/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "cuda_shared.hpp" #include "transform.hpp" #include "limits_gpu.hpp" using namespace cv::gpu; using namespace cv::gpu::device; #ifndef CV_PI #define CV_PI 3.1415926535897932384626433832795f #endif ////////////////////////////////////////////////////////////////////////////////////// // Cart <-> Polar namespace cv { namespace gpu { namespace mathfunc { struct Nothing { static __device__ void calc(int, int, float, float, float*, size_t, float) { } }; struct Magnitude { static __device__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float) { dst[y * dst_step + x] = sqrtf(x_data * x_data + y_data * y_data); } }; struct MagnitudeSqr { static __device__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float) { dst[y * dst_step + x] = x_data * x_data + y_data * y_data; } }; struct Atan2 { static __device__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float scale) { dst[y * dst_step + x] = scale * atan2f(y_data, x_data); } }; template __global__ void cartToPolar(const float* xptr, size_t x_step, const float* yptr, size_t y_step, float* mag, size_t mag_step, float* angle, size_t angle_step, float scale, int width, int height) { const int x = blockDim.x * blockIdx.x + threadIdx.x; const int y = blockDim.y * blockIdx.y + threadIdx.y; if (x < width && y < height) { float x_data = xptr[y * x_step + x]; float y_data = yptr[y * y_step + x]; Mag::calc(x, y, x_data, y_data, mag, mag_step, scale); Angle::calc(x, y, x_data, y_data, angle, angle_step, scale); } } struct NonEmptyMag { static __device__ float get(const float* mag, size_t mag_step, int x, int y) { return mag[y * mag_step + x]; } }; struct EmptyMag { static __device__ float get(const float*, size_t, int, int) { return 1.0f; } }; template __global__ void polarToCart(const float* mag, size_t mag_step, const float* angle, size_t angle_step, float scale, float* xptr, size_t x_step, float* yptr, size_t y_step, int width, int height) { const int x = blockDim.x * blockIdx.x + threadIdx.x; const int y = blockDim.y * blockIdx.y + threadIdx.y; if (x < width && y < height) { float mag_data = Mag::get(mag, mag_step, x, y); float angle_data = angle[y * angle_step + x]; float sin_a, cos_a; sincosf(scale * angle_data, &sin_a, &cos_a); xptr[y * x_step + x] = mag_data * cos_a; yptr[y * y_step + x] = mag_data * sin_a; } } template void cartToPolar_caller(const DevMem2Df& x, const DevMem2Df& y, const DevMem2Df& mag, const DevMem2Df& angle, bool angleInDegrees, cudaStream_t stream) { dim3 threads(16, 16, 1); dim3 grid(1, 1, 1); grid.x = divUp(x.cols, threads.x); grid.y = divUp(x.rows, threads.y); const float scale = angleInDegrees ? (float)(180.0f / CV_PI) : 1.f; cartToPolar<<>>( x.data, x.step/x.elemSize(), y.data, y.step/y.elemSize(), mag.data, mag.step/mag.elemSize(), angle.data, angle.step/angle.elemSize(), scale, x.cols, x.rows); if (stream == 0) cudaSafeCall( cudaThreadSynchronize() ); } void cartToPolar_gpu(const DevMem2Df& x, const DevMem2Df& y, const DevMem2Df& mag, bool magSqr, const DevMem2Df& angle, bool angleInDegrees, cudaStream_t stream) { typedef void (*caller_t)(const DevMem2Df& x, const DevMem2Df& y, const DevMem2Df& mag, const DevMem2Df& angle, bool angleInDegrees, cudaStream_t stream); static const caller_t callers[2][2][2] = { { { cartToPolar_caller, cartToPolar_caller }, { cartToPolar_caller, cartToPolar_caller, } }, { { cartToPolar_caller, cartToPolar_caller }, { cartToPolar_caller, cartToPolar_caller, } } }; callers[mag.data == 0][magSqr][angle.data == 0](x, y, mag, angle, angleInDegrees, stream); } template void polarToCart_caller(const DevMem2Df& mag, const DevMem2Df& angle, const DevMem2Df& x, const DevMem2Df& y, bool angleInDegrees, cudaStream_t stream) { dim3 threads(16, 16, 1); dim3 grid(1, 1, 1); grid.x = divUp(mag.cols, threads.x); grid.y = divUp(mag.rows, threads.y); const float scale = angleInDegrees ? (float)(CV_PI / 180.0f) : 1.0f; polarToCart<<>>(mag.data, mag.step/mag.elemSize(), angle.data, angle.step/angle.elemSize(), scale, x.data, x.step/x.elemSize(), y.data, y.step/y.elemSize(), mag.cols, mag.rows); if (stream == 0) cudaSafeCall( cudaThreadSynchronize() ); } void polarToCart_gpu(const DevMem2Df& mag, const DevMem2Df& angle, const DevMem2Df& x, const DevMem2Df& y, bool angleInDegrees, cudaStream_t stream) { typedef void (*caller_t)(const DevMem2Df& mag, const DevMem2Df& angle, const DevMem2Df& x, const DevMem2Df& y, bool angleInDegrees, cudaStream_t stream); static const caller_t callers[2] = { polarToCart_caller, polarToCart_caller }; callers[mag.data == 0](mag, angle, x, y, angleInDegrees, stream); } ////////////////////////////////////////////////////////////////////////////////////// // Compare template struct NotEqual { __device__ uchar operator()(const T1& src1, const