the DNN module void normAssert(cv::InputArray ref, cv::InputArray test, const char *comment /*= ""*/, double l1 = 0.00001, double lInf = 0.0001) { double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total(); EXPECT_LE(normL1, l1) << comment; double normInf = cvtest::norm(ref, test, cv::NORM_INF); EXPECT_LE(normInf, lInf) << comment; } namespace IE = InferenceEngine; void setNetParameters(IE::CNNNetwork& net, bool is_nv12 = false) { auto ii = net.getInputsInfo().at("data"); ii->setPrecision(IE::Precision::U8); ii->getPreProcess().setResizeAlgorithm(IE::RESIZE_BILINEAR); if (is_nv12) { ii->getPreProcess().setColorFormat(IE::ColorFormat::NV12); } } bool checkDeviceIsAvailable(const std::string& device) { const static auto available_devices = [&](){ auto devices = cv::gimpl::ie::wrap::getCore().GetAvailableDevices(); return std::unordered_set{devices.begin(), devices.end()}; }(); return available_devices.find(device) != available_devices.end(); } void skipIfDeviceNotAvailable(const std::string& device) { if (!checkDeviceIsAvailable(device)) { throw SkipTestException("Device: " + device + " isn't available!"); } } void compileBlob(const cv::gapi::ie::detail::ParamDesc& params, const std::string& output, const IE::Precision& ip) { auto plugin = cv::gimpl::ie::wrap::getPlugin(params); auto net = cv::gimpl::ie::wrap::readNetwork(params); for (auto&& ii : net.getInputsInfo()) { ii.second->setPrecision(ip); } auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); std::ofstream out_file{output, std::ios::out | std::ios::binary}; GAPI_Assert(out_file.is_open()); this_network.Export(out_file); } std::string compileAgeGenderBlob(const std::string& device) { const static std::string blob_path = [&](){ cv::gapi::ie::detail::ParamDesc params; const std::string model_name = "age-gender-recognition-retail-0013"; const std::string output = model_name + ".blob"; params.model_path = findDataFile(SUBDIR + model_name + ".xml"); params.weights_path = findDataFile(SUBDIR + model_name + ".bin"); params.device_id = device; compileBlob(params, output, IE::Precision::U8); return output; }(); return blob_path; } } // anonymous namespace // TODO: Probably DNN/IE part can be further parametrized with a template // NOTE: here ".." is used to leave the default "gapi/" search scope TEST(TestAgeGenderIE, InferBasicTensor) { initDLDTDataPath(); cv::gapi::ie::detail::ParamDesc params; params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); params.device_id = "CPU"; // Load IE network, initialize input data using that. cv::Mat in_mat; cv::Mat gapi_age, gapi_gender; IE::Blob::Ptr ie_age, ie_gender; { auto plugin = cv::gimpl::ie::wrap::getPlugin(params); auto net = cv::gimpl::ie::wrap::readNetwork(params); auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); auto infer_request = this_network.CreateInferRequest(); const auto &iedims = net.getInputsInfo().begin()->second->getTensorDesc().getDims(); auto cvdims = cv::gapi::ie::util::to_ocv(iedims); in_mat.create(cvdims, CV_32F); cv::randu(in_mat, -1, 1); infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat)); infer_request.Infer(); ie_age = infer_request.GetBlob("age_conv3"); ie_gender = infer_request.GetBlob("prob"); } // Configure & run G-API using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GMat in; cv::GMat age, gender; std::tie(age, gender) = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }); comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Validate with IE itself (avoid DNN module dependency here) normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); } TEST(TestAgeGenderIE, InferBasicImage) { initDLDTDataPath(); cv::gapi::ie::detail::ParamDesc params; params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); params.device_id = "CPU"; // FIXME: Ideally it should be an image from disk // cv::Mat in_mat = cv::imread(findDataFile("grace_hopper_227.png")); cv::Mat in_mat(cv::Size(320, 240), CV_8UC3); cv::randu(in_mat, 0, 255); cv::Mat gapi_age, gapi_gender; // Load & run IE network IE::Blob::Ptr ie_age, ie_gender; { auto plugin = cv::gimpl::ie::wrap::getPlugin(params); auto net = cv::gimpl::ie::wrap::readNetwork(params); setNetParameters(net); auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); auto infer_request = this_network.CreateInferRequest(); infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat)); infer_request.Infer(); ie_age = infer_request.GetBlob("age_conv3"); ie_gender = infer_request.GetBlob("prob"); } // Configure & run G-API using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GMat in; cv::GMat age, gender; std::tie(age, gender) = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }); comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Validate with IE itself (avoid DNN module dependency here) normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); } struct InferWithReshape: public ::testing::Test { cv::gapi::ie::detail::ParamDesc params; cv::Mat m_in_mat; std::vector m_roi_list; std::vector reshape_dims; std::vector m_out_ie_ages; std::vector m_out_ie_genders; std::vector m_out_gapi_ages; std::vector m_out_gapi_genders; using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); InferenceEngine::CNNNetwork net; InferenceEngine::Core plugin; InferWithReshape() { // FIXME: it must be cv::imread(findDataFile("../dnn/grace_hopper_227.png", false)); m_in_mat = cv::Mat(cv::Size(320, 240), CV_8UC3); cv::randu(m_in_mat, 0, 255); m_out_gapi_ages.resize(1); m_out_gapi_genders.resize(1); // both ROIs point to the same face, with a slightly changed geometry m_roi_list = { cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}), cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}), }; // New dimensions for "data" input reshape_dims = {1, 3, 70, 70}; initDLDTDataPath(); params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); params.device_id = "CPU"; plugin = cv::gimpl::ie::wrap::getPlugin(params); net = cv::gimpl::ie::wrap::readNetwork(params); setNetParameters(net); net.reshape({{"data", reshape_dims}}); } void inferROIs(IE::Blob::Ptr blob) { auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); auto infer_request = this_network.CreateInferRequest(); for (auto &&rc : m_roi_list) { const auto ie_rc = IE::ROI { 0u , static_cast(rc.x) , static_cast(rc.y) , static_cast(rc.width) , static_cast(rc.height) }; infer_request.SetBlob("data", IE::make_shared_blob(blob, ie_rc)); infer_request.Infer(); using namespace cv::gapi::ie::util; m_out_ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone()); m_out_ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone()); } } void infer(cv::Mat& in, const bool with_roi = false) { if (!with_roi) { auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); auto infer_request = this_network.CreateInferRequest(); infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in)); infer_request.Infer(); using namespace cv::gapi::ie::util; m_out_ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone()); m_out_ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone()); } else { auto frame_blob = cv::gapi::ie::util::to_ie(in); inferROIs(frame_blob); } } void validate() { // Validate with IE itself (avoid DNN module dependency here) GAPI_Assert(!m_out_gapi_ages.empty()); ASSERT_EQ(m_out_gapi_genders.size(), m_out_gapi_ages.size()); ASSERT_EQ(m_out_gapi_ages.size(), m_out_ie_ages.size()); ASSERT_EQ(m_out_gapi_genders.size(), m_out_ie_genders.size()); const size_t size = m_out_gapi_ages.size(); for (size_t i = 0; i < size; ++i) { normAssert(m_out_ie_ages [i], m_out_gapi_ages [i], "Test age output"); normAssert(m_out_ie_genders[i], m_out_gapi_genders[i], "Test gender output"); } } }; // InferWithReshape struct InferWithReshapeNV12: public InferWithReshape { cv::Mat m_in_uv; cv::Mat m_in_y; void SetUp() { cv::Size sz{320, 240}; m_in_y = cv::Mat{sz, CV_8UC1}; cv::randu(m_in_y, 0, 255); m_in_uv = cv::Mat{sz / 2, CV_8UC2}; cv::randu(m_in_uv, 0, 255); setNetParameters(net, true); net.reshape({{"data", reshape_dims}}); auto frame_blob = cv::gapi::ie::util::to_ie(m_in_y, m_in_uv); inferROIs(frame_blob); } }; struct ROIList: public ::testing::Test { cv::gapi::ie::detail::ParamDesc params; cv::Mat m_in_mat; std::vector m_roi_list; std::vector m_out_ie_ages; std::vector m_out_ie_genders; std::vector m_out_gapi_ages; std::vector m_out_gapi_genders; using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); void SetUp() { initDLDTDataPath(); params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); params.device_id = "CPU"; // FIXME: it must be cv::imread(findDataFile("../dnn/grace_hopper_227.png", false)); m_in_mat = cv::Mat(cv::Size(320, 240), CV_8UC3); cv::randu(m_in_mat, 0, 255); // both ROIs point to the same face, with a slightly changed geometry m_roi_list = { cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}), cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}), }; // Load & run IE network { auto plugin = cv::gimpl::ie::wrap::getPlugin(params); auto net = cv::gimpl::ie::wrap::readNetwork(params); setNetParameters(net); auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); auto infer_request = this_network.CreateInferRequest(); auto frame_blob = cv::gapi::ie::util::to_ie(m_in_mat); for (auto &&rc : m_roi_list) { const auto ie_rc = IE::ROI { 0u , static_cast(rc.x) , static_cast(rc.y) , static_cast(rc.width) , static_cast(rc.height) }; infer_request.SetBlob("data", IE::make_shared_blob(frame_blob, ie_rc)); infer_request.Infer(); using namespace cv::gapi::ie::util; m_out_ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone()); m_out_ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone()); } } // namespace IE = .. } // ROIList() void validate() { // Validate with IE itself (avoid DNN module dependency