/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Dachuan Zhao, dachuan@multicorewareinc.com // Yao Wang, yao@multicorewareinc.com // Nathan, liujun@multicorewareinc.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other oclMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::ocl; namespace cv { namespace ocl { ///////////////////////////OpenCL kernel strings/////////////////////////// extern const char *pyrlk; extern const char *pyrlk_no_image; extern const char *operator_setTo; extern const char *operator_convertTo; extern const char *operator_copyToM; extern const char *arithm_mul; extern const char *pyr_down; } } struct dim3 { unsigned int x, y, z; }; struct float2 { float x, y; }; struct int2 { int x, y; }; namespace { void calcPatchSize(cv::Size winSize, int cn, dim3 &block, dim3 &patch, bool isDeviceArch11) { winSize.width *= cn; if (winSize.width > 32 && winSize.width > 2 * winSize.height) { block.x = isDeviceArch11 ? 16 : 32; block.y = 8; } else { block.x = 16; block.y = isDeviceArch11 ? 8 : 16; } patch.x = (winSize.width + block.x - 1) / block.x; patch.y = (winSize.height + block.y - 1) / block.y; block.z = patch.z = 1; } } inline int divUp(int total, int grain) { return (total + grain - 1) / grain; } /////////////////////////////////////////////////////////////////////////// //////////////////////////////// ConvertTo //////////////////////////////// /////////////////////////////////////////////////////////////////////////// static void convert_run_cus(const oclMat &src, oclMat &dst, double alpha, double beta) { String kernelName = "convert_to_S"; std::stringstream idxStr; idxStr << src.depth(); kernelName = kernelName + idxStr.str().c_str(); float alpha_f = (float)alpha, beta_f = (float)beta; CV_DbgAssert(src.rows == dst.rows && src.cols == dst.cols); std::vector > args; size_t localThreads[3] = {16, 16, 1}; size_t globalThreads[3]; globalThreads[0] = (dst.cols + localThreads[0] - 1) / localThreads[0] * localThreads[0]; globalThreads[1] = (dst.rows + localThreads[1] - 1) / localThreads[1] * localThreads[1]; globalThreads[2] = 1; int dststep_in_pixel = dst.step / dst.elemSize(), dstoffset_in_pixel = dst.offset / dst.elemSize(); int srcstep_in_pixel = src.step / src.elemSize(), srcoffset_in_pixel = src.offset / src.elemSize(); if(dst.type() == CV_8UC1) { globalThreads[0] = ((dst.cols + 4) / 4 + localThreads[0]) / localThreads[0] * localThreads[0]; } args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.rows )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&srcstep_in_pixel )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&srcoffset_in_pixel )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dststep_in_pixel )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dstoffset_in_pixel )); args.push_back( std::make_pair( sizeof(cl_float) , (void *)&alpha_f )); args.push_back( std::make_pair( sizeof(cl_float) , (void *)&beta_f )); openCLExecuteKernel2(dst.clCxt , &operator_convertTo, kernelName, globalThreads, localThreads, args, dst.oclchannels(), dst.depth(), CLFLUSH); } void convertTo( const oclMat &src, oclMat &m, int rtype, double alpha = 1, double beta = 0 ); void convertTo( const oclMat &src, oclMat &dst, int rtype, double alpha, double beta ) { //cout << "cv::ocl::oclMat::convertTo()" << endl; bool noScale = fabs(alpha - 1) < std::numeric_limits::epsilon() && fabs(beta) < std::numeric_limits::epsilon(); if( rtype < 0 ) rtype = src.type(); else rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), src.oclchannels()); int sdepth = src.depth(), ddepth = CV_MAT_DEPTH(rtype); if( sdepth == ddepth && noScale ) { src.copyTo(dst); return; } oclMat temp; const oclMat *psrc = &src; if( sdepth != ddepth && psrc == &dst ) psrc = &(temp = src); dst.create( src.size(), rtype ); convert_run_cus(*psrc, dst, alpha, beta); } /////////////////////////////////////////////////////////////////////////// //////////////////////////////// setTo //////////////////////////////////// /////////////////////////////////////////////////////////////////////////// //oclMat &operator = (const Scalar &s) //{ // //cout << "cv::ocl::oclMat::=" << endl; // setTo(s); // return *this; //} static void set_to_withoutmask_run_cus(const oclMat &dst, const Scalar &scalar, String kernelName) { std::vector > args; size_t localThreads[3] = {16, 16, 1}; size_t globalThreads[3]; globalThreads[0] = (dst.cols + localThreads[0] - 