/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "opencv2/core/core.hpp" #include "opencv2/calib3d/calib3d.hpp" #include "opencv2/highgui/highgui.hpp" #include "precomp.hpp" #include #if defined(HAVE_EIGEN) && EIGEN_WORLD_VERSION == 3 #include #include #include #endif #include #define SHOW_DEBUG_IMAGES 0 using namespace cv; inline static void computeC_RigidBodyMotion( double* C, double dIdx, double dIdy, const Point3f& p3d, double fx, double fy ) { double invz = 1. / p3d.z, v0 = dIdx * fx * invz, v1 = dIdy * fy * invz, v2 = -(v0 * p3d.x + v1 * p3d.y) * invz; C[0] = -p3d.z * v1 + p3d.y * v2; C[1] = p3d.z * v0 - p3d.x * v2; C[2] = -p3d.y * v0 + p3d.x * v1; C[3] = v0; C[4] = v1; C[5] = v2; } inline static void computeC_Rotation( double* C, double dIdx, double dIdy, const Point3f& p3d, double fx, double fy ) { double invz = 1. / p3d.z, v0 = dIdx * fx * invz, v1 = dIdy * fy * invz, v2 = -(v0 * p3d.x + v1 * p3d.y) * invz; C[0] = -p3d.z * v1 + p3d.y * v2; C[1] = p3d.z * v0 - p3d.x * v2; C[2] = -p3d.y * v0 + p3d.x * v1; } inline static void computeC_Translation( double* C, double dIdx, double dIdy, const Point3f& p3d, double fx, double fy ) { double invz = 1. / p3d.z, v0 = dIdx * fx * invz, v1 = dIdy * fy * invz, v2 = -(v0 * p3d.x + v1 * p3d.y) * invz; C[0] = v0; C[1] = v1; C[2] = v2; } inline static void computeProjectiveMatrix( const Mat& ksi, Mat& Rt ) { CV_Assert( ksi.size() == Size(1,6) && ksi.type() == CV_64FC1 ); #if defined(HAVE_EIGEN) && EIGEN_WORLD_VERSION == 3 const double* ksi_ptr = reinterpret_cast(ksi.ptr(0)); Eigen::Matrix twist, g; twist << 0., -ksi_ptr[2], ksi_ptr[1], ksi_ptr[3], ksi_ptr[2], 0., -ksi_ptr[0], ksi_ptr[4], -ksi_ptr[1], ksi_ptr[0], 0, ksi_ptr[5], 0., 0., 0., 0.; g = twist.exp(); eigen2cv(g, Rt); #else // for infinitesimal transformation Rt = Mat::eye(4, 4, CV_64FC1); Mat R = Rt(Rect(0,0,3,3)); Mat rvec = ksi.rowRange(0,3); Rodrigues( rvec, R ); Rt.at(0,3) = ksi.at(3); Rt.at(1,3) = ksi.at(4); Rt.at(2,3) = ksi.at(5); #endif } static void cvtDepth2Cloud( const Mat& depth, Mat& cloud, const Mat& cameraMatrix ) { CV_Assert( cameraMatrix.type() == CV_64FC1 ); const double inv_fx = 1.f/cameraMatrix.at(0,0); const double inv_fy = 1.f/cameraMatrix.at(1,1); const double ox = cameraMatrix.at(0,2); const double oy = cameraMatrix.at(1,2); cloud.create( depth.size(), CV_32FC3 ); for( int y = 0; y < cloud.rows; y++ ) { Point3f* cloud_ptr = reinterpret_cast(cloud.ptr(y)); const float* depth_prt = reinterpret_cast(depth.ptr(y)); for( int x = 0; x < cloud.cols; x++ ) { float z = depth_prt[x]; cloud_ptr[x].x = (float)((x - ox) * z * inv_fx); cloud_ptr[x].y = (float)((y - oy) * z * inv_fy); cloud_ptr[x].z = z; } } } #if SHOW_DEBUG_IMAGES template static void warpImage( const Mat& image, const Mat& depth, const Mat& Rt, const Mat& cameraMatrix, const Mat& distCoeff, Mat& warpedImage ) { const Rect rect = Rect(0, 0, image.cols, image.rows); vector points2d; Mat cloud, transformedCloud; cvtDepth2Cloud( depth, cloud, cameraMatrix ); perspectiveTransform( cloud, transformedCloud, Rt ); projectPoints( transformedCloud.reshape(3,1), Mat::eye(3,3,CV_64FC1), Mat::zeros(3,1,CV_64FC1), cameraMatrix, distCoeff, points2d ); Mat pointsPositions( points2d ); pointsPositions = pointsPositions.reshape( 2, image.rows ); warpedImage.create( image.size(), image.type() ); warpedImage = Scalar::all(0); Mat zBuffer( image.size(), CV_32FC1, FLT_MAX ); for( int y = 0; y < image.rows; y++ ) { for( int x = 0; x < image.cols; x++ ) { const Point3f p3d = transformedCloud.at(y,x); const Point p2d = pointsPositions.at(y,x); if( !cvIsNaN(cloud.at(y,x).z) && cloud.at(y,x).z > 0 && rect.contains(p2d) && zBuffer.at(p2d) > p3d.z ) { warpedImage.at(p2d) = image.at(y,x); zBuffer.at(p2d) = p3d.z; } } } } #endif static inline void set2shorts( int& dst, int short_v1, int short_v2 ) { unsigned short* ptr = reinterpret_cast(&dst); ptr[0] = static_cast(short_v1); ptr[1] = static_cast(short_v2); } static inline void get2shorts( int src, int& short_v1, int& short_v2 ) { typedef union { int vint32; unsigned short vuint16[2]; } s32tou16; const unsigned short* ptr = (reinterpret_cast(&src))->vuint16; short_v1 = ptr[0]; short_v2 = ptr[1]; } static int computeCorresp( const Mat& K, const Mat& K_inv, const Mat& Rt, const Mat& depth0, const Mat& depth1, const Mat& texturedMask1, float maxDepthDiff, Mat& corresps ) { CV_Assert( K.type() == CV_64FC1 ); CV_Assert( K_inv.type() == CV_64FC1 ); CV_Assert( Rt.type() == CV_64FC1 ); corresps.create( depth1.size(), CV_32SC1 ); Mat R = Rt(Rect(0,0,3,3)).clone(); Mat KRK_inv = K * R * K_inv; const double * KRK_inv_ptr = reinterpret_cast(KRK_inv.ptr()); Mat Kt = Rt(Rect(3,0,1,3)).clone(); Kt = K * Kt; const double * Kt_ptr = reinterpret_cast(Kt.ptr()); Rect r(0, 0, depth1.cols, depth1.rows); corresps = Scalar(-1); int correspCount = 0; for( int v1 = 0; v1 < depth1.rows; v1++ ) { for( int u1 = 0; u1 < depth1.cols; u1++ ) { float d1 = depth1.at(v1,u1); if( !cvIsNaN(d1) && texturedMask1.at(v1,u1) ) { float transformed_d1 = (float)(d1 * (KRK_inv_ptr[6] * u1 + KRK_inv_ptr[7] * v1 + KRK_inv_ptr[8]) + Kt_ptr[2]); int u0 = cvRound((d1 * (KRK_inv_ptr[0] * u1 + KRK_inv_ptr[1] * v1 + KRK_inv_ptr[2]) + Kt_ptr[0]) / transformed_d1); int v0 = cvRound((d1 * (KRK_inv_ptr[3] * u1 + KRK_inv_ptr[4] * v1 + KRK_inv_ptr[5]) + Kt_ptr[1]) / transformed_d1); if( r.contains(Point(u0,v0)) ) { float d0 = depth0.at(v0,u0); if( !cvIsNaN(d0) && std::abs(transformed_d1 - d0) <= maxDepthDiff ) { int c = corresps.at(v0,u0); if( c != -1 ) { int exist_u1, exist_v1; get2shorts( c, exist_u1, exist_v1); float exist_d1 = (float)(depth1.at(exist_v1,exist_u1) * (KRK_inv_ptr[6] * exist_u1 + KRK_inv_ptr[7] * exist_v1 + KRK_inv_ptr[8]) + Kt_ptr[2]); if( transformed_d1 > exist_d1 ) continue; } else correspCount++; set2shorts( corresps.at(v0,u0), u1, v1 ); } } } } } return correspCount; } static inline void preprocessDepth( Mat depth0, Mat depth1, const Mat& validMask0, const Mat& validMask1, float minDepth, float maxDepth ) { CV_DbgAssert( depth0.size() == depth1.size() ); for( int y = 0; y < depth0.rows; y++ ) { for( int