here) ASSERT_EQ(2u, m_out_ie_ages.size()); ASSERT_EQ(2u, m_out_ie_genders.size()); ASSERT_EQ(2u, m_out_gapi_ages.size()); ASSERT_EQ(2u, m_out_gapi_genders.size()); normAssert(m_out_ie_ages [0], m_out_gapi_ages [0], "0: Test age output"); normAssert(m_out_ie_genders[0], m_out_gapi_genders[0], "0: Test gender output"); normAssert(m_out_ie_ages [1], m_out_gapi_ages [1], "1: Test age output"); normAssert(m_out_ie_genders[1], m_out_gapi_genders[1], "1: Test gender output"); } }; // ROIList struct ROIListNV12: public ::testing::Test { cv::gapi::ie::detail::ParamDesc params; cv::Mat m_in_uv; cv::Mat m_in_y; std::vector m_roi_list; std::vector m_out_ie_ages; std::vector m_out_ie_genders; std::vector m_out_gapi_ages; std::vector m_out_gapi_genders; using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); void SetUp() { initDLDTDataPath(); params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); params.device_id = "CPU"; cv::Size sz{320, 240}; m_in_y = cv::Mat{sz, CV_8UC1}; cv::randu(m_in_y, 0, 255); m_in_uv = cv::Mat{sz / 2, CV_8UC2}; cv::randu(m_in_uv, 0, 255); // both ROIs point to the same face, with a slightly changed geometry m_roi_list = { cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}), cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}), }; // Load & run IE network { auto plugin = cv::gimpl::ie::wrap::getPlugin(params); auto net = cv::gimpl::ie::wrap::readNetwork(params); setNetParameters(net, true); auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); auto infer_request = this_network.CreateInferRequest(); auto frame_blob = cv::gapi::ie::util::to_ie(m_in_y, m_in_uv); for (auto &&rc : m_roi_list) { const auto ie_rc = IE::ROI { 0u , static_cast(rc.x) , static_cast(rc.y) , static_cast(rc.width) , static_cast(rc.height) }; infer_request.SetBlob("data", IE::make_shared_blob(frame_blob, ie_rc)); infer_request.Infer(); using namespace cv::gapi::ie::util; m_out_ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone()); m_out_ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone()); } } // namespace IE = .. } // ROIList() void validate() { // Validate with IE itself (avoid DNN module dependency here) ASSERT_EQ(2u, m_out_ie_ages.size()); ASSERT_EQ(2u, m_out_ie_genders.size()); ASSERT_EQ(2u, m_out_gapi_ages.size()); ASSERT_EQ(2u, m_out_gapi_genders.size()); normAssert(m_out_ie_ages [0], m_out_gapi_ages [0], "0: Test age output"); normAssert(m_out_ie_genders[0], m_out_gapi_genders[0], "0: Test gender output"); normAssert(m_out_ie_ages [1], m_out_gapi_ages [1], "1: Test age output"); normAssert(m_out_ie_genders[1], m_out_gapi_genders[1], "1: Test gender output"); } }; struct SingleROI: public ::testing::Test { cv::gapi::ie::detail::ParamDesc params; cv::Mat m_in_mat; cv::Rect m_roi; cv::Mat m_out_gapi_age; cv::Mat m_out_gapi_gender; cv::Mat m_out_ie_age; cv::Mat m_out_ie_gender; void SetUp() { initDLDTDataPath(); params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); params.device_id = "CPU"; // FIXME: it must be cv::imread(findDataFile("../dnn/grace_hopper_227.png", false)); m_in_mat = cv::Mat(cv::Size(320, 240), CV_8UC3); cv::randu(m_in_mat, 0, 255); m_roi = cv::Rect(cv::Point{64, 60}, cv::Size{96, 96}); // Load & run IE network IE::Blob::Ptr ie_age, ie_gender; { auto plugin = cv::gimpl::ie::wrap::getPlugin(params); auto net = cv::gimpl::ie::wrap::readNetwork(params); setNetParameters(net); auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); auto infer_request = this_network.CreateInferRequest(); const auto ie_rc = IE::ROI { 0u , static_cast(m_roi.x) , static_cast(m_roi.y) , static_cast(m_roi.width) , static_cast(m_roi.height) }; IE::Blob::Ptr roi_blob = IE::make_shared_blob(cv::gapi::ie::util::to_ie(m_in_mat), ie_rc); infer_request.SetBlob("data", roi_blob); infer_request.Infer(); using namespace cv::gapi::ie::util; m_out_ie_age = to_ocv(infer_request.GetBlob("age_conv3")).clone(); m_out_ie_gender = to_ocv(infer_request.GetBlob("prob")).clone(); } } void validate() { // Validate with IE itself (avoid DNN module dependency here) normAssert(m_out_ie_age , m_out_gapi_age , "Test age output"); normAssert(m_out_ie_gender, m_out_gapi_gender, "Test gender output"); } }; struct SingleROINV12: public ::testing::Test { cv::gapi::ie::detail::ParamDesc params; cv::Mat m_in_y; cv::Mat m_in_uv; cv::Rect m_roi; cv::Mat m_out_gapi_age; cv::Mat m_out_gapi_gender; cv::Mat m_out_ie_age; cv::Mat m_out_ie_gender; void SetUp() { initDLDTDataPath(); params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); params.device_id = "CPU"; cv::Size sz{320, 240}; m_in_y = cv::Mat{sz, CV_8UC1}; cv::randu(m_in_y, 0, 255); m_in_uv = cv::Mat{sz / 2, CV_8UC2}; cv::randu(m_in_uv, 0, 255); m_roi = cv::Rect(cv::Point{64, 60}, cv::Size{96, 96}); // Load & run IE network IE::Blob::Ptr ie_age, ie_gender; { auto plugin = cv::gimpl::ie::wrap::getPlugin(params); auto net = cv::gimpl::ie::wrap::readNetwork(params); setNetParameters(net, /* NV12 */ true); auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); auto infer_request = this_network.CreateInferRequest(); auto blob = cv::gapi::ie::util::to_ie(m_in_y, m_in_uv); const auto ie_rc = IE::ROI { 0u , static_cast(m_roi.x) , static_cast(m_roi.y) , static_cast(m_roi.width) , static_cast(m_roi.height) }; IE::Blob::Ptr roi_blob = IE::make_shared_blob(blob, ie_rc); infer_request.SetBlob("data", roi_blob); infer_request.Infer(); using namespace cv::gapi::ie::util; m_out_ie_age = to_ocv(infer_request.GetBlob("age_conv3")).clone(); m_out_ie_gender = to_ocv(infer_request.GetBlob("prob")).clone(); } } void validate() { // Validate with IE itself (avoid DNN module dependency here) normAssert(m_out_ie_age , m_out_gapi_age , "Test age output"); normAssert(m_out_ie_gender, m_out_gapi_gender, "Test gender output"); } }; TEST_F(ROIList, TestInfer) { cv::GArray rr; cv::GMat in; cv::GArray age, gender; std::tie(age, gender) = cv::gapi::infer(rr, in); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }); comp.apply(cv::gin(m_in_mat, m_roi_list), cv::gout(m_out_gapi_ages, m_out_gapi_genders), cv::compile_args(cv::gapi::networks(pp))); validate(); } TEST_F(ROIList, TestInfer2) { cv::GArray rr; cv::GMat in; cv::GArray age, gender; std::tie(age, gender) = cv::gapi::infer2(in, rr); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }); comp.apply(cv::gin(m_in_mat, m_roi_list), cv::gout(m_out_gapi_ages, m_out_gapi_genders), cv::compile_args(cv::gapi::networks(pp))); validate(); } TEST(DISABLED_TestTwoIENNPipeline, InferBasicImage) { initDLDTDataPath(); cv::gapi::ie::detail::ParamDesc AGparams; AGparams.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml", false); AGparams.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin", false); AGparams.device_id = "MYRIAD"; // FIXME: Ideally it should be an image from disk // cv::Mat in_mat = cv::imread(findDataFile("grace_hopper_227.png")); cv::Mat in_mat(cv::Size(320, 240), CV_8UC3); cv::randu(in_mat, 0, 255); cv::Mat gapi_age1, gapi_gender1, gapi_age2, gapi_gender2; // Load & run IE network IE::Blob::Ptr ie_age1, ie_gender1, ie_age2, ie_gender2; { auto AGplugin1 = cv::gimpl::ie::wrap::getPlugin(AGparams); auto AGnet1 = cv::gimpl::ie::wrap::readNetwork(AGparams); setNetParameters(AGnet1); auto AGplugin_network1 = cv::gimpl::ie::wrap::loadNetwork(AGplugin1, AGnet1, AGparams); auto AGinfer_request1 = AGplugin_network1.CreateInferRequest(); AGinfer_request1.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat)); AGinfer_request1.Infer(); ie_age1 = AGinfer_request1.GetBlob("age_conv3"); ie_gender1 = AGinfer_request1.GetBlob("prob"); auto AGplugin2 = cv::gimpl::ie::wrap::getPlugin(AGparams); auto AGnet2 = cv::gimpl::ie::wrap::readNetwork(AGparams); setNetParameters(AGnet2); auto AGplugin_network2 = cv::gimpl::ie::wrap::loadNetwork(AGplugin2, AGnet2, AGparams); auto AGinfer_request2 = AGplugin_network2.CreateInferRequest(); AGinfer_request2.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat)); AGinfer_request2.Infer(); ie_age2 = AGinfer_request2.GetBlob("age_conv3"); ie_gender2 = AGinfer_request2.GetBlob("prob"); } // Configure & run G-API using AGInfo = std::tuple; G_API_NET(AgeGender1, , "test-age-gender1"); G_API_NET(AgeGender2, , "test-age-gender2"); cv::GMat in; cv::GMat age1, gender1; std::tie(age1, gender1) = cv::gapi::infer(in); cv::GMat age2, gender2; // FIXME: "Multi-node inference is not supported!", workarounded 'till enabling proper tools std::tie(age2, gender2) = cv::gapi::infer(cv::gapi::copy(in)); cv::GComputation comp(cv::GIn(in), cv::GOut(age1, gender1, age2, gender2)); auto age_net1 = cv::gapi::ie::Params { AGparams.model_path, AGparams.weights_path, AGparams.device_id }.cfgOutputLayers({ "age_conv3", "prob" }); auto age_net2 = cv::gapi::ie::Params { AGparams.model_path, AGparams.weights_path, AGparams.device_id }.cfgOutputLayers({ "age_conv3", "prob" }); comp.apply(cv::gin(in_mat), cv::gout(gapi_age1, gapi_gender1, gapi_age2, gapi_gender2), cv::compile_args(cv::gapi::networks(age_net1, age_net2))); // Validate with IE itself (avoid DNN module dependency here) normAssert(cv::gapi::ie::util::to_ocv(ie_age1), gapi_age1, "Test age output 1"); normAssert(cv::gapi::ie::util::to_ocv(ie_gender1), gapi_gender1, "Test gender output 1"); normAssert(cv::gapi::ie::util::to_ocv(ie_age2), gapi_age2, "Test age output 2"); normAssert(cv::gapi::ie::util::to_ocv(ie_gender2), gapi_gender2, "Test gender output 2"); } TEST(TestAgeGenderIE, GenericInfer) { initDLDTDataPath(); cv::gapi::ie::detail::ParamDesc params; params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); params.device_id = "CPU"; cv::Mat in_mat(cv::Size(320, 240), CV_8UC3); cv::randu(in_mat, 0, 255); cv::Mat gapi_age, gapi_gender; // Load & run IE network IE::Blob::Ptr ie_age, ie_gender; { auto plugin = cv::gimpl::ie::wrap::getPlugin(params); auto net = cv::gimpl::ie::wrap::readNetwork(params); setNetParameters(net); auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); auto infer_request = this_network.CreateInferRequest(); infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat)); infer_request.Infer(); ie_age = infer_request.GetBlob("age_conv3"); ie_gender = infer_request.GetBlob("prob"); } // Configure & run G-API cv::GMat in; GInferInputs inputs; inputs["data"] = in; auto outputs = cv::gapi::infer("age-gender-generic", inputs); auto age = outputs.at("age_conv3"); auto gender = outputs.at("prob"); cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); cv::gapi::ie::Params pp{ "age-gender-generic", params.model_path, params.weights_path, params.device_id}; comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Validate with IE itself (avoid DNN module dependency here) normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); } TEST(TestAgeGenderIE, InvalidConfigGeneric) { initDLDTDataPath(); std::string model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); std::string weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); std::string device_id = "CPU"; // Configure & run G-API cv::GMat in; GInferInputs inputs; inputs["data"] = in; auto outputs = cv::gapi::infer("age-gender-generic", inputs); auto age = outputs.at("age_conv3"); auto gender = outputs.at("prob"); cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params{ "age-gender-generic", model_path, weights_path, device_id }.pluginConfig({{"unsupported_config", "some_value"}}); EXPECT_ANY_THROW(comp.compile(cv::GMatDesc{CV_8U,3,cv::Size{320, 240}}, cv::compile_args(cv::gapi::networks(pp)))); } TEST(TestAgeGenderIE, CPUConfigGeneric) { initDLDTDataPath(); std::string model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); std::string weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); std::string device_id = "CPU"; // Configure & run G-API cv::GMat in; GInferInputs inputs; inputs["data"] = in; auto outputs = cv::gapi::infer("age-gender-generic", inputs); auto age = outputs.at("age_conv3"); auto gender = outputs.at("prob"); cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { "age-gender-generic", model_path, weights_path, device_id }.pluginConfig({{IE::PluginConfigParams::KEY_CPU_THROUGHPUT_STREAMS, IE::PluginConfigParams::CPU_THROUGHPUT_NUMA}}); EXPECT_NO_THROW(comp.compile(cv::GMatDesc{CV_8U,3,cv::Size{320, 240}}, cv::compile_args(cv::gapi::networks(pp)))); } TEST(TestAgeGenderIE, InvalidConfig) { initDLDTDataPath(); std::string model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); std::string weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); std::string device_id = "CPU"; using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GMat in; cv::GMat age, gender; std::tie(age, gender) = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { model_path, weights_path, device_id }.cfgOutputLayers({ "age_conv3", "prob" }) .pluginConfig({{"unsupported_config", "some_value"}}); EXPECT_ANY_THROW(comp.compile(cv::GMatDesc{CV_8U,3,cv::Size{320, 240}}, cv::compile_args(cv::gapi::networks(pp)))); } TEST(TestAgeGenderIE, CPUConfig) { initDLDTDataPath(); std::string model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); std::string weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); std::string device_id = "CPU"; using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GMat in; cv::GMat age, gender; std::tie(age, gender) = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { model_path, weights_path, device_id }.cfgOutputLayers({ "age_conv3", "prob" }) .pluginConfig({{IE::PluginConfigParams::KEY_CPU_THROUGHPUT_STREAMS, IE::PluginConfigParams::CPU_THROUGHPUT_NUMA}}); EXPECT_NO_THROW(comp.compile(cv::GMatDesc{CV_8U,3,cv::Size{320, 240}}, cv::compile_args(cv::gapi::networks(pp)))); } TEST_F(ROIList, MediaInputBGR) { initDLDTDataPath(); cv::GFrame in; cv::GArray rr; cv::GArray age, gender; std::tie(age, gender) = cv::gapi::infer(rr, in); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); auto frame = MediaFrame::Create(m_in_mat); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }); comp.apply(cv::gin(frame, m_roi_list), cv::gout(m_out_gapi_ages, m_out_gapi_genders), cv::compile_args(cv::gapi::networks(pp))); validate(); } TEST_F(ROIListNV12, MediaInputNV12) { initDLDTDataPath(); cv::GFrame in; cv::GArray rr; cv::GArray age, gender; std::tie(age, gender) = cv::gapi::infer(rr, in); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); auto frame = MediaFrame::Create(m_in_y, m_in_uv); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }); comp.apply(cv::gin(frame, m_roi_list), cv::gout(m_out_gapi_ages, m_out_gapi_genders), cv::compile_args(cv::gapi::networks(pp))); validate(); } TEST(TestAgeGenderIE, MediaInputNV12) { initDLDTDataPath(); cv::gapi::ie::detail::ParamDesc params; params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); params.device_id = "CPU"; cv::Size sz{320, 240}; cv::Mat in_y_mat(sz, CV_8UC1); cv::randu(in_y_mat, 0, 255); cv::Mat in_uv_mat(sz / 2, CV_8UC2); cv::randu(in_uv_mat, 0, 255); cv::Mat gapi_age, gapi_gender; // Load & run IE network IE::Blob::Ptr ie_age, ie_gender; { auto plugin = cv::gimpl::ie::wrap::getPlugin(params); auto net = cv::gimpl::ie::wrap::readNetwork(params); setNetParameters(net, true); auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); auto infer_request = this_network.CreateInferRequest(); infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_y_mat, in_uv_mat)); infer_request.Infer(); ie_age = infer_request.GetBlob("age_conv3"); ie_gender = infer_request.GetBlob("prob"); } // Configure & run G-API using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GFrame in; cv::GMat age, gender; std::tie(age, gender) = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); auto frame = MediaFrame::Create(in_y_mat, in_uv_mat); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }); comp.apply(cv::gin(frame), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Validate with IE itself (avoid DNN module dependency here) normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); } TEST(TestAgeGenderIE, MediaInputBGR) { initDLDTDataPath(); cv::gapi::ie::detail::ParamDesc params; params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); params.device_id = "CPU"; cv::Size sz{320, 240}; cv::Mat in_mat(sz, CV_8UC3); cv::randu(in_mat, 0, 255); cv::Mat gapi_age, gapi_gender; // Load & run IE network IE::Blob::Ptr ie_age, ie_gender; { auto plugin = cv::gimpl::ie::wrap::getPlugin(params); auto net = cv::gimpl::ie::wrap::readNetwork(params); setNetParameters(net); auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); auto infer_request = this_network.CreateInferRequest(); infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat)); infer_request.Infer(); ie_age = infer_request.GetBlob("age_conv3"); ie_gender = infer_request.GetBlob("prob"); } // Configure & run G-API using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GFrame in; cv::GMat age, gender; std::tie(age, gender) = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); auto frame = MediaFrame::Create(in_mat); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }); comp.apply(cv::gin(frame), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Validate with IE itself (avoid DNN module dependency here) normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); } TEST(InferROI, MediaInputBGR) { initDLDTDataPath(); cv::gapi::ie::detail::ParamDesc params; params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); params.device_id = "CPU"; cv::Size sz{320, 240}; cv::Mat in_mat(sz, CV_8UC3); cv::randu(in_mat, 0, 255); cv::Mat gapi_age, gapi_gender; cv::Rect rect(cv::Point{64, 60}, cv::Size{96, 96}); // Load & run IE network IE::Blob::Ptr ie_age, ie_gender; { auto plugin = cv::gimpl::ie::wrap::getPlugin(params); auto net = cv::gimpl::ie::wrap::readNetwork(params); setNetParameters(net); auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); auto infer_request = this_network.CreateInferRequest(); const auto ie_rc = IE::ROI { 0u , static_cast(rect.x) , static_cast(rect.y) , static_cast(rect.width) , static_cast(rect.height) }; IE::Blob::Ptr roi_blob = IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_mat), ie_rc); infer_request.SetBlob("data", roi_blob); infer_request.Infer(); ie_age = infer_request.GetBlob("age_conv3"); ie_gender = infer_request.GetBlob("prob"); } // Configure & run G-API using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GFrame in; cv::GOpaque roi; cv::GMat age, gender; std::tie(age, gender) = cv::gapi::infer(roi, in); cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender)); auto frame = MediaFrame::Create(in_mat); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }); comp.apply(cv::gin(frame, rect), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Validate with IE itself (avoid DNN module dependency here) normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); } TEST(InferROI, MediaInputNV12) { initDLDTDataPath(); cv::gapi::ie::detail::ParamDesc params; params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); params.device_id = "CPU"; cv::Size sz{320, 240}; auto in_y_mat = cv::Mat{sz, CV_8UC1}; cv::randu(in_y_mat, 0, 255); auto in_uv_mat = cv::Mat{sz / 2, CV_8UC2}; cv::randu(in_uv_mat, 0, 255); cv::Mat gapi_age, gapi_gender; cv::Rect rect(cv::Point{64, 60}, cv::Size{96, 96}); // Load & run IE network IE::Blob::Ptr ie_age, ie_gender; { auto plugin = cv::gimpl::ie::wrap::getPlugin(params); auto net = cv::gimpl::ie::wrap::readNetwork(params); setNetParameters(net, true); auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); auto infer_request = this_network.CreateInferRequest(); const auto ie_rc = IE::ROI { 0u , static_cast(rect.x) , static_cast(rect.y) , static_cast(rect.width) , static_cast(rect.height) }; IE::Blob::Ptr