YOLO DNNs {#tutorial_dnn_yolo} =============================== Introduction ------------ In this text you will learn how to use opencv_dnn module using yolo_object_detection (Sample of using OpenCV dnn module in real time with device capture, video and image). We will demonstrate results of this example on the following picture. ![Picture example](images/yolo.jpg) Examples -------- VIDEO DEMO: @youtube{NHtRlndE2cg} Source Code ----------- The latest version of sample source code can be downloaded [here](https://github.com/opencv/opencv/blob/master/samples/dnn/yolo_object_detection.cpp). @include dnn/yolo_object_detection.cpp How to compile in command line with pkg-config ---------------------------------------------- @code{.bash} # g++ `pkg-config --cflags opencv` `pkg-config --libs opencv` yolo_object_detection.cpp -o yolo_object_detection @endcode Execute in webcam: @code{.bash} $ yolo_object_detection -camera_device=0 -cfg=[PATH-TO-DARKNET]/cfg/yolo.cfg -model=[PATH-TO-DARKNET]/yolo.weights -class_names=[PATH-TO-DARKNET]/data/coco.names @endcode Execute with image: @code{.bash} $ yolo_object_detection -source=[PATH-IMAGE] -cfg=[PATH-TO-DARKNET]/cfg/yolo.cfg -model=[PATH-TO-DARKNET]/yolo.weights -class_names=[PATH-TO-DARKNET]/data/coco.names @endcode Execute in video file: @code{.bash} $ yolo_object_detection -source=[PATH-TO-VIDEO] -cfg=[PATH-TO-DARKNET]/cfg/yolo.cfg -model=[PATH-TO-DARKNET]/yolo.weights -class_names=[PATH-TO-DARKNET]/data/coco.names @endcode Questions and suggestions email to: Alessandro de Oliveira Faria cabelo@opensuse.org or OpenCV Team.