x = 0; x < depth0.cols; x++ ) { float& d0 = depth0.at(y,x); if( !cvIsNaN(d0) && (d0 > maxDepth || d0 < minDepth || d0 <= 0 || (!validMask0.empty() && !validMask0.at(y,x))) ) d0 = std::numeric_limits::quiet_NaN(); float& d1 = depth1.at(y,x); if( !cvIsNaN(d1) && (d1 > maxDepth || d1 < minDepth || d1 <= 0 || (!validMask1.empty() && !validMask1.at(y,x))) ) d1 = std::numeric_limits::quiet_NaN(); } } } static void buildPyramids( const Mat& image0, const Mat& image1, const Mat& depth0, const Mat& depth1, const Mat& cameraMatrix, int sobelSize, double sobelScale, const vector& minGradMagnitudes, vector& pyramidImage0, vector& pyramidDepth0, vector& pyramidImage1, vector& pyramidDepth1, vector& pyramid_dI_dx1, vector& pyramid_dI_dy1, vector& pyramidTexturedMask1, vector& pyramidCameraMatrix ) { const int pyramidMaxLevel = (int)minGradMagnitudes.size() - 1; buildPyramid( image0, pyramidImage0, pyramidMaxLevel ); buildPyramid( image1, pyramidImage1, pyramidMaxLevel ); pyramid_dI_dx1.resize( pyramidImage1.size() ); pyramid_dI_dy1.resize( pyramidImage1.size() ); pyramidTexturedMask1.resize( pyramidImage1.size() ); pyramidCameraMatrix.reserve( pyramidImage1.size() ); Mat cameraMatrix_dbl; cameraMatrix.convertTo( cameraMatrix_dbl, CV_64FC1 ); for( size_t i = 0; i < pyramidImage1.size(); i++ ) { Sobel( pyramidImage1[i], pyramid_dI_dx1[i], CV_16S, 1, 0, sobelSize ); Sobel( pyramidImage1[i], pyramid_dI_dy1[i], CV_16S, 0, 1, sobelSize ); const Mat& dx = pyramid_dI_dx1[i]; const Mat& dy = pyramid_dI_dy1[i]; Mat texturedMask( dx.size(), CV_8UC1, Scalar(0) ); const float minScalesGradMagnitude2 = (float)((minGradMagnitudes[i] * minGradMagnitudes[i]) / (sobelScale * sobelScale)); for( int y = 0; y < dx.rows; y++ ) { for( int x = 0; x < dx.cols; x++ ) { float m2 = (float)(dx.at(y,x)*dx.at(y,x) + dy.at(y,x)*dy.at(y,x)); if( m2 >= minScalesGradMagnitude2 ) texturedMask.at(y,x) = 255; } } pyramidTexturedMask1[i] = texturedMask; Mat levelCameraMatrix = i == 0 ? cameraMatrix_dbl : 0.5f * pyramidCameraMatrix[i-1]; levelCameraMatrix.at(2,2) = 1.; pyramidCameraMatrix.push_back( levelCameraMatrix ); } buildPyramid( depth0, pyramidDepth0, pyramidMaxLevel ); buildPyramid( depth1, pyramidDepth1, pyramidMaxLevel ); } static bool solveSystem( const Mat& C, const Mat& dI_dt, double detThreshold, Mat& ksi ) { #if defined(HAVE_EIGEN) && EIGEN_WORLD_VERSION == 3 Eigen::Matrix eC, eCt, edI_dt; cv2eigen(C, eC); cv2eigen(dI_dt, edI_dt); eCt = eC.transpose(); Eigen::Matrix A, B, eksi; A = eCt * eC; double det = A.determinant(); if( fabs (det) < detThreshold || cvIsNaN(det) || cvIsInf(det) ) return false; B = -eCt * edI_dt; eksi = A.ldlt().solve(B); eigen2cv( eksi, ksi ); #else Mat A = C.t() * C; double det = cv::determinant(A); if( fabs (det) < detThreshold || cvIsNaN(det) || cvIsInf(det) ) return false; Mat B = -C.t() * dI_dt; cv::solve( A, B, ksi, DECOMP_CHOLESKY ); #endif return true; } typedef void (*ComputeCFuncPtr)( double* C, double dIdx, double dIdy, const Point3f& p3d, double fx, double fy ); static bool computeKsi( int