roi_blob = IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_y_mat, in_uv_mat), ie_rc); infer_request.SetBlob("data", roi_blob); infer_request.Infer(); ie_age = infer_request.GetBlob("age_conv3"); ie_gender = infer_request.GetBlob("prob"); } // Configure & run G-API using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GFrame in; cv::GOpaque roi; cv::GMat age, gender; std::tie(age, gender) = cv::gapi::infer(roi, in); cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender)); auto frame = MediaFrame::Create(in_y_mat, in_uv_mat); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }); comp.apply(cv::gin(frame, rect), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Validate with IE itself (avoid DNN module dependency here) normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); } TEST_F(ROIList, Infer2MediaInputBGR) { cv::GArray rr; cv::GFrame in; cv::GArray age, gender; std::tie(age, gender) = cv::gapi::infer2(in, rr); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); auto frame = MediaFrame::Create(m_in_mat); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }); comp.apply(cv::gin(frame, m_roi_list), cv::gout(m_out_gapi_ages, m_out_gapi_genders), cv::compile_args(cv::gapi::networks(pp))); validate(); } TEST_F(ROIListNV12, Infer2MediaInputNV12) { cv::GArray rr; cv::GFrame in; cv::GArray age, gender; std::tie(age, gender) = cv::gapi::infer2(in, rr); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); auto frame = MediaFrame::Create(m_in_y, m_in_uv); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }); comp.apply(cv::gin(frame, m_roi_list), cv::gout(m_out_gapi_ages, m_out_gapi_genders), cv::compile_args(cv::gapi::networks(pp))); validate(); } TEST_F(SingleROI, GenericInfer) { // Configure & run G-API cv::GMat in; cv::GOpaque roi; cv::GInferInputs inputs; inputs["data"] = in; auto outputs = cv::gapi::infer("age-gender-generic", roi, inputs); auto age = outputs.at("age_conv3"); auto gender = outputs.at("prob"); cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender)); cv::gapi::ie::Params pp{ "age-gender-generic", params.model_path, params.weights_path, params.device_id }; pp.cfgNumRequests(2u); comp.apply(cv::gin(m_in_mat, m_roi), cv::gout(m_out_gapi_age, m_out_gapi_gender), cv::compile_args(cv::gapi::networks(pp))); validate(); } TEST_F(SingleROI, GenericInferMediaBGR) { // Configure & run G-API cv::GFrame in; cv::GOpaque roi; cv::GInferInputs inputs; inputs["data"] = in; auto outputs = cv::gapi::infer("age-gender-generic", roi, inputs); auto age = outputs.at("age_conv3"); auto gender = outputs.at("prob"); cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender)); cv::gapi::ie::Params pp{ "age-gender-generic", params.model_path, params.weights_path, params.device_id }; pp.cfgNumRequests(2u); auto frame = MediaFrame::Create(m_in_mat); comp.apply(cv::gin(frame, m_roi), cv::gout(m_out_gapi_age, m_out_gapi_gender), cv::compile_args(cv::gapi::networks(pp))); validate(); } TEST_F(SingleROINV12, GenericInferMediaNV12) { // Configure & run G-API cv::GFrame in; cv::GOpaque roi; cv::GInferInputs inputs; inputs["data"] = in; auto outputs = cv::gapi::infer("age-gender-generic", roi, inputs); auto age = outputs.at("age_conv3"); auto gender = outputs.at("prob"); cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender)); cv::gapi::ie::Params pp{ "age-gender-generic", params.model_path, params.weights_path, params.device_id }; pp.cfgNumRequests(2u); auto frame = MediaFrame::Create(m_in_y, m_in_uv); comp.apply(cv::gin(frame, m_roi), cv::gout(m_out_gapi_age, m_out_gapi_gender), cv::compile_args(cv::gapi::networks(pp))); validate(); } TEST_F(ROIList, GenericInfer) { cv::GMat in; cv::GArray rr; cv::GInferInputs inputs; inputs["data"] = in; auto outputs = cv::gapi::infer("age-gender-generic", rr, inputs); auto age = outputs.at("age_conv3"); auto gender = outputs.at("prob"); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); cv::gapi::ie::Params pp{ "age-gender-generic", params.model_path, params.weights_path, params.device_id }; pp.cfgNumRequests(2u); comp.apply(cv::gin(m_in_mat, m_roi_list), cv::gout(m_out_gapi_ages, m_out_gapi_genders), cv::compile_args(cv::gapi::networks(pp))); validate(); } TEST_F(ROIList, GenericInferMediaBGR) { cv::GFrame in; cv::GArray rr; cv::GInferInputs inputs; inputs["data"] = in; auto outputs = cv::gapi::infer("age-gender-generic", rr, inputs); auto age = outputs.at("age_conv3"); auto gender = outputs.at("prob"); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); cv::gapi::ie::Params pp{ "age-gender-generic", params.model_path, params.weights_path, params.device_id }; pp.cfgNumRequests(2u); auto frame = MediaFrame::Create(m_in_mat); comp.apply(cv::gin(frame, m_roi_list), cv::gout(m_out_gapi_ages, m_out_gapi_genders), cv::compile_args(cv::gapi::networks(pp))); validate(); } TEST_F(ROIListNV12, GenericInferMediaNV12) { cv::GFrame in; cv::GArray rr; cv::GInferInputs inputs; inputs["data"] = in; auto outputs = cv::gapi::infer("age-gender-generic", rr, inputs); auto age = outputs.at("age_conv3"); auto gender = outputs.at("prob"); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); cv::gapi::ie::Params pp{ "age-gender-generic", params.model_path, params.weights_path, params.device_id }; pp.cfgNumRequests(2u); auto frame = MediaFrame::Create(m_in_y, m_in_uv); comp.apply(cv::gin(frame, m_roi_list), cv::gout(m_out_gapi_ages, m_out_gapi_genders), cv::compile_args(cv::gapi::networks(pp))); validate(); } TEST_F(ROIList, GenericInfer2) { cv::GArray rr; cv::GMat in; GInferListInputs list; list["data"] = rr; auto outputs = cv::gapi::infer2("age-gender-generic", in, list); auto age = outputs.at("age_conv3"); auto gender = outputs.at("prob"); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); cv::gapi::ie::Params pp{ "age-gender-generic", params.model_path, params.weights_path, params.device_id }; pp.cfgNumRequests(2u); comp.apply(cv::gin(m_in_mat, m_roi_list), cv::gout(m_out_gapi_ages, m_out_gapi_genders), cv::compile_args(cv::gapi::networks(pp))); validate(); } TEST_F(ROIList, GenericInfer2MediaInputBGR) { cv::GArray rr; cv::GFrame in; GInferListInputs inputs; inputs["data"] = rr; auto outputs = cv::gapi::infer2("age-gender-generic", in, inputs); auto age = outputs.at("age_conv3"); auto gender = outputs.at("prob"); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); cv::gapi::ie::Params pp{ "age-gender-generic", params.model_path, params.weights_path, params.device_id }; pp.cfgNumRequests(2u); auto frame = MediaFrame::Create(m_in_mat); comp.apply(cv::gin(frame, m_roi_list), cv::gout(m_out_gapi_ages, m_out_gapi_genders), cv::compile_args(cv::gapi::networks(pp))); validate(); } TEST_F(ROIListNV12, GenericInfer2MediaInputNV12) { cv::GArray rr; cv::GFrame in; GInferListInputs inputs; inputs["data"] = rr; auto outputs = cv::gapi::infer2("age-gender-generic", in, inputs); auto age = outputs.at("age_conv3"); auto gender = outputs.at("prob"); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); cv::gapi::ie::Params pp{ "age-gender-generic", params.model_path, params.weights_path, params.device_id }; pp.cfgNumRequests(2u); auto frame = MediaFrame::Create(m_in_y, m_in_uv); comp.apply(cv::gin(frame, m_roi_list), cv::gout(m_out_gapi_ages, m_out_gapi_genders), cv::compile_args(cv::gapi::networks(pp))); validate(); } TEST(Infer, SetInvalidNumberOfRequests) { using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::gapi::ie::Params pp{"model", "weights", "device"}; EXPECT_ANY_THROW(pp.cfgNumRequests(0u)); } TEST(Infer, TestStreamingInfer) { initDLDTDataPath(); std::string filepath = findDataFile("cv/video/768x576.avi"); cv::gapi::ie::detail::ParamDesc params; params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); params.device_id = "CPU"; // Load IE network, initialize input data using that. cv::Mat in_mat; cv::Mat gapi_age, gapi_gender; using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GMat in; cv::GMat age, gender; std::tie(age, gender) = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }) .cfgNumRequests(4u); std::size_t num_frames = 0u; std::size_t max_frames = 10u; cv::VideoCapture cap; cap.open(filepath); if (!cap.isOpened()) throw SkipTestException("Video file can not be opened"); cap >> in_mat; auto pipeline = comp.compileStreaming(cv::compile_args(cv::gapi::networks(pp))); pipeline.setSource(filepath); pipeline.start(); while (num_frames < max_frames && pipeline.pull(cv::gout(gapi_age, gapi_gender))) { IE::Blob::Ptr ie_age, ie_gender; { auto plugin = cv::gimpl::ie::wrap::getPlugin(params); auto net = cv::gimpl::ie::wrap::readNetwork(params); setNetParameters(net); auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); auto infer_request = this_network.CreateInferRequest(); infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat)); infer_request.Infer(); ie_age = infer_request.GetBlob("age_conv3"); ie_gender = infer_request.GetBlob("prob"); } // Validate with IE itself (avoid DNN module dependency here) normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); ++num_frames; cap >> in_mat; } pipeline.stop(); } TEST(InferROI, TestStreamingInfer) { initDLDTDataPath(); std::string filepath = findDataFile("cv/video/768x576.avi"); cv::gapi::ie::detail::ParamDesc params; params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); params.device_id = "CPU"; // Load IE network, initialize input data using that. cv::Mat in_mat; cv::Mat gapi_age, gapi_gender; cv::Rect rect(cv::Point{64, 60}, cv::Size{96, 96}); using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GMat in; cv::GOpaque roi; cv::GMat age, gender; std::tie(age, gender) = cv::gapi::infer(roi, in); cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }) .cfgNumRequests(4u); std::size_t num_frames = 0u; std::size_t max_frames = 10u; cv::VideoCapture