T2& src2) { return static_cast(static_cast(src1 != src2) * 255); } }; template inline void compare_ne(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst) { NotEqual op; transform(static_cast< DevMem2D_ >(src1), static_cast< DevMem2D_ >(src2), dst, op, 0); } void compare_ne_8uc4(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst) { compare_ne(src1, src2, dst); } void compare_ne_32f(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst) { compare_ne(src1, src2, dst); } ////////////////////////////////////////////////////////////////////////////// // Per-element bit-wise logical matrix operations struct Mask8U { explicit Mask8U(PtrStep mask): mask(mask) {} __device__ bool operator()(int y, int x) const { return mask.ptr(y)[x]; } PtrStep mask; }; struct MaskTrue { __device__ bool operator()(int y, int x) const { return true; } }; // Unary operations enum { UN_OP_NOT }; template struct UnOp { __device__ T operator()(T lhs, T rhs); }; template struct UnOp{ __device__ T operator()(T x) { return ~x; } }; template __global__ void bitwise_un_op(int rows, int cols, const PtrStep src, PtrStep dst, UnOp op, Mask mask) { const int x = blockDim.x * blockIdx.x + threadIdx.x; const int y = blockDim.y * blockIdx.y + threadIdx.y; if (x < cols && y < rows && mask(y, x)) { T* dsty = (T*)dst.ptr(y); const T* srcy = (const T*)src.ptr(y); #pragma unroll for (int i = 0; i < cn; ++i) dsty[cn * x + i] = op(srcy[cn * x + i]); } } template void bitwise_un_op(int rows, int cols, const PtrStep src, PtrStep dst, int elem_size, Mask mask, cudaStream_t stream) { dim3 threads(16, 16); dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y)); switch (elem_size) { case 1: bitwise_un_op<<>>(rows, cols, src, dst, UnOp(), mask); break; case 2: bitwise_un_op<<>>(rows, cols, src, dst, UnOp(), mask); break; case 3: bitwise_un_op<<>>(rows, cols, src, dst, UnOp(), mask); break; case 4: bitwise_un_op<<>>(rows, cols, src, dst, UnOp(), mask); break; case 6: bitwise_un_op<<>>(rows, cols, src, dst, UnOp(), mask); break; case 8: bitwise_un_op<<>>(rows, cols, src, dst, UnOp(), mask); break; case 12: bitwise_un_op<<>>(rows, cols, src, dst, UnOp(), mask); break; case 16: bitwise_un_op<<>>(rows, cols, src, dst, UnOp(), mask); break; case 24: bitwise_un_op<<>>(rows, cols, src, dst, UnOp(), mask); break; case 32: bitwise_un_op<<>>(rows, cols, src, dst, UnOp(), mask); break; } if (stream == 0) cudaSafeCall(cudaThreadSynchronize()); } void bitwise_not_caller(int rows, int cols,const PtrStep src, int elem_size, PtrStep dst, cudaStream_t stream) { bitwise_un_op(rows, cols, src, dst, elem_size, MaskTrue(), stream); } void bitwise_not_caller(int rows, int cols,const PtrStep src, int elem_size, PtrStep dst, const PtrStep mask, cudaStream_t stream) { bitwise_un_op(rows, cols, src, dst, elem_size, Mask8U(mask), stream); } // Binary operations enum { BIN_OP_OR, BIN_OP_AND, BIN_OP_XOR }; template struct BinOp { __device__ T operator()(T lhs, T rhs); }; template struct BinOp{ __device__ T operator()(T lhs, T rhs) { return lhs | rhs; } }; template struct BinOp{ __device__ T operator()(T lhs, T rhs) { return lhs & rhs; } }; template struct BinOp{ __device__ T operator()(T lhs, T rhs) { return lhs ^ rhs; } }; template __global__ void bitwise_bin_op(int rows, int cols, const PtrStep src1, const PtrStep src2, PtrStep dst, BinOp op, Mask mask) { const int x = blockDim.x * blockIdx.x + threadIdx.x; const int y = blockDim.y * blockIdx.y + threadIdx.y; if (x < cols && y < rows && mask(y, x)) { T* dsty = (T*)dst.ptr(y); const T* src1y = (const T*)src1.ptr(y); const T* src2y = (const T*)src2.ptr(y); #pragma unroll for (int i = 0; i < cn; ++i) dsty[cn * x + i] = op(src1y[cn * x + i], src2y[cn * x + i]); } } template void bitwise_bin_op(int rows, int cols, const PtrStep src1, const PtrStep src2, PtrStep dst, int elem_size, Mask mask, cudaStream_t stream) { dim3 threads(16, 16); dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y)); switch (elem_size) { case 1: bitwise_bin_op<<>>(rows, cols, src1, src2, dst, BinOp(), mask); break; case 2: bitwise_bin_op<<>>(rows, cols, src1, src2, dst, BinOp(), mask); break; case 3: bitwise_bin_op<<>>(rows, cols, src1, src2, dst, BinOp(), mask); break; case 4: bitwise_bin_op<<>>(rows, cols, src1, src2, dst, BinOp(), mask); break; case 6: bitwise_bin_op<<>>(rows, cols, src1, src2, dst, BinOp(), mask); break; case 8: bitwise_bin_op<<>>(rows, cols, src1, src2, dst, BinOp(), mask); break; case 12: bitwise_bin_op<<>>(rows, cols, src1, src2, dst, BinOp(), mask); break; case 16: bitwise_bin_op<<>>(rows, cols, src1, src2, dst, BinOp(), mask); break; case 24: bitwise_bin_op<<>>(rows, cols, src1, src2, dst, BinOp(), mask); break; case 32: bitwise_bin_op<<>>(rows, cols, src1, src2, dst, BinOp(), mask); break; } if (stream == 0) cudaSafeCall(cudaThreadSynchronize()); } void