transformType, const Mat& image0, const Mat& cloud0, const Mat& image1, const Mat& dI_dx1, const Mat& dI_dy1, const Mat& corresps, int correspsCount, double fx, double fy, double sobelScale, double normScale, double determinantThreshold, Mat& ksi ) { int Cwidth = -1; ComputeCFuncPtr computeCFuncPtr = 0; if( transformType == RIGID_BODY_MOTION ) { Cwidth = 6; computeCFuncPtr = computeC_RigidBodyMotion; } else if( transformType == ROTATION ) { Cwidth = 3; computeCFuncPtr = computeC_Rotation; } else if( transformType == TRANSLATION ) { Cwidth = 3; computeCFuncPtr = computeC_Translation; } else CV_Error( CV_StsBadFlag, "Unsupported value of transformation type flag."); Mat C( correspsCount, Cwidth, CV_64FC1 ); Mat dI_dt( correspsCount, 1, CV_64FC1 ); int pointCount = 0; for( int v0 = 0; v0 < corresps.rows; v0++ ) { for( int u0 = 0; u0 < corresps.cols; u0++ ) { if( corresps.at(v0,u0) != -1 ) { int u1, v1; get2shorts( corresps.at(v0,u0), u1, v1 ); (*computeCFuncPtr)( (double*)C.ptr(pointCount), normScale * sobelScale * dI_dx1.at(v1,u1), normScale * sobelScale * dI_dy1.at(v1,u1), cloud0.at(v0,u0), fx, fy); dI_dt.at(pointCount) = normScale * (static_cast(image1.at(v1,u1)) - static_cast(image0.at(v0,u0))); pointCount++; } } } Mat sln; bool solutionExist = solveSystem( C, dI_dt, determinantThreshold, sln ); if( solutionExist ) { ksi.create(6,1,CV_64FC1); ksi = Scalar(0); Mat subksi; if( transformType == RIGID_BODY_MOTION ) { subksi = ksi; } else if( transformType == ROTATION ) { subksi = ksi.rowRange(0,3); } else if( transformType == TRANSLATION ) { subksi = ksi.rowRange(3,6); } sln.copyTo( subksi ); } return solutionExist; } bool cv::RGBDOdometry( cv::Mat& Rt, const Mat& initRt, const cv::Mat& image0, const cv::Mat& _depth0, const cv::Mat& validMask0, const cv::Mat& image1, const cv::Mat& _depth1, const cv::Mat& validMask1, const cv::Mat& cameraMatrix, float minDepth, float maxDepth, float maxDepthDiff, const std::vector& iterCounts, const std::vector& minGradientMagnitudes, int transformType ) { const int sobelSize = 3; const double sobelScale = 1./8; Mat depth0 = _depth0.clone(), depth1 = _depth1.clone(); // check RGB-D input data CV_Assert( !image0.empty() ); CV_Assert( image0.type() == CV_8UC1 ); CV_Assert( depth0.type() == CV_32FC1 && depth0.size() == image0.size() ); CV_Assert( image1.size() == image0.size() ); CV_Assert( image1.type() == CV_8UC1 ); CV_Assert( depth1.type() == CV_32FC1 && depth1.size() == image0.size() ); // check masks CV_Assert( validMask0.empty() || (validMask0.type() == CV_8UC1 && validMask0.size() == image0.size()) ); CV_Assert( validMask1.empty() || (validMask1.type() == CV_8UC1 && validMask1.size() == image0.size()) ); // check camera params CV_Assert( cameraMatrix.type() == CV_32FC1 && cameraMatrix.size() == Size(3,3) ); // other checks CV_Assert( iterCounts.empty() || minGradientMagnitudes.empty() || minGradientMagnitudes.size() == iterCounts.size() ); CV_Assert( initRt.empty() || (initRt.type()==CV_64FC1 && initRt.size()==Size(4,4) ) ); vector defaultIterCounts; vector