cap; cap.open(filepath); if (!cap.isOpened()) throw SkipTestException("Video file can not be opened"); cap >> in_mat; auto pipeline = comp.compileStreaming(cv::compile_args(cv::gapi::networks(pp))); pipeline.setSource( cv::gin(cv::gapi::wip::make_src(filepath), rect)); pipeline.start(); while (num_frames < max_frames && pipeline.pull(cv::gout(gapi_age, gapi_gender))) { // Load & run IE network IE::Blob::Ptr ie_age, ie_gender; { auto plugin = cv::gimpl::ie::wrap::getPlugin(params); auto net = cv::gimpl::ie::wrap::readNetwork(params); setNetParameters(net); auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); auto infer_request = this_network.CreateInferRequest(); const auto ie_rc = IE::ROI { 0u , static_cast(rect.x) , static_cast(rect.y) , static_cast(rect.width) , static_cast(rect.height) }; IE::Blob::Ptr roi_blob = IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_mat), ie_rc); infer_request.SetBlob("data", roi_blob); infer_request.Infer(); ie_age = infer_request.GetBlob("age_conv3"); ie_gender = infer_request.GetBlob("prob"); } // Validate with IE itself (avoid DNN module dependency here) normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); ++num_frames; cap >> in_mat; } pipeline.stop(); } TEST(InferList, TestStreamingInfer) { initDLDTDataPath(); std::string filepath = findDataFile("cv/video/768x576.avi"); cv::gapi::ie::detail::ParamDesc params; params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); params.device_id = "CPU"; // Load IE network, initialize input data using that. cv::Mat in_mat; std::vector ie_ages, ie_genders, gapi_ages, gapi_genders; std::vector roi_list = { cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}), cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}), }; using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GMat in; cv::GArray roi; cv::GArray age, gender; std::tie(age, gender) = cv::gapi::infer(roi, in); cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }) .cfgNumRequests(4u); std::size_t num_frames = 0u; std::size_t max_frames = 10u; cv::VideoCapture cap; cap.open(filepath); if (!cap.isOpened()) throw SkipTestException("Video file can not be opened"); cap >> in_mat; auto pipeline = comp.compileStreaming(cv::compile_args(cv::gapi::networks(pp))); pipeline.setSource( cv::gin(cv::gapi::wip::make_src(filepath), roi_list)); pipeline.start(); while (num_frames < max_frames && pipeline.pull(cv::gout(gapi_ages, gapi_genders))) { { auto plugin = cv::gimpl::ie::wrap::getPlugin(params); auto net = cv::gimpl::ie::wrap::readNetwork(params); setNetParameters(net); auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); auto infer_request = this_network.CreateInferRequest(); auto frame_blob = cv::gapi::ie::util::to_ie(in_mat); for (auto &&rc : roi_list) { const auto ie_rc = IE::ROI { 0u , static_cast(rc.x) , static_cast(rc.y) , static_cast(rc.width) , static_cast(rc.height) }; infer_request.SetBlob("data", IE::make_shared_blob(frame_blob, ie_rc)); infer_request.Infer(); using namespace cv::gapi::ie::util; ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone()); ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone()); } } // namespace IE = .. // Validate with IE itself (avoid DNN module dependency here) normAssert(ie_ages [0], gapi_ages [0], "0: Test age output"); normAssert(ie_genders[0], gapi_genders[0], "0: Test gender output"); normAssert(ie_ages [1], gapi_ages [1], "1: Test age output"); normAssert(ie_genders[1], gapi_genders[1], "1: Test gender output"); ie_ages.clear(); ie_genders.clear(); ++num_frames; cap >> in_mat; } } TEST(Infer2, TestStreamingInfer) { initDLDTDataPath(); std::string filepath = findDataFile("cv/video/768x576.avi"); cv::gapi::ie::detail::ParamDesc params; params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); params.device_id = "CPU"; // Load IE network, initialize input data using that. cv::Mat in_mat; std::vector ie_ages, ie_genders, gapi_ages, gapi_genders; std::vector roi_list = { cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}), cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}), }; using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GArray rr; cv::GMat in; cv::GArray age, gender; std::tie(age, gender) = cv::gapi::infer2(in, rr); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }) .cfgNumRequests(4u); std::size_t num_frames = 0u; std::size_t max_frames = 10u; cv::VideoCapture cap; cap.open(filepath); if (!cap.isOpened()) throw SkipTestException("Video file can not be opened"); cap >> in_mat; auto pipeline = comp.compileStreaming(cv::compile_args(cv::gapi::networks(pp))); pipeline.setSource( cv::gin(cv::gapi::wip::make_src(filepath), roi_list)); pipeline.start(); while (num_frames < max_frames && pipeline.pull(cv::gout(gapi_ages, gapi_genders))) { { auto plugin = cv::gimpl::ie::wrap::getPlugin(params); auto net = cv::gimpl::ie::wrap::readNetwork(params); setNetParameters(net); auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); auto infer_request = this_network.CreateInferRequest(); auto frame_blob = cv::gapi::ie::util::to_ie(in_mat); for (auto &&rc : roi_list) { const auto ie_rc = IE::ROI { 0u , static_cast(rc.x) , static_cast(rc.y) , static_cast(rc.width) , static_cast(rc.height) }; infer_request.SetBlob("data", IE::make_shared_blob(frame_blob, ie_rc)); infer_request.Infer(); using namespace cv::gapi::ie::util; ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone()); ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone()); } } // namespace IE = .. // Validate with IE itself (avoid DNN module dependency here) normAssert(ie_ages [0], gapi_ages [0], "0: Test age output"); normAssert(ie_genders[0], gapi_genders[0], "0: Test gender output"); normAssert(ie_ages [1], gapi_ages [1], "1: Test age output"); normAssert(ie_genders[1], gapi_genders[1], "1: Test gender output"); ie_ages.clear(); ie_genders.clear(); ++num_frames; cap >> in_mat; } pipeline.stop(); } TEST(InferEmptyList, TestStreamingInfer) { initDLDTDataPath(); std::string filepath = findDataFile("cv/video/768x576.avi"); cv::gapi::ie::detail::ParamDesc params; params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); params.device_id = "CPU"; // Load IE network, initialize input data using that. cv::Mat in_mat; std::vector ie_ages, ie_genders, gapi_ages, gapi_genders; // NB: Empty list of roi std::vector roi_list; using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GMat in; cv::GArray roi; cv::GArray age, gender; std::tie(age, gender) = cv::gapi::infer(roi, in); cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }) .cfgNumRequests(4u); std::size_t num_frames = 0u; std::size_t max_frames = 1u; cv::VideoCapture cap; cap.open(filepath); if (!cap.isOpened()) throw SkipTestException("Video file can not be opened"); cap >> in_mat; auto pipeline = comp.compileStreaming(cv::compile_args(cv::gapi::networks(pp))); pipeline.setSource( cv::gin(cv::gapi::wip::make_src(filepath), roi_list)); pipeline.start(); while (num_frames < max_frames && pipeline.pull(cv::gout(gapi_ages, gapi_genders))) { EXPECT_TRUE(gapi_ages.empty()); EXPECT_TRUE(gapi_genders.empty()); } } TEST(Infer2EmptyList, TestStreamingInfer) { initDLDTDataPath(); std::string filepath = findDataFile("cv/video/768x576.avi"); cv::gapi::ie::detail::ParamDesc params; params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); params.device_id = "CPU"; // Load IE network, initialize input data using that. cv::Mat in_mat; std::vector ie_ages, ie_genders, gapi_ages, gapi_genders; // NB: Empty list of roi std::vector roi_list; using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GArray rr; cv::GMat in; cv::GArray age, gender; std::tie(age, gender) = cv::gapi::infer2(in, rr); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }) .cfgNumRequests(4u); std::size_t num_frames = 0u; std::size_t max_frames = 1u; cv::VideoCapture cap; cap.open(filepath); if (!cap.isOpened()) throw SkipTestException("Video file can not be opened"); cap >> in_mat; auto pipeline = comp.compileStreaming(cv::compile_args(cv::gapi::networks(pp))); pipeline.setSource( cv::gin(cv::gapi::wip::make_src(filepath), roi_list)); pipeline.start(); while (num_frames < max_frames && pipeline.pull(cv::gout(gapi_ages, gapi_genders))) { EXPECT_TRUE(gapi_ages.empty()); EXPECT_TRUE(gapi_genders.empty()); } } TEST_F(InferWithReshape, TestInfer) { // IE code infer(m_in_mat); // G-API code cv::GMat in; cv::GMat age, gender; std::tie(age, gender) = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }).cfgInputReshape({{"data", reshape_dims}}); comp.apply(cv::gin(m_in_mat), cv::gout(m_out_gapi_ages.front(), m_out_gapi_genders.front()), cv::compile_args(cv::gapi::networks(pp))); // Validate validate(); } TEST_F(InferWithReshape, TestInferInImage) { // Input image already has 70x70 size cv::Mat rsz; cv::resize(m_in_mat, rsz, cv::Size(70, 70)); // IE code infer(rsz); // G-API code cv::GMat in; cv::GMat age, gender; std::tie(age, gender) = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }).cfgInputReshape({"data"}); // Reshape CNN input by input image size comp.apply(cv::gin(rsz), cv::gout(m_out_gapi_ages.front(), m_out_gapi_genders.front()), cv::compile_args(cv::gapi::networks(pp))); // Validate validate(); } TEST_F(InferWithReshape, TestInferForSingleLayer) { // IE code infer(m_in_mat); // G-API code cv::GMat in; cv::GMat age, gender; std::tie(age, gender) = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }) .cfgInputReshape("data", reshape_dims); comp.apply(cv::gin(m_in_mat), cv::gout(m_out_gapi_ages.front(), m_out_gapi_genders.front()), cv::compile_args(cv::gapi::networks(pp))); // Validate validate(); } TEST_F(InferWithReshape, TestInferList) { // IE code infer(m_in_mat, true); // G-API code cv::GArray rr; cv::GMat in; cv::GArray