bitwise_or_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elem_size, PtrStep dst, cudaStream_t stream) { bitwise_bin_op(rows, cols, src1, src2, dst, elem_size, MaskTrue(), stream); } void bitwise_or_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elem_size, PtrStep dst, const PtrStep mask, cudaStream_t stream) { bitwise_bin_op(rows, cols, src1, src2, dst, elem_size, Mask8U(mask), stream); } void bitwise_and_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elem_size, PtrStep dst, cudaStream_t stream) { bitwise_bin_op(rows, cols, src1, src2, dst, elem_size, MaskTrue(), stream); } void bitwise_and_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elem_size, PtrStep dst, const PtrStep mask, cudaStream_t stream) { bitwise_bin_op(rows, cols, src1, src2, dst, elem_size, Mask8U(mask), stream); } void bitwise_xor_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elem_size, PtrStep dst, cudaStream_t stream) { bitwise_bin_op(rows, cols, src1, src2, dst, elem_size, MaskTrue(), stream); } void bitwise_xor_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elem_size, PtrStep dst, const PtrStep mask, cudaStream_t stream) { bitwise_bin_op(rows, cols, src1, src2, dst, elem_size, Mask8U(mask), stream); } ////////////////////////////////////////////////////////////////////////////// // Min max // To avoid shared bank conflicts we convert each value into value of // appropriate type (32 bits minimum) template struct MinMaxTypeTraits {}; template <> struct MinMaxTypeTraits { typedef int best_type; }; template <> struct MinMaxTypeTraits { typedef int best_type; }; template <> struct MinMaxTypeTraits { typedef int best_type; }; template <> struct MinMaxTypeTraits { typedef int best_type; }; template <> struct MinMaxTypeTraits { typedef int best_type; }; template <> struct MinMaxTypeTraits { typedef float best_type; }; template <> struct MinMaxTypeTraits { typedef double best_type; }; namespace minmax { __constant__ int ctwidth; __constant__ int ctheight; // Global counter of blocks finished its work __device__ unsigned int blocks_finished = 0; // Estimates good thread configuration // - threads variable satisfies to threads.x * threads.y == 256 void estimate_thread_cfg(dim3& threads, dim3& grid) { threads = dim3(64, 4); grid = dim3(6, 5); } // Returns required buffer sizes void get_buf_size_required(int elem_size, int& cols, int& rows) { dim3 threads, grid; estimate_thread_cfg(threads, grid); cols = grid.x * grid.y * elem_size; rows = 2; } // Estimates device constants which are used in the kernels using specified thread configuration void estimate_kernel_consts(int cols, int rows, const dim3& threads, const dim3& grid) { int twidth = divUp(divUp(cols, grid.x), threads.x); int theight = divUp(divUp(rows, grid.y), threads.y); cudaSafeCall(cudaMemcpyToSymbol(ctwidth, &twidth, sizeof(ctwidth))); cudaSafeCall(cudaMemcpyToSymbol(ctheight, &theight, sizeof(ctheight))); } // Does min and max in shared memory template __device__ void merge(unsigned int tid, unsigned int offset, volatile T* minval, volatile T* maxval) { minval[tid] = min(minval[tid], minval[tid + offset]); maxval[tid] = max(maxval[tid], maxval[tid + offset]); } template __device__ void find_min_max_in_smem(volatile T* minval, volatile T* maxval, const unsigned int tid) { if (size >= 512) { if (tid < 256) { merge(tid, 256, minval, maxval); } __syncthreads(); } if (size >= 256) { if (tid < 128) { merge(tid, 128, minval, maxval); } __syncthreads(); } if (size >= 128) { if (tid < 64) { merge(tid, 64, minval, maxval); } __syncthreads(); } if (tid < 32) { if (size >= 64) merge(tid, 32, minval, maxval); if (size >= 32) merge(tid, 16, minval, maxval); if (size >= 16) merge(tid, 8, minval, maxval); if (size >= 8) merge(tid, 4, minval, maxval); if (size >= 4) merge(tid, 2, minval, maxval); if (size >= 2) merge(tid, 1, minval, maxval); } } template __global__ void min_max_kernel(const DevMem2D src, Mask mask, T* minval, T* maxval) { typedef typename MinMaxTypeTraits::best_type best_type; __shared__ best_type sminval[nthreads]; __shared__ best_type smaxval[nthreads]; unsigned int x0 = blockIdx.x * blockDim.x * ctwidth + threadIdx.x; unsigned int y0 = blockIdx.y * blockDim.y * ctheight + threadIdx.y; unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x; T mymin = numeric_limits_gpu::max(); T mymax = numeric_limits_gpu::is_signed ? -numeric_limits_gpu::max() : numeric_limits_gpu::min(); unsigned int y_end = min(y0 + (ctheight - 1) * blockDim.y + 1, src.rows); unsigned int x_end = min(x0 + (ctwidth - 1) * blockDim.x + 1, src.cols); for (unsigned int y = y0; y < y_end; y += blockDim.y) { const T* src_row = (const T*)src.ptr(y); for (unsigned int x = x0; x < x_end; x += blockDim.x) { T val = src_row[x]; if (mask(y, x)) { mymin = min(mymin, val); mymax = max(mymax, val); } } } sminval[tid] = mymin; smaxval[tid] = mymax; __syncthreads(); find_min_max_in_smem(sminval, smaxval, tid); if (tid == 0) { minval[blockIdx.y * gridDim.x + blockIdx.x] = (T)sminval[0]; maxval[blockIdx.y * gridDim.x + blockIdx.x] = (T)smaxval[0]; } #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110 __shared__ bool is_last; if (tid == 0) { minval[blockIdx.y * gridDim.x + blockIdx.x] = (T)sminval[0]; maxval[blockIdx.y * gridDim.x + blockIdx.x] = (T)smaxval[0]; __threadfence(); unsigned int ticket = atomicInc(&blocks_finished, gridDim.x * gridDim.y); is_last = ticket == gridDim.x * gridDim.y - 1; } __syncthreads(); if (is_last) { unsigned int idx = min(tid, gridDim.x * gridDim.y - 1); sminval[tid] = minval[idx]; smaxval[tid] = maxval[idx]; __syncthreads(); find_min_max_in_smem(sminval, smaxval, tid); if (tid == 0) { minval[0] = (T)sminval[0]; maxval[0] = (T)smaxval[0]; blocks_finished = 0; } } #else if (tid == 0) { minval[blockIdx.y * gridDim.x + blockIdx.x] = (T)sminval[0]; maxval[blockIdx.y * gridDim.x + blockIdx.x] = (T)smaxval[0]; } #endif } template void min_max_mask_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval, PtrStep buf) { dim3 threads, grid; estimate_thread_cfg(threads, grid); estimate_kernel_consts(src.cols, src.rows, threads, grid); T* minval_buf = (T*)buf.ptr(0); T* maxval_buf = (T*)buf.ptr(1); min_max_kernel<256, T, Mask8U><<>>(src, Mask8U(mask), minval_buf, maxval_buf); cudaSafeCall(cudaThreadSynchronize()); T minval_, maxval_; cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost)); cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost)); *minval = minval_; *maxval = maxval_; } template void min_max_mask_caller(const DevMem2D, const PtrStep, double*, double*, PtrStep); template void min_max_mask_caller(const DevMem2D, const PtrStep, double*, double*, PtrStep); template void min_max_mask_caller(const DevMem2D, const PtrStep, double*, double*, PtrStep); template void min_max_mask_caller(const DevMem2D, const PtrStep, double*, double*, PtrStep); template void min_max_mask_caller(const DevMem2D, const PtrStep, double*, double*, PtrStep); template void min_max_mask_caller(const DevMem2D, const PtrStep, double*, double*, PtrStep); template void min_max_mask_caller(const DevMem2D, const PtrStep, double*, double*, PtrStep); template void min_max_caller(const DevMem2D src, double* minval, double* maxval, PtrStep buf) { dim3 threads, grid; estimate_thread_cfg(threads, grid); estimate_kernel_consts(src.cols, src.rows, threads, grid); T* minval_buf = (T*)buf.ptr(0); T* maxval_buf = (T*)buf.ptr(1); min_max_kernel<256, T, MaskTrue><<>>(src, MaskTrue(), minval_buf, maxval_buf); cudaSafeCall(cudaThreadSynchronize()); T minval_, maxval_; cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost)); cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost)); *minval = minval_; *maxval = maxval_; } template void min_max_caller(const DevMem2D, double*, double*, PtrStep); template void min_max_caller(const DevMem2D, double*, double*, PtrStep); template void min_max_caller(const DevMem2D, double*, double*, PtrStep); template void min_max_caller(const DevMem2D, double*, double*, PtrStep); template void min_max_caller(const DevMem2D, double*, double*, PtrStep); template void min_max_caller(const DevMem2D, double*,double*, PtrStep); template void min_max_caller(const DevMem2D, double*, double*, PtrStep); template __global__ void min_max_pass2_kernel(T* minval, T* maxval, int size) { typedef typename MinMaxTypeTraits::best_type best_type; __shared__ best_type sminval[nthreads]; __shared__ best_type smaxval[nthreads]; unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x; unsigned int idx = min(tid, gridDim.x * gridDim.y - 1); sminval[tid] = minval[idx]; smaxval[tid] = maxval[idx]; __syncthreads(); find_min_max_in_smem(sminval, smaxval, tid); if (tid == 0) { minval[0] = (T)sminval[0]; maxval[0] = (T)smaxval[0]; blocks_finished = 0; } } template void min_max_mask_multipass_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval, PtrStep buf) { dim3 threads, grid; estimate_thread_cfg(threads, grid); estimate_kernel_consts(src.cols, src.rows, threads, grid); T* minval_buf = (T*)buf.ptr(0); T* maxval_buf = (T*)buf.ptr(1); min_max_kernel<256, T, Mask8U><<>>(src, Mask8U(mask), minval_buf, maxval_buf); min_max_pass2_kernel<256, T><<<1, 256>>>(minval_buf, maxval_buf, grid.x * grid.y); cudaSafeCall(cudaThreadSynchronize()); T minval_, maxval_; cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost)); cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost)); *minval = minval_; *maxval = maxval_; } template void min_max_mask_multipass_caller(const DevMem2D, const PtrStep, double*, double*, PtrStep); template void min_max_mask_multipass_caller(const DevMem2D, const