1) / localThreads[0] * localThreads[0]; globalThreads[1] = (dst.rows + localThreads[1] - 1) / localThreads[1] * localThreads[1]; globalThreads[2] = 1; int step_in_pixel = dst.step / dst.elemSize(), offset_in_pixel = dst.offset / dst.elemSize(); if(dst.type() == CV_8UC1) { globalThreads[0] = ((dst.cols + 4) / 4 + localThreads[0] - 1) / localThreads[0] * localThreads[0]; } char compile_option[32]; union sc { cl_uchar4 uval; cl_char4 cval; cl_ushort4 usval; cl_short4 shval; cl_int4 ival; cl_float4 fval; cl_double4 dval; } val; switch(dst.depth()) { case 0: val.uval.s[0] = saturate_cast(scalar.val[0]); val.uval.s[1] = saturate_cast(scalar.val[1]); val.uval.s[2] = saturate_cast(scalar.val[2]); val.uval.s[3] = saturate_cast(scalar.val[3]); switch(dst.oclchannels()) { case 1: sprintf(compile_option, "-D GENTYPE=uchar"); args.push_back( std::make_pair( sizeof(cl_uchar) , (void *)&val.uval.s[0] )); break; case 4: sprintf(compile_option, "-D GENTYPE=uchar4"); args.push_back( std::make_pair( sizeof(cl_uchar4) , (void *)&val.uval )); break; default: CV_Error(CV_StsUnsupportedFormat, "unsupported channels"); } break; case 1: val.cval.s[0] = saturate_cast(scalar.val[0]); val.cval.s[1] = saturate_cast(scalar.val[1]); val.cval.s[2] = saturate_cast(scalar.val[2]); val.cval.s[3] = saturate_cast(scalar.val[3]); switch(dst.oclchannels()) { case 1: sprintf(compile_option, "-D GENTYPE=char"); args.push_back( std::make_pair( sizeof(cl_char) , (void *)&val.cval.s[0] )); break; case 4: sprintf(compile_option, "-D GENTYPE=char4"); args.push_back( std::make_pair( sizeof(cl_char4) , (void *)&val.cval )); break; default: CV_Error(CV_StsUnsupportedFormat, "unsupported channels"); } break; case 2: val.usval.s[0] = saturate_cast(scalar.val[0]); val.usval.s[1] = saturate_cast(scalar.val[1]); val.usval.s[2] = saturate_cast(scalar.val[2]); val.usval.s[3] = saturate_cast(scalar.val[3]); switch(dst.oclchannels()) { case 1: sprintf(compile_option, "-D GENTYPE=ushort"); args.push_back( std::make_pair( sizeof(cl_ushort) , (void *)&val.usval.s[0] )); break; case 4: sprintf(compile_option, "-D GENTYPE=ushort4"); args.push_back( std::make_pair( sizeof(cl_ushort4) , (void *)&val.usval )); break; default: CV_Error(CV_StsUnsupportedFormat, "unsupported channels"); } break; case 3: val.shval.s[0] = saturate_cast(scalar.val[0]); val.shval.s[1] = saturate_cast(scalar.val[1]); val.shval.s[2] = saturate_cast(scalar.val[2]); val.shval.s[3] = saturate_cast(scalar.val[3]); switch(dst.oclchannels()) { case 1: sprintf(compile_option, "-D GENTYPE=short"); args.push_back( std::make_pair( sizeof(cl_short) , (void *)&val.shval.s[0] )); break; case 4: sprintf(compile_option, "-D GENTYPE=short4"); args.push_back( std::make_pair( sizeof(cl_short4) , (void *)&val.shval )); break; default: CV_Error(CV_StsUnsupportedFormat, "unsupported channels"); } break; case 4: val.ival.s[0] = saturate_cast(scalar.val[0]); val.ival.s[1] = saturate_cast(scalar.val[1]); val.ival.s[2] = saturate_cast(scalar.val[2]); val.ival.s[3] = saturate_cast(scalar.val[3]); switch(dst.oclchannels()) { case 1: sprintf(compile_option, "-D GENTYPE=int"); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&val.ival.s[0] )); break; case 2: sprintf(compile_option, "-D GENTYPE=int2"); cl_int2 i2val; i2val.s[0] = val.ival.s[0]; i2val.s[1] = val.ival.s[1]; args.push_back( std::make_pair( sizeof(cl_int2) , (void *)&i2val )); break; case 4: sprintf(compile_option, "-D GENTYPE=int4"); args.push_back( std::make_pair( sizeof(cl_int4) , (void *)&val.ival )); break; default: CV_Error(CV_StsUnsupportedFormat, "unsupported channels"); } break; case 5: val.fval.s[0] = (float)scalar.val[0]; val.fval.s[1] = (float)scalar.val[1]; val.fval.s[2] = (float)scalar.val[2]; val.fval.s[3] = (float)scalar.val[3]; switch(dst.oclchannels()) { case 1: sprintf(compile_option, "-D GENTYPE=float"); args.push_back( std::make_pair( sizeof(cl_float) , (void *)&val.fval.s[0] )); break; case 4: sprintf(compile_option, "-D GENTYPE=float4"); args.push_back( std::make_pair( sizeof(cl_float4) , (void *)&val.fval )); break; default: CV_Error(CV_StsUnsupportedFormat, "unsupported channels"); } break; case 6: val.dval.s[0] = scalar.val[0]; val.dval.s[1] = scalar.val[1]; val.dval.s[2] = scalar.val[2]; val.dval.s[3] = scalar.val[3]; switch(dst.oclchannels()) { case 1: sprintf(compile_option, "-D GENTYPE=double"); args.push_back( std::make_pair( sizeof(cl_double) , (void *)&val.dval.s[0] )); break; case 4: sprintf(compile_option, "-D