age, gender; std::tie(age, gender) = cv::gapi::infer(rr, in); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }).cfgInputReshape({{"data", reshape_dims}}); comp.apply(cv::gin(m_in_mat, m_roi_list), cv::gout(m_out_gapi_ages, m_out_gapi_genders), cv::compile_args(cv::gapi::networks(pp))); // Validate validate(); } TEST_F(InferWithReshape, TestInferList2) { // IE code infer(m_in_mat, true); // G-API code cv::GArray rr; cv::GMat in; cv::GArray age, gender; std::tie(age, gender) = cv::gapi::infer2(in, rr); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }).cfgInputReshape({{"data", reshape_dims}}); comp.apply(cv::gin(m_in_mat, m_roi_list), cv::gout(m_out_gapi_ages, m_out_gapi_genders), cv::compile_args(cv::gapi::networks(pp))); // Validate validate(); } TEST_F(InferWithReshape, TestInferListBGR) { // IE code infer(m_in_mat, true); // G-API code cv::GArray rr; cv::GFrame in; cv::GArray age, gender; std::tie(age, gender) = cv::gapi::infer(rr, in); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); auto frame = MediaFrame::Create(m_in_mat); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }).cfgInputReshape({{"data", reshape_dims}}); comp.apply(cv::gin(frame, m_roi_list), cv::gout(m_out_gapi_ages, m_out_gapi_genders), cv::compile_args(cv::gapi::networks(pp))); // Validate validate(); } TEST_F(InferWithReshapeNV12, TestInferListYUV) { // G-API code cv::GFrame in; cv::GArray rr; cv::GArray age, gender; std::tie(age, gender) = cv::gapi::infer(rr, in); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); auto frame = MediaFrame::Create(m_in_y, m_in_uv); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }).cfgInputReshape({{"data", reshape_dims}}); comp.apply(cv::gin(frame, m_roi_list), cv::gout(m_out_gapi_ages, m_out_gapi_genders), cv::compile_args(cv::gapi::networks(pp))); // Validate validate(); } TEST_F(ROIList, CallInferMultipleTimes) { cv::GArray rr; cv::GMat in; cv::GArray age, gender; std::tie(age, gender) = cv::gapi::infer(rr, in); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }); auto cc = comp.compile(cv::descr_of(cv::gin(m_in_mat, m_roi_list)), cv::compile_args(cv::gapi::networks(pp))); for (int i = 0; i < 10; ++i) { cc(cv::gin(m_in_mat, m_roi_list), cv::gout(m_out_gapi_ages, m_out_gapi_genders)); } validate(); } TEST(IEFrameAdapter, blobParams) { cv::Mat bgr = cv::Mat::eye(240, 320, CV_8UC3); cv::MediaFrame frame = cv::MediaFrame::Create(bgr); auto expected = std::make_pair(IE::TensorDesc{IE::Precision::U8, {1, 3, 300, 300}, IE::Layout::NCHW}, IE::ParamMap{{"HELLO", 42}, {"COLOR_FORMAT", IE::ColorFormat::NV12}}); auto actual = cv::util::any_cast(frame.blobParams()); EXPECT_EQ(expected, actual); } namespace { struct Sync { std::mutex m; std::condition_variable cv; int counter = 0; }; class GMockMediaAdapter final: public cv::MediaFrame::IAdapter { public: explicit GMockMediaAdapter(cv::Mat m, std::shared_ptr sync) : m_mat(m), m_sync(sync) { } cv::GFrameDesc meta() const override { return cv::GFrameDesc{cv::MediaFormat::BGR, m_mat.size()}; } cv::MediaFrame::View access(cv::MediaFrame::Access) override { cv::MediaFrame::View::Ptrs pp = { m_mat.ptr(), nullptr, nullptr, nullptr }; cv::MediaFrame::View::Strides ss = { m_mat.step, 0u, 0u, 0u }; return cv::MediaFrame::View(std::move(pp), std::move(ss)); } ~GMockMediaAdapter() { { std::lock_guard lk{m_sync->m}; m_sync->counter--; } m_sync->cv.notify_one(); } private: cv::Mat m_mat; std::shared_ptr m_sync; }; // NB: This source is needed to simulate real // cases where the memory resources are limited. // GMockSource(int limit) - accept the number of MediaFrames that // the source can produce until resources are over. class GMockSource : public cv::gapi::wip::IStreamSource { public: explicit GMockSource(int limit) : m_limit(limit), m_mat(cv::Size(1920, 1080), CV_8UC3), m_sync(new Sync{}) { cv::randu(m_mat, cv::Scalar::all(0), cv::Scalar::all(255)); } bool pull(cv::gapi::wip::Data& data) { std::unique_lock lk(m_sync->m); m_sync->counter++; // NB: Can't produce new frames until old ones are released. m_sync->cv.wait(lk, [this]{return m_sync->counter <= m_limit;}); data = cv::MediaFrame::Create(m_mat, m_sync); return true; } GMetaArg descr_of() const override { return GMetaArg{cv::GFrameDesc{cv::MediaFormat::BGR, m_mat.size()}}; } private: int m_limit; cv::Mat m_mat; std::shared_ptr m_sync; }; struct LimitedSourceInfer: public ::testing::Test { using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); LimitedSourceInfer() : comp([](){ cv::GFrame in; cv::GMat age, gender; std::tie(age, gender) = cv::gapi::infer(in); return cv::GComputation(cv::GIn(in), cv::GOut(age, gender)); }) { initDLDTDataPath(); } GStreamingCompiled compileStreaming(int nireq) { cv::gapi::ie::detail::ParamDesc params; params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); params.device_id = "CPU"; auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id } .cfgOutputLayers({ "age_conv3", "prob" }) .cfgNumRequests(nireq); return comp.compileStreaming(cv::compile_args(cv::gapi::networks(pp))); } void run(const int max_frames, const int limit, const int nireq) { auto pipeline = compileStreaming(nireq); pipeline.setSource(limit); pipeline.start(); int num_frames = 0; while (num_frames != max_frames && pipeline.pull(cv::gout(out_age, out_gender))) { ++num_frames; } } cv::GComputation comp; cv::Mat out_age, out_gender; }; } // anonymous namespace TEST_F(LimitedSourceInfer, ReleaseFrame) { constexpr int max_frames = 50; constexpr int resources_limit = 1; constexpr int nireq = 1; run(max_frames, resources_limit, nireq); } TEST_F(LimitedSourceInfer, ReleaseFrameAsync) { constexpr int max_frames = 50; constexpr int resources_limit = 4; constexpr int nireq = 8; run(max_frames, resources_limit, nireq); } TEST(TestAgeGenderIE, InferWithBatch) { initDLDTDataPath(); constexpr int batch_size = 4; cv::gapi::ie::detail::ParamDesc params; params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); params.device_id = "CPU"; cv::Mat in_mat({batch_size, 3, 320, 240}, CV_8U); cv::randu(in_mat, 0, 255); cv::Mat gapi_age, gapi_gender; // Load & run IE network IE::Blob::Ptr ie_age, ie_gender; { auto plugin = cv::gimpl::ie::wrap::getPlugin(params); auto net = cv::gimpl::ie::wrap::readNetwork(params); setNetParameters(net); net.setBatchSize(batch_size); auto this_network = cv::gimpl::ie::wrap::loadNetwork(plugin, net, params); auto infer_request = this_network.CreateInferRequest(); infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat)); infer_request.Infer(); ie_age = infer_request.GetBlob("age_conv3"); ie_gender = infer_request.GetBlob("prob"); } // Configure & run G-API using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GMat in; cv::GMat age, gender; std::tie(age, gender) = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { params.model_path, params.weights_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }) .cfgBatchSize(batch_size); comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Validate with IE itself (avoid DNN module dependency here) normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); } TEST(ImportNetwork, Infer) { const std::string device = "MYRIAD"; skipIfDeviceNotAvailable(device); initDLDTDataPath(); cv::gapi::ie::detail::ParamDesc params; params.model_path = compileAgeGenderBlob(device); params.device_id = device; cv::Mat in_mat(320, 240, CV_8UC3); cv::randu(in_mat, 0, 255); cv::Mat gapi_age, gapi_gender; // Load & run IE network IE::Blob::Ptr ie_age, ie_gender; { auto plugin = cv::gimpl::ie::wrap::getPlugin(params); auto this_network = cv::gimpl::ie::wrap::importNetwork(plugin, params); auto infer_request = this_network.CreateInferRequest(); IE::PreProcessInfo info; info.setResizeAlgorithm(IE::RESIZE_BILINEAR); infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat), info); infer_request.Infer(); ie_age = infer_request.GetBlob("age_conv3"); ie_gender = infer_request.GetBlob("prob"); } // Configure & run G-API using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GMat in; cv::GMat age, gender; std::tie(age, gender) = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { params.model_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }); comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Validate with IE itself (avoid DNN module dependency here) normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); } TEST(ImportNetwork, InferNV12) { const std::string device = "MYRIAD"; skipIfDeviceNotAvailable(device); initDLDTDataPath(); cv::gapi::ie::detail::ParamDesc params; params.model_path= compileAgeGenderBlob(device); params.device_id = device; cv::Size sz{320, 240}; cv::Mat in_y_mat(sz, CV_8UC1); cv::randu(in_y_mat, 0, 255); cv::Mat in_uv_mat(sz / 2, CV_8UC2); cv::randu(in_uv_mat, 0, 255); cv::Mat gapi_age, gapi_gender; // Load & run IE network IE::Blob::Ptr ie_age, ie_gender; { auto plugin = cv::gimpl::ie::wrap::getPlugin(params); auto this_network = cv::gimpl::ie::wrap::importNetwork(plugin, params); auto infer_request = this_network.CreateInferRequest(); IE::PreProcessInfo info; info.setResizeAlgorithm(IE::RESIZE_BILINEAR); info.setColorFormat(IE::ColorFormat::NV12); infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_y_mat, in_uv_mat), info); infer_request.Infer(); ie_age = infer_request.GetBlob("age_conv3"); ie_gender = infer_request.GetBlob("prob"); } // Configure & run G-API using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GFrame in; cv::GMat age, gender; std::tie(age, gender) = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); auto frame = MediaFrame::Create(in_y_mat, in_uv_mat); auto pp = cv::gapi::ie::Params { params.model_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }); comp.apply(cv::gin(frame), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Validate with IE itself (avoid DNN module dependency here) normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); } TEST(ImportNetwork, InferROI) { const std::string device = "MYRIAD"; skipIfDeviceNotAvailable(device); initDLDTDataPath(); cv::gapi::ie::detail::ParamDesc params; params.model_path = compileAgeGenderBlob(device); params.device_id = device; cv::Mat in_mat(320, 240, CV_8UC3); cv::randu(in_mat, 0, 255); cv::Mat gapi_age, gapi_gender; cv::Rect rect(cv::Point{64, 60}, cv::Size{96, 96}); // Load & run IE network IE::Blob::Ptr ie_age, ie_gender; { auto plugin = cv::gimpl::ie::wrap::getPlugin(params); auto this_network = cv::gimpl::ie::wrap::importNetwork(plugin, params); auto infer_request = this_network.CreateInferRequest(); const auto ie_rc = IE::ROI { 0u , static_cast(rect.x) , static_cast(rect.y) , static_cast(rect.width) , static_cast(rect.height) }; IE::Blob::Ptr roi_blob = IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_mat), ie_rc); IE::PreProcessInfo info; info.setResizeAlgorithm(IE::RESIZE_BILINEAR); infer_request.SetBlob("data", roi_blob, info); infer_request.Infer(); ie_age = infer_request.GetBlob("age_conv3"); ie_gender = infer_request.GetBlob("prob"); } using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GMat in; cv::GOpaque roi; cv::GMat age, gender; std::tie(age, gender) = cv::gapi::infer(roi, in); cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { params.model_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }); comp.apply(cv::gin(in_mat, rect), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Validate with IE itself (avoid DNN module dependency here) normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); } TEST(ImportNetwork, InferROINV12) { const std::string device = "MYRIAD"; skipIfDeviceNotAvailable(device); initDLDTDataPath(); cv::gapi::ie::detail::ParamDesc params; params.model_path = compileAgeGenderBlob(device); params.device_id = device; cv::Size sz{320, 240}; cv::Mat in_y_mat(sz, CV_8UC1); cv::randu(in_y_mat, 0, 255); cv::Mat in_uv_mat(sz / 2, CV_8UC2); cv::randu(in_uv_mat, 0, 255); cv::Rect rect(cv::Point{64, 60}, cv::Size{96, 96}); cv::Mat gapi_age, gapi_gender; // Load & run IE network IE::Blob::Ptr ie_age, ie_gender; { auto plugin = cv::gimpl::ie::wrap::getPlugin(params); auto this_network = cv::gimpl::ie::wrap::importNetwork(plugin, params); auto infer_request = this_network.CreateInferRequest(); const auto ie_rc = IE::ROI { 0u , static_cast(rect.x) , static_cast(rect.y) , static_cast(rect.width) , static_cast(rect.height) }; IE::Blob::Ptr roi_blob = IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_y_mat, in_uv_mat), ie_rc); IE::PreProcessInfo info; info.setResizeAlgorithm(IE::RESIZE_BILINEAR); info.setColorFormat(IE::ColorFormat::NV12); infer_request.SetBlob("data", roi_blob, info); infer_request.Infer(); ie_age = infer_request.GetBlob("age_conv3"); ie_gender = infer_request.GetBlob("prob"); } using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GFrame in; cv::GOpaque roi; cv::GMat age, gender; std::tie(age, gender) = cv::gapi::infer(roi, in); cv::GComputation comp(cv::GIn(in, roi), cv::GOut(age, gender)); auto frame = MediaFrame::Create(in_y_mat, in_uv_mat); auto pp = cv::gapi::ie::Params { params.model_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }); comp.apply(cv::gin(frame, rect), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Validate with IE itself (avoid DNN module dependency here) normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); } TEST(ImportNetwork, InferList) { const std::string device = "MYRIAD"; skipIfDeviceNotAvailable(device); initDLDTDataPath(); cv::gapi::ie::detail::ParamDesc params; params.model_path = compileAgeGenderBlob(device); params.device_id = device; cv::Mat in_mat(320, 240, CV_8UC3); cv::randu(in_mat, 0, 255); std::vector roi_list = { cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}), cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}), }; std::vector out_ie_ages, out_ie_genders, out_gapi_ages, out_gapi_genders; // Load & run IE network { auto plugin = cv::gimpl::ie::wrap::getPlugin(params); auto this_network = cv::gimpl::ie::wrap::importNetwork(plugin, params); auto infer_request = this_network.CreateInferRequest(); for (auto &&rc : roi_list) { const auto ie_rc = IE::ROI { 0u , static_cast(rc.x) , static_cast(rc.y) , static_cast(rc.width) , static_cast(rc.height) }; IE::Blob::Ptr roi_blob = IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_mat), ie_rc); IE::PreProcessInfo info; info.setResizeAlgorithm(IE::RESIZE_BILINEAR); infer_request.SetBlob("data", roi_blob, info); infer_request.Infer(); using namespace cv::gapi::ie::util; out_ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone()); out_ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone()); } } // Configure & run G-API using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GArray rr; cv::GMat in; cv::GArray age, gender; std::tie(age, gender) = cv::gapi::infer(rr, in); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { params.model_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }); comp.apply(cv::gin(in_mat, roi_list), cv::gout(out_gapi_ages, out_gapi_genders), cv::compile_args(cv::gapi::networks(pp))); // Validate with IE itself (avoid DNN module dependency here) GAPI_Assert(!out_gapi_ages.empty()); ASSERT_EQ(out_gapi_genders.size(), out_gapi_ages.size()); ASSERT_EQ(out_gapi_ages.size(), out_ie_ages.size()); ASSERT_EQ(out_gapi_genders.size(), out_ie_genders.size()); const size_t size = out_gapi_ages.size(); for (size_t i = 0; i < size; ++i) { normAssert(out_ie_ages [i], out_gapi_ages [i], "Test age output"); normAssert(out_ie_genders[i], out_gapi_genders[i], "Test gender output"); } } TEST(ImportNetwork, InferListNV12) { const std::string device = "MYRIAD"; skipIfDeviceNotAvailable(device); initDLDTDataPath(); cv::gapi::ie::detail::ParamDesc params; params.model_path = compileAgeGenderBlob(device); params.device_id = device; cv::Size sz{320, 240}; cv::Mat in_y_mat(sz, CV_8UC1); cv::randu(in_y_mat, 0, 255); cv::Mat in_uv_mat(sz / 2, CV_8UC2); cv::randu(in_uv_mat, 0, 255); std::vector roi_list = { cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}), cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}), }; std::vector out_ie_ages, out_ie_genders, out_gapi_ages, out_gapi_genders; // Load & run IE network { auto plugin = cv::gimpl::ie::wrap::getPlugin(params); auto this_network = cv::gimpl::ie::wrap::importNetwork(plugin, params); auto infer_request = this_network.CreateInferRequest(); for (auto &&rc : roi_list) { const auto ie_rc = IE::ROI { 0u , static_cast(rc.x) , static_cast(rc.y) , static_cast(rc.width) , static_cast(rc.height) }; IE::Blob::Ptr roi_blob = IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_y_mat, in_uv_mat), ie_rc); IE::PreProcessInfo info; info.setResizeAlgorithm(IE::RESIZE_BILINEAR); info.setColorFormat(IE::ColorFormat::NV12); infer_request.SetBlob("data", roi_blob, info); infer_request.Infer(); using namespace cv::gapi::ie::util; out_ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone()); out_ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone()); } } // Configure & run G-API using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GArray rr; cv::GFrame in; cv::GArray age, gender; std::tie(age, gender) = cv::gapi::infer(rr, in); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { params.model_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }); auto frame = MediaFrame::Create(in_y_mat, in_uv_mat); comp.apply(cv::gin(frame, roi_list), cv::gout(out_gapi_ages, out_gapi_genders), cv::compile_args(cv::gapi::networks(pp))); // Validate with IE itself (avoid DNN module dependency here) GAPI_Assert(!out_gapi_ages.empty()); ASSERT_EQ(out_gapi_genders.size(), out_gapi_ages.size()); ASSERT_EQ(out_gapi_ages.size(), out_ie_ages.size()); ASSERT_EQ(out_gapi_genders.size(), out_ie_genders.size()); const size_t size = out_gapi_ages.size(); for (size_t i = 0; i < size; ++i) { normAssert(out_ie_ages [i], out_gapi_ages [i], "Test age output"); normAssert(out_ie_genders[i], out_gapi_genders[i], "Test gender output"); } } TEST(ImportNetwork, InferList2) { const std::string device = "MYRIAD"; skipIfDeviceNotAvailable(device); initDLDTDataPath(); cv::gapi::ie::detail::ParamDesc params; params.model_path = compileAgeGenderBlob(device); params.device_id = device; cv::Mat in_mat(320, 240, CV_8UC3); cv::randu(in_mat, 0, 255); std::vector roi_list = { cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}), cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}), }; std::vector out_ie_ages, out_ie_genders, out_gapi_ages, out_gapi_genders; // Load & run IE network { auto plugin = cv::gimpl::ie::wrap::getPlugin(params); auto this_network = cv::gimpl::ie::wrap::importNetwork(plugin, params); auto infer_request = this_network.CreateInferRequest(); for (auto &&rc : roi_list) { const auto ie_rc = IE::ROI { 0u , static_cast(rc.x) , static_cast(rc.y) , static_cast(rc.width) , static_cast(rc.height) }; IE::Blob::Ptr roi_blob = IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_mat), ie_rc); IE::PreProcessInfo info; info.setResizeAlgorithm(IE::RESIZE_BILINEAR); infer_request.SetBlob("data", roi_blob, info); infer_request.Infer(); using namespace cv::gapi::ie::util; out_ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone()); out_ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone()); } } // Configure & run G-API using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GArray rr; cv::GMat in; cv::GArray age, gender; std::tie(age, gender) = cv::gapi::infer2(in, rr); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { params.model_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }); comp.apply(cv::gin(in_mat, roi_list), cv::gout(out_gapi_ages, out_gapi_genders), cv::compile_args(cv::gapi::networks(pp))); // Validate with IE itself (avoid DNN module dependency here) GAPI_Assert(!out_gapi_ages.empty()); ASSERT_EQ(out_gapi_genders.size(), out_gapi_ages.size()); ASSERT_EQ(out_gapi_ages.size(), out_ie_ages.size()); ASSERT_EQ(out_gapi_genders.size(), out_ie_genders.size()); const size_t size = out_gapi_ages.size(); for (size_t i = 0; i < size; ++i) { normAssert(out_ie_ages [i], out_gapi_ages [i], "Test age output"); normAssert(out_ie_genders[i], out_gapi_genders[i], "Test gender output"); } } TEST(ImportNetwork, InferList2NV12) { const std::string device = "MYRIAD"; skipIfDeviceNotAvailable(device); initDLDTDataPath(); cv::gapi::ie::detail::ParamDesc params; params.model_path = compileAgeGenderBlob(device); params.device_id = device; cv::Size sz{320, 240}; cv::Mat in_y_mat(sz, CV_8UC1); cv::randu(in_y_mat, 0, 255); cv::Mat in_uv_mat(sz / 2, CV_8UC2); cv::randu(in_uv_mat, 0, 255); std::vector roi_list = { cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}), cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}), }; std::vector out_ie_ages, out_ie_genders, out_gapi_ages, out_gapi_genders; // Load & run IE network { auto plugin = cv::gimpl::ie::wrap::getPlugin(params); auto this_network = cv::gimpl::ie::wrap::importNetwork(plugin, params); auto infer_request = this_network.CreateInferRequest(); for (auto &&rc : roi_list) { const auto ie_rc = IE::ROI { 0u , static_cast(rc.x) , static_cast(rc.y) , static_cast(rc.width) , static_cast(rc.height) }; IE::Blob::Ptr roi_blob = IE::make_shared_blob(cv::gapi::ie::util::to_ie(in_y_mat, in_uv_mat), ie_rc); IE::PreProcessInfo info; info.setResizeAlgorithm(IE::RESIZE_BILINEAR); info.setColorFormat(IE::ColorFormat::NV12); infer_request.SetBlob("data", roi_blob, info); infer_request.Infer(); using namespace cv::gapi::ie::util; out_ie_ages.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone()); out_ie_genders.push_back(to_ocv(infer_request.GetBlob("prob")).clone()); } } // Configure & run G-API using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GArray rr; cv::GFrame in; cv::GArray age, gender; std::tie(age, gender) = cv::gapi::infer2(in, rr); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { params.model_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }); auto frame = MediaFrame::Create(in_y_mat, in_uv_mat); comp.apply(cv::gin(frame, roi_list), cv::gout(out_gapi_ages, out_gapi_genders), cv::compile_args(cv::gapi::networks(pp))); // Validate with IE itself (avoid DNN module dependency here) GAPI_Assert(!out_gapi_ages.empty()); ASSERT_EQ(out_gapi_genders.size(), out_gapi_ages.size()); ASSERT_EQ(out_gapi_ages.size(), out_ie_ages.size()); ASSERT_EQ(out_gapi_genders.size(), out_ie_genders.size()); const size_t size = out_gapi_ages.size(); for (size_t i = 0; i < size; ++i) { normAssert(out_ie_ages [i], out_gapi_ages [i], "Test age output"); normAssert(out_ie_genders[i], out_gapi_genders[i], "Test gender output"); } } TEST(TestAgeGender, ThrowBlobAndInputPrecisionMismatch) { const std::string device = "MYRIAD"; skipIfDeviceNotAvailable(device); initDLDTDataPath(); cv::gapi::ie::detail::ParamDesc params; // NB: Precision for inputs is U8. params.model_path = compileAgeGenderBlob(device); params.device_id = device; // Configure & run G-API using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GMat in, age, gender; std::tie(age, gender) = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { params.model_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }); cv::Mat in_mat(320, 240, CV_32FC3); cv::randu(in_mat, 0, 1); cv::Mat gapi_age, gapi_gender; // NB: Blob precision is U8, but user pass FP32 data, so exception will be thrown. // Now exception comes directly from IE, but since G-API has information // about data precision at the compile stage, consider the possibility of // throwing exception from there. EXPECT_ANY_THROW(comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp)))); } #ifdef HAVE_NGRAPH TEST(Infer, ModelWith2DInputs) { const std::string model_name = "ModelWith2DInputs"; const std::string model_path = model_name + ".xml"; const std::string weights_path = model_name + ".bin"; const std::string device_id = "CPU"; const int W = 10; const int H = 5; // NB: Define model with 2D inputs. auto in1 = std::make_shared( ngraph::element::Type_t::u8, ngraph::Shape(std::vector{(size_t)H, (size_t)W}) ); auto in2 = std::make_shared( ngraph::element::Type_t::u8, ngraph::Shape(std::vector{(size_t)H, (size_t)W}) ); auto result = std::make_shared(in1, in2); auto func = std::make_shared( ngraph::OutputVector{result}, ngraph::ParameterVector{in1, in2} ); cv::Mat in_mat1(std::vector{H, W}, CV_8U), in_mat2(std::vector{H, W}, CV_8U), gapi_mat, ref_mat; cv::randu(in_mat1, 0, 100); cv::randu(in_mat2, 0, 100); cv::add(in_mat1, in_mat2, ref_mat, cv::noArray(), CV_32F); // Compile xml file IE::CNNNetwork(func).serialize(model_path); // Configure & run G-API cv::GMat g_in1, g_in2; cv::GInferInputs inputs; inputs[in1->get_name()] = g_in1; inputs[in2->get_name()] = g_in2; auto outputs = cv::gapi::infer(model_name, inputs); auto out = outputs.at(result->get_name()); cv::GComputation comp(cv::GIn(g_in1, g_in2), cv::GOut(out)); auto pp = cv::gapi::ie::Params(model_name, model_path, weights_path, device_id); comp.apply(cv::gin(in_mat1, in_mat2), cv::gout(gapi_mat), cv::compile_args(cv::gapi::networks(pp))); normAssert(ref_mat, gapi_mat, "Test model output"); } #endif // HAVE_NGRAPH TEST(TestAgeGender, ThrowBlobAndInputPrecisionMismatchStreaming) { const std::string device = "MYRIAD"; skipIfDeviceNotAvailable(device); initDLDTDataPath(); cv::gapi::ie::detail::ParamDesc params; // NB: Precision for inputs is U8. params.model_path = compileAgeGenderBlob(device); params.device_id = device; // Configure & run G-API using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); auto pp = cv::gapi::ie::Params { params.model_path, params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }); cv::GMat in, age, gender; std::tie(age, gender) = cv::gapi::infer(in); auto pipeline = cv::GComputation(cv::GIn(in), cv::GOut(age, gender)) .compileStreaming(cv::compile_args(cv::gapi::networks(pp))); cv::Mat in_mat(320, 240, CV_32FC3); cv::randu(in_mat, 0, 1); cv::Mat gapi_age, gapi_gender; pipeline.setSource(cv::gin(in_mat)); pipeline.start(); // NB: Blob precision is U8, but user pass FP32 data, so exception will be thrown. // Now exception comes directly from IE, but since G-API has information // about data precision at the compile stage, consider the possibility of // throwing exception from there. for (int i = 0; i < 10; ++i) { EXPECT_ANY_THROW(pipeline.pull(cv::gout(gapi_age, gapi_gender))); } } struct AgeGenderInferTest: public ::testing::Test { cv::Mat m_in_mat; cv::Mat m_gapi_age; cv::Mat m_gapi_gender; cv::gimpl::ie::wrap::Plugin m_plugin; IE::CNNNetwork m_net; cv::gapi::ie::detail::ParamDesc m_params; using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); void SetUp() { initDLDTDataPath(); m_params.model_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml"); m_params.weights_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin"); m_params.device_id = "CPU"; m_plugin = cv::gimpl::ie::wrap::getPlugin(m_params); m_net = cv::gimpl::ie::wrap::readNetwork(m_params); setNetParameters(m_net); m_in_mat = cv::Mat(cv::Size(320, 240), CV_8UC3); cv::randu(m_in_mat, 0, 255); } cv::GComputation buildGraph() { cv::GMat in, age, gender; std::tie(age, gender) = cv::gapi::infer(in); return cv::GComputation(cv::GIn(in), cv::GOut(age, gender)); } void validate() { IE::Blob::Ptr ie_age, ie_gender; { auto this_network = cv::gimpl::ie::wrap::loadNetwork(m_plugin, m_net, m_params); auto infer_request = this_network.CreateInferRequest(); infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(m_in_mat)); infer_request.Infer(); ie_age = infer_request.GetBlob("age_conv3"); ie_gender = infer_request.GetBlob("prob"); } // Validate with IE itself (avoid DNN module dependency here) normAssert(cv::gapi::ie::util::to_ocv(ie_age), m_gapi_age, "Test age output" ); normAssert(cv::gapi::ie::util::to_ocv(ie_gender), m_gapi_gender, "Test gender output"); } }; TEST_F(AgeGenderInferTest, SyncExecution) { auto pp = cv::gapi::ie::Params { m_params.model_path, m_params.weights_path, m_params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }) .cfgInferMode(cv::gapi::ie::InferMode::Sync); buildGraph().apply(cv::gin(m_in_mat), cv::gout(m_gapi_age, m_gapi_gender), cv::compile_args(cv::gapi::networks(pp))); validate(); } TEST_F(AgeGenderInferTest, ThrowSyncWithNireqNotEqualToOne) { auto pp = cv::gapi::ie::Params { m_params.model_path, m_params.weights_path, m_params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }) .cfgInferMode(cv::gapi::ie::InferMode::Sync) .cfgNumRequests(4u); EXPECT_ANY_THROW(buildGraph().apply(cv::gin(m_in_mat), cv::gout(m_gapi_age, m_gapi_gender), cv::compile_args(cv::gapi::networks(pp)))); } TEST_F(AgeGenderInferTest, ChangeOutputPrecision) { auto pp = cv::gapi::ie::Params { m_params.model_path, m_params.weights_path, m_params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }) .cfgOutputPrecision(CV_8U); for (auto it : m_net.getOutputsInfo()) { it.second->setPrecision(IE::Precision::U8); } buildGraph().apply(cv::gin(m_in_mat), cv::gout(m_gapi_age, m_gapi_gender), cv::compile_args(cv::gapi::networks(pp))); validate(); } TEST_F(AgeGenderInferTest, ChangeSpecificOutputPrecison) { auto pp = cv::gapi::ie::Params { m_params.model_path, m_params.weights_path, m_params.device_id }.cfgOutputLayers({ "age_conv3", "prob" }) .cfgOutputPrecision({{"prob", CV_8U}}); m_net.getOutputsInfo().at("prob")->setPrecision(IE::Precision::U8); buildGraph().apply(cv::gin(m_in_mat), cv::gout(m_gapi_age, m_gapi_gender), cv::compile_args(cv::gapi::networks(pp))); validate(); } } // namespace opencv_test #endif // HAVE_INF_ENGINE