defaultMinGradMagnitudes; vector const* iterCountsPtr = &iterCounts; vector const* minGradientMagnitudesPtr = &minGradientMagnitudes; if( iterCounts.empty() || minGradientMagnitudes.empty() ) { defaultIterCounts.resize(4); defaultIterCounts[0] = 7; defaultIterCounts[1] = 7; defaultIterCounts[2] = 7; defaultIterCounts[3] = 10; defaultMinGradMagnitudes.resize(4); defaultMinGradMagnitudes[0] = 12; defaultMinGradMagnitudes[1] = 5; defaultMinGradMagnitudes[2] = 3; defaultMinGradMagnitudes[3] = 1; iterCountsPtr = &defaultIterCounts; minGradientMagnitudesPtr = &defaultMinGradMagnitudes; } preprocessDepth( depth0, depth1, validMask0, validMask1, minDepth, maxDepth ); vector pyramidImage0, pyramidDepth0, pyramidImage1, pyramidDepth1, pyramid_dI_dx1, pyramid_dI_dy1, pyramidTexturedMask1, pyramidCameraMatrix; buildPyramids( image0, image1, depth0, depth1, cameraMatrix, sobelSize, sobelScale, *minGradientMagnitudesPtr, pyramidImage0, pyramidDepth0, pyramidImage1, pyramidDepth1, pyramid_dI_dx1, pyramid_dI_dy1, pyramidTexturedMask1, pyramidCameraMatrix ); Mat resultRt = initRt.empty() ? Mat::eye(4,4,CV_64FC1) : initRt.clone(); Mat currRt, ksi; for( int level = (int)iterCountsPtr->size() - 1; level >= 0; level-- ) { const Mat& levelCameraMatrix = pyramidCameraMatrix[level]; const Mat& levelImage0 = pyramidImage0[level]; const Mat& levelDepth0 = pyramidDepth0[level]; Mat levelCloud0; cvtDepth2Cloud( pyramidDepth0[level], levelCloud0, levelCameraMatrix ); const Mat& levelImage1 = pyramidImage1[level]; const Mat& levelDepth1 = pyramidDepth1[level]; const Mat& level_dI_dx1 = pyramid_dI_dx1[level]; const Mat& level_dI_dy1 = pyramid_dI_dy1[level]; CV_Assert( level_dI_dx1.type() == CV_16S ); CV_Assert( level_dI_dy1.type() == CV_16S ); const double fx = levelCameraMatrix.at(0,0); const double fy = levelCameraMatrix.at(1,1); const double avgf = 0.5 *(fx + fy); const double normScale = 1./(255*avgf); const double determinantThreshold = 1e-6; Mat corresps( levelImage0.size(), levelImage0.type(), CV_32SC1 ); // Run transformation search on current level iteratively. for( int iter = 0; iter < (*iterCountsPtr)[level]; iter ++ ) { int correspsCount = computeCorresp( levelCameraMatrix, levelCameraMatrix.inv(), resultRt.inv(DECOMP_SVD), levelDepth0, levelDepth1, pyramidTexturedMask1[level], maxDepthDiff, corresps ); if( correspsCount == 0 ) break; bool solutionExist = computeKsi( transformType, levelImage0, levelCloud0, levelImage1, level_dI_dx1, level_dI_dy1, corresps, correspsCount, fx, fy, sobelScale, normScale, determinantThreshold, ksi ); if( !solutionExist ) break; computeProjectiveMatrix( ksi, currRt ); resultRt = currRt * resultRt; #if SHOW_DEBUG_IMAGES std::cout << "currRt " << currRt << std::endl; Mat warpedImage0; const Mat distCoeff(1,5,CV_32FC1,Scalar(0)); warpImage( levelImage0, levelDepth0, resultRt, levelCameraMatrix, distCoeff, warpedImage0 ); imshow( "im0", levelImage0 ); imshow( "wim0", warpedImage0 ); imshow( "im1", levelImage1 ); waitKey(); #endif } } Rt = resultRt; return !Rt.empty(); }