PtrStep, double*, double*, PtrStep); template void min_max_mask_multipass_caller(const DevMem2D, const PtrStep, double*, double*, PtrStep); template void min_max_mask_multipass_caller(const DevMem2D, const PtrStep, double*, double*, PtrStep); template void min_max_mask_multipass_caller(const DevMem2D, const PtrStep, double*, double*, PtrStep); template void min_max_mask_multipass_caller(const DevMem2D, const PtrStep, double*, double*, PtrStep); template void min_max_multipass_caller(const DevMem2D src, double* minval, double* maxval, PtrStep buf) { dim3 threads, grid; estimate_thread_cfg(threads, grid); estimate_kernel_consts(src.cols, src.rows, threads, grid); T* minval_buf = (T*)buf.ptr(0); T* maxval_buf = (T*)buf.ptr(1); min_max_kernel<256, T, MaskTrue><<>>(src, MaskTrue(), minval_buf, maxval_buf); min_max_pass2_kernel<256, T><<<1, 256>>>(minval_buf, maxval_buf, grid.x * grid.y); cudaSafeCall(cudaThreadSynchronize()); T minval_, maxval_; cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost)); cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost)); *minval = minval_; *maxval = maxval_; } template void min_max_multipass_caller(const DevMem2D, double*, double*, PtrStep); template void min_max_multipass_caller(const DevMem2D, double*, double*, PtrStep); template void min_max_multipass_caller(const DevMem2D, double*, double*, PtrStep); template void min_max_multipass_caller(const DevMem2D, double*, double*, PtrStep); template void min_max_multipass_caller(const DevMem2D, double*, double*, PtrStep); template void min_max_multipass_caller(const DevMem2D, double*, double*, PtrStep); } // namespace minmax /////////////////////////////////////////////////////////////////////////////// // minMaxLoc namespace minmaxloc { __constant__ int ctwidth; __constant__ int ctheight; // Global counter of blocks finished its work __device__ unsigned int blocks_finished = 0; // Estimates good thread configuration // - threads variable satisfies to threads.x * threads.y == 256 void estimate_thread_cfg(dim3& threads, dim3& grid) { threads = dim3(64, 4); grid = dim3(6, 5); } // Returns required buffer sizes void get_buf_size_required(int elem_size, int& b1cols, int& b1rows, int& b2cols, int& b2rows) { dim3 threads, grid; estimate_thread_cfg(threads, grid); b1cols = grid.x * grid.y * elem_size; // For values b1rows = 2; b2cols = grid.x * grid.y * sizeof(int); // For locations b2rows = 2; } // Estimates device constants which are used in the kernels using specified thread configuration void estimate_kernel_consts(int cols, int rows, const dim3& threads, const dim3& grid) { int twidth = divUp(divUp(cols, grid.x), threads.x); int theight = divUp(divUp(rows, grid.y), threads.y); cudaSafeCall(cudaMemcpyToSymbol(ctwidth, &twidth, sizeof(ctwidth))); cudaSafeCall(cudaMemcpyToSymbol(ctheight, &theight, sizeof(ctheight))); } template __device__ void merge(unsigned int tid, unsigned int offset, volatile T* minval, volatile T* maxval, volatile unsigned int* minloc, volatile unsigned int* maxloc) { T val = minval[tid + offset]; if (val < minval[tid]) { minval[tid] = val; minloc[tid] = minloc[tid + offset]; } val = maxval[tid + offset]; if (val > maxval[tid]) { maxval[tid] = val; maxloc[tid] = maxloc[tid + offset]; } } template __device__ void find_min_max_loc_in_smem(volatile T* minval, volatile T* maxval, volatile unsigned int* minloc, volatile unsigned int* maxloc, const unsigned int tid) { if (size >= 512) { if (tid < 256) { merge(tid, 256, minval, maxval, minloc, maxloc); } __syncthreads(); } if (size >= 256) { if (tid < 128) { merge(tid, 128, minval, maxval, minloc, maxloc); } __syncthreads(); } if (size >= 128) { if (tid < 64) { merge(tid, 64, minval, maxval, minloc, maxloc); } __syncthreads(); } if (tid < 32) { if (size >= 64) merge(tid, 32, minval, maxval, minloc, maxloc); if (size >= 32) merge(tid, 16, minval, maxval, minloc, maxloc); if (size >= 16) merge(tid, 8, minval, maxval, minloc, maxloc); if (size >= 8) merge(tid, 4, minval, maxval, minloc, maxloc); if (size >= 4) merge(tid, 2, minval, maxval, minloc, maxloc); if (size >= 2) merge(tid, 1, minval, maxval, minloc, maxloc); } } template __global__ void min_max_loc_kernel(const DevMem2D src, Mask mask, T* minval, T* maxval, unsigned int* minloc, unsigned int* maxloc) { typedef typename MinMaxTypeTraits::best_type best_type; __shared__ best_type sminval[nthreads]; __shared__ best_type smaxval[nthreads]; __shared__ unsigned int sminloc[nthreads]; __shared__ unsigned int smaxloc[nthreads]; unsigned int x0 = blockIdx.x * blockDim.x * ctwidth + threadIdx.x; unsigned int y0 = blockIdx.y * blockDim.y * ctheight + threadIdx.y; unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x; T mymin = numeric_limits_gpu::max(); T mymax = numeric_limits_gpu::is_signed ? -numeric_limits_gpu::max() : numeric_limits_gpu::min(); unsigned int myminloc = 0; unsigned int mymaxloc = 0; unsigned int y_end = min(y0 + (ctheight - 1) * blockDim.y + 1, src.rows); unsigned int x_end = min(x0 + (ctwidth - 1) * blockDim.x + 1, src.cols); for (unsigned int y = y0; y < y_end; y += blockDim.y) { const T* ptr = (const T*)src.ptr(y); for (unsigned int x = x0; x < x_end; x += blockDim.x) { if (mask(y, x)) { T val = ptr[x]; if (val <= mymin) { mymin = val; myminloc = y * src.cols + x; } if (val >= mymax) { mymax = val; mymaxloc = y * src.cols + x; } } } } sminval[tid] = mymin; smaxval[tid] = mymax; sminloc[tid] = myminloc; smaxloc[tid] = mymaxloc; __syncthreads(); find_min_max_loc_in_smem(sminval, smaxval, sminloc, smaxloc, tid); #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110 __shared__ bool is_last; if (tid == 0) { minval[blockIdx.y * gridDim.x + blockIdx.x] = (T)sminval[0]; maxval[blockIdx.y * gridDim.x + blockIdx.x] = (T)smaxval[0]; minloc[blockIdx.y * gridDim.x + blockIdx.x] = sminloc[0]; maxloc[blockIdx.y * gridDim.x + blockIdx.x] = smaxloc[0]; __threadfence(); unsigned int ticket = atomicInc(&blocks_finished, gridDim.x * gridDim.y); is_last = ticket == gridDim.x * gridDim.y - 1; } __syncthreads(); if (is_last) { unsigned int idx = min(tid, gridDim.x * gridDim.y - 1); sminval[tid] = minval[idx]; smaxval[tid] = maxval[idx]; sminloc[tid] = minloc[idx]; smaxloc[tid] = maxloc[idx]; __syncthreads(); find_min_max_loc_in_smem(sminval, smaxval, sminloc, smaxloc, tid); if (tid == 0) { minval[0] = (T)sminval[0]; maxval[0] = (T)smaxval[0]; minloc[0] = sminloc[0]; maxloc[0] = smaxloc[0]; blocks_finished = 0; } } #else if (tid == 0) { minval[blockIdx.y * gridDim.x + blockIdx.x] = (T)sminval[0]; maxval[blockIdx.y * gridDim.x + blockIdx.x] = (T)smaxval[0]; minloc[blockIdx.y * gridDim.x + blockIdx.x] = sminloc[0]; maxloc[blockIdx.y * gridDim.x + blockIdx.x] = smaxloc[0]; } #endif } template void min_max_loc_mask_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval, int minloc[2], int maxloc[2], PtrStep valbuf, PtrStep locbuf) { dim3 threads, grid; estimate_thread_cfg(threads, grid); estimate_kernel_consts(src.cols, src.rows, threads, grid); T* minval_buf = (T*)valbuf.ptr(0); T* maxval_buf = (T*)valbuf.ptr(1); unsigned int* minloc_buf = (unsigned int*)locbuf.ptr(0); unsigned int* maxloc_buf = (unsigned int*)locbuf.ptr(1); min_max_loc_kernel<256, T, Mask8U><<>>(src, Mask8U(mask), minval_buf, maxval_buf, minloc_buf, maxloc_buf); cudaSafeCall(cudaThreadSynchronize()); T minval_, maxval_; cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost)); cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost)); *minval = minval_; *maxval = maxval_; unsigned int minloc_, maxloc_; cudaSafeCall(cudaMemcpy(&minloc_, minloc_buf, sizeof(int), cudaMemcpyDeviceToHost)); cudaSafeCall(cudaMemcpy(&maxloc_, maxloc_buf, sizeof(int), cudaMemcpyDeviceToHost)); minloc[1] = minloc_ / src.cols; minloc[0] = minloc_ - minloc[1] * src.cols; maxloc[1] = maxloc_ / src.cols; maxloc[0] = maxloc_ - maxloc[1] * src.cols; } template void min_max_loc_mask_caller(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_mask_caller(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_mask_caller(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_mask_caller(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_mask_caller(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_mask_caller(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_mask_caller(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_caller(const DevMem2D src, double* minval, double* maxval, int minloc[2], int maxloc[2], PtrStep valbuf, PtrStep locbuf) { dim3 threads, grid; estimate_thread_cfg(threads, grid); estimate_kernel_consts(src.cols, src.rows, threads, grid); T* minval_buf = (T*)valbuf.ptr(0); T* maxval_buf = (T*)valbuf.ptr(1); unsigned int* minloc_buf = (unsigned int*)locbuf.ptr(0); unsigned int* maxloc_buf = (unsigned int*)locbuf.ptr(1); min_max_loc_kernel<256, T, MaskTrue><<>>(src, MaskTrue(), minval_buf, maxval_buf, minloc_buf, maxloc_buf); cudaSafeCall(cudaThreadSynchronize()); T minval_, maxval_; cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost)); cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost)); *minval = minval_; *maxval = maxval_; unsigned int minloc_, maxloc_; cudaSafeCall(cudaMemcpy(&minloc_, minloc_buf, sizeof(int), cudaMemcpyDeviceToHost)); cudaSafeCall(cudaMemcpy(&maxloc_, maxloc_buf, sizeof(int), cudaMemcpyDeviceToHost)); minloc[1] = minloc_ / src.cols; minloc[0] = minloc_ - minloc[1] * src.cols; maxloc[1] = maxloc_ / src.cols; maxloc[0] = maxloc_ - maxloc[1] * src.cols; } template void min_max_loc_caller(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_caller(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_caller(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_caller(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_caller(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_caller(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_caller(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); // This kernel will be used only when compute capability is 1.0 template __global__ void min_max_loc_pass2_kernel(T* minval, T* maxval, unsigned int* minloc, unsigned int* maxloc, int size) { typedef typename MinMaxTypeTraits::best_type best_type; __shared__ best_type sminval[nthreads]; __shared__ best_type smaxval[nthreads]; __shared__ unsigned int sminloc[nthreads]; __shared__ unsigned int smaxloc[nthreads]; unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x; unsigned int idx = min(tid, gridDim.x * gridDim.y - 1); sminval[tid] = minval[idx]; smaxval[tid] = maxval[idx]; sminloc[tid] = minloc[idx]; smaxloc[tid] = maxloc[idx]; __syncthreads(); find_min_max_loc_in_smem(sminval, smaxval, sminloc, smaxloc, tid); if (tid == 0) { minval[0] = (T)sminval[0]; maxval[0] = (T)smaxval[0]; minloc[0] = sminloc[0]; maxloc[0] = smaxloc[0]; blocks_finished = 0; } } template void min_max_loc_mask_multipass_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval, int minloc[2], int maxloc[2], PtrStep valbuf, PtrStep locbuf) { dim3 threads, grid; estimate_thread_cfg(threads, grid); estimate_kernel_consts(src.cols, src.rows, threads, grid); T* minval_buf = (T*)valbuf.ptr(0); T* maxval_buf = (T*)valbuf.ptr(1); unsigned int* minloc_buf = (unsigned int*)locbuf.ptr(0); unsigned int* maxloc_buf = (unsigned int*)locbuf.ptr(1); min_max_loc_kernel<256, T, Mask8U><<>>(src, Mask8U(mask), minval_buf, maxval_buf, minloc_buf, maxloc_buf); min_max_loc_pass2_kernel<256, T><<<1, 256>>>(minval_buf, maxval_buf, minloc_buf, maxloc_buf, grid.x * grid.y); cudaSafeCall(cudaThreadSynchronize()); T minval_, maxval_; cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost)); cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost)); *minval = minval_; *maxval = maxval_; unsigned int minloc_, maxloc_; cudaSafeCall(cudaMemcpy(&minloc_, minloc_buf, sizeof(int), cudaMemcpyDeviceToHost)); cudaSafeCall(cudaMemcpy(&maxloc_, maxloc_buf, sizeof(int), cudaMemcpyDeviceToHost)); minloc[1] = minloc_ / src.cols; minloc[0] = minloc_ - minloc[1] * src.cols; maxloc[1] = maxloc_ / src.cols; maxloc[0] = maxloc_ - maxloc[1] * src.cols; } template void min_max_loc_mask_multipass_caller(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_mask_multipass_caller(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_mask_multipass_caller(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_mask_multipass_caller(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_mask_multipass_caller(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_mask_multipass_caller(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_multipass_caller(const DevMem2D src, double* minval, double* maxval, int minloc[2], int maxloc[2], PtrStep valbuf, PtrStep locbuf) { dim3 threads, grid; estimate_thread_cfg(threads, grid); estimate_kernel_consts(src.cols, src.rows, threads, grid); T* minval_buf = (T*)valbuf.ptr(0); T* maxval_buf = (T*)valbuf.ptr(1); unsigned int* minloc_buf = (unsigned int*)locbuf.ptr(0); unsigned int* maxloc_buf = (unsigned int*)locbuf.ptr(1); min_max_loc_kernel<256, T, MaskTrue><<>>(src, MaskTrue(), minval_buf, maxval_buf, minloc_buf, maxloc_buf); min_max_loc_pass2_kernel<256, T><<<1, 256>>>(minval_buf, maxval_buf, minloc_buf, maxloc_buf, grid.x * grid.y); cudaSafeCall(cudaThreadSynchronize()); T minval_, maxval_; cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost)); cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost)); *minval = minval_; *maxval = maxval_; unsigned int minloc_, maxloc_; cudaSafeCall(cudaMemcpy(&minloc_, minloc_buf, sizeof(int), cudaMemcpyDeviceToHost)); cudaSafeCall(cudaMemcpy(&maxloc_, maxloc_buf, sizeof(int), cudaMemcpyDeviceToHost)); minloc[1] = minloc_ / src.cols; minloc[0] = minloc_ - minloc[1] * src.cols; maxloc[1] = maxloc_ / src.cols; maxloc[0] = maxloc_ - maxloc[1] * src.cols; } template void min_max_loc_multipass_caller(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_multipass_caller(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_multipass_caller(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_multipass_caller(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_multipass_caller(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_multipass_caller(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); } // namespace minmaxloc ////////////////////////////////////////////////////////////////////////////////////////////////////////// // countNonZero namespace countnonzero { __constant__ int ctwidth; __constant__ int ctheight; __device__ unsigned int blocks_finished = 0; void estimate_thread_cfg(dim3& threads, dim3& grid) { threads = dim3(64, 4); grid = dim3(6, 5); } void get_buf_size_required(int& cols, int& rows) { dim3 threads, grid; estimate_thread_cfg(threads, grid); cols = grid.x * grid.y * sizeof(int); rows = 1; } void estimate_kernel_consts(int cols, int rows, const dim3& threads, const dim3& grid) { int twidth = divUp(divUp(cols, grid.x), threads.x); int theight = divUp(divUp(rows, grid.y), threads.y); cudaSafeCall(cudaMemcpyToSymbol(ctwidth, &twidth, sizeof(twidth))); cudaSafeCall(cudaMemcpyToSymbol(ctheight, &theight, sizeof(theight))); } template __device__ void sum_is_smem(volatile T* data, const unsigned int tid) { T sum = data[tid]; if (size >= 512) { if (tid < 256) { data[tid] = sum = sum + data[tid + 256]; } __syncthreads(); } if (size >= 256) { if (tid < 128) { data[tid] = sum = sum + data[tid + 128]; } __syncthreads(); } if (size >= 128) { if (tid < 64) { data[tid] = sum = sum + data[tid + 64]; } __syncthreads(); } if (tid < 32) { if (size >= 64) data[tid] = sum = sum + data[tid + 32]; if (size >= 32) data[tid] = sum = sum + data[tid + 16]; if (size >= 16) data[tid] = sum = sum + data[tid + 8]; if (size >= 8) data[tid] = sum = sum + data[tid + 4]; if (size >= 4) data[tid] = sum = sum + data[tid + 2]; if (size >= 2) data[tid] = sum = sum + data[tid + 1]; } } template __global__ void count_non_zero_kernel(const DevMem2D src, volatile unsigned int* count) { __shared__ unsigned int scount[nthreads]; unsigned int x0 = blockIdx.x * blockDim.x * ctwidth + threadIdx.x; unsigned int y0 = blockIdx.y * blockDim.y * ctheight + threadIdx.y; unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x; unsigned int cnt = 0; for (unsigned int y = 0; y < ctheight && y0 + y * blockDim.y < src.rows; ++y) { const T* ptr = (const T*)src.ptr(y0 + y * blockDim.y); for (unsigned int x = 0; x < ctwidth && x0 + x * blockDim.x < src.cols; ++x) cnt += ptr[x0 + x * blockDim.x] != 0; } scount[tid] = cnt; __syncthreads(); sum_is_smem(scount, tid); #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110 __shared__ bool is_last; if (tid == 0) { count[blockIdx.y * gridDim.x + blockIdx.x] = scount[0]; __threadfence(); unsigned int ticket = atomicInc(&blocks_finished, gridDim.x * gridDim.y); is_last = ticket == gridDim.x * gridDim.y - 1; } __syncthreads(); if (is_last) { scount[tid] = tid < gridDim.x * gridDim.y ? count[tid] : 0; __syncthreads(); sum_is_smem(scount, tid); if (tid == 0) { count[0] = scount[0]; blocks_finished = 0; } } #else if (tid == 0) count[blockIdx.y * gridDim.x + blockIdx.x] = scount[0]; #endif } template int count_non_zero_caller(const DevMem2D src, PtrStep buf) { dim3 threads, grid; estimate_thread_cfg(threads, grid); estimate_kernel_consts(src.cols, src.rows, threads, grid); unsigned int* count_buf = (unsigned int*)buf.ptr(0); count_non_zero_kernel<256, T><<>>(src, count_buf); cudaSafeCall(cudaThreadSynchronize()); unsigned int count; cudaSafeCall(cudaMemcpy(&count, count_buf, sizeof(int), cudaMemcpyDeviceToHost)); return count; } template int count_non_zero_caller(const DevMem2D, PtrStep); template int count_non_zero_caller(const DevMem2D, PtrStep); template int count_non_zero_caller(const DevMem2D, PtrStep); template int count_non_zero_caller(const DevMem2D, PtrStep); template int count_non_zero_caller(const DevMem2D, PtrStep); template int count_non_zero_caller(const DevMem2D, PtrStep); template int count_non_zero_caller(const DevMem2D, PtrStep); template __global__ void count_non_zero_pass2_kernel(unsigned int* count, int size) { __shared__ unsigned int scount[nthreads]; unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x; scount[tid] = tid < size ? count[tid] : 0; sum_is_smem(scount, tid); if (tid == 0) { count[0] = scount[0]; blocks_finished = 0; } } template int count_non_zero_multipass_caller(const DevMem2D src, PtrStep buf) { dim3 threads, grid; estimate_thread_cfg(threads, grid); estimate_kernel_consts(src.cols, src.rows, threads, grid); unsigned int* count_buf = (unsigned int*)buf.ptr(0); count_non_zero_kernel<256, T><<>>(src, count_buf); count_non_zero_pass2_kernel<256, T><<<1, 256>>>(count_buf, grid.x * grid.y); cudaSafeCall(cudaThreadSynchronize()); unsigned int count; cudaSafeCall(cudaMemcpy(&count, count_buf, sizeof(int), cudaMemcpyDeviceToHost)); return count; } template int count_non_zero_multipass_caller(const DevMem2D, PtrStep); template int count_non_zero_multipass_caller(const DevMem2D, PtrStep); template int count_non_zero_multipass_caller(const DevMem2D, PtrStep); template int count_non_zero_multipass_caller(const DevMem2D, PtrStep); template int count_non_zero_multipass_caller(const DevMem2D, PtrStep); template int count_non_zero_multipass_caller(const DevMem2D, PtrStep); } // namespace countnonzero }}}