GENTYPE=double4"); args.push_back( std::make_pair( sizeof(cl_double4) , (void *)&val.dval )); break; default: CV_Error(CV_StsUnsupportedFormat, "unsupported channels"); } break; default: CV_Error(CV_StsUnsupportedFormat, "unknown depth"); } #ifdef CL_VERSION_1_2 if(dst.offset == 0 && dst.cols == dst.wholecols) { clEnqueueFillBuffer((cl_command_queue)dst.clCxt->oclCommandQueue(), (cl_mem)dst.data, args[0].second, args[0].first, 0, dst.step * dst.rows, 0, NULL, NULL); } else { args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dst.cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dst.rows )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&step_in_pixel )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&offset_in_pixel)); openCLExecuteKernel2(dst.clCxt , &operator_setTo, kernelName, globalThreads, localThreads, args, -1, -1, compile_option, CLFLUSH); } #else args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dst.cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dst.rows )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&step_in_pixel )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&offset_in_pixel)); openCLExecuteKernel2(dst.clCxt , &operator_setTo, kernelName, globalThreads, localThreads, args, -1, -1, compile_option, CLFLUSH); #endif } static oclMat &setTo(oclMat &src, const Scalar &scalar) { CV_Assert( src.depth() >= 0 && src.depth() <= 6 ); CV_DbgAssert( !src.empty()); if(src.type() == CV_8UC1) { set_to_withoutmask_run_cus(src, scalar, "set_to_without_mask_C1_D0"); } else { set_to_withoutmask_run_cus(src, scalar, "set_to_without_mask"); } return src; } /////////////////////////////////////////////////////////////////////////// ////////////////////////////////// CopyTo ///////////////////////////////// /////////////////////////////////////////////////////////////////////////// // static void copy_to_with_mask_cus(const oclMat &src, oclMat &dst, const oclMat &mask, String kernelName) // { // CV_DbgAssert( dst.rows == mask.rows && dst.cols == mask.cols && // src.rows == dst.rows && src.cols == dst.cols // && mask.type() == CV_8UC1); // std::vector > args; // String string_types[4][7] = {{"uchar", "char", "ushort", "short", "int", "float", "double"}, // {"uchar2", "char2", "ushort2", "short2", "int2", "float2", "double2"}, // {"uchar3", "char3", "ushort3", "short3", "int3", "float3", "double3"}, // {"uchar4", "char4", "ushort4", "short4", "int4", "float4", "double4"} // }; // char compile_option[32]; // sprintf(compile_option, "-D GENTYPE=%s", string_types[dst.oclchannels() - 1][dst.depth()].c_str()); // size_t localThreads[3] = {16, 16, 1}; // size_t globalThreads[3]; // globalThreads[0] = divUp(dst.cols, localThreads[0]) * localThreads[0]; // globalThreads[1] = divUp(dst.rows, localThreads[1]) * localThreads[1]; // globalThreads[2] = 1; // int dststep_in_pixel = dst.step / dst.elemSize(), dstoffset_in_pixel = dst.offset / dst.elemSize(); // int srcstep_in_pixel = src.step / src.elemSize(), srcoffset_in_pixel = src.offset / src.elemSize(); // args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data )); // args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst.data )); // args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&mask.data )); // args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.cols )); // args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.rows )); // args.push_back( std::make_pair( sizeof(cl_int) , (void *)&srcstep_in_pixel )); // args.push_back( std::make_pair( sizeof(cl_int) , (void *)&srcoffset_in_pixel )); // args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dststep_in_pixel )); // args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dstoffset_in_pixel )); // args.push_back( std::make_pair( sizeof(cl_int) , (void *)&mask.step )); // args.push_back( std::make_pair( sizeof(cl_int) , (void *)&mask.offset )); // openCLExecuteKernel2(dst.clCxt , &operator_copyToM, kernelName, globalThreads, // localThreads, args, -1, -1, compile_option, CLFLUSH); // } static void copyTo(const oclMat &src, oclMat &m ) { CV_DbgAssert(!src.empty()); m.create(src.size(), src.type()); openCLCopyBuffer2D(src.clCxt, m.data, m.step, m.offset, src.data, src.step, src.cols * src.elemSize(), src.rows, src.offset); } // static void copyTo(const oclMat &src, oclMat &mat, const oclMat &mask) // { // if (mask.empty()) // { // copyTo(src, mat); // } // else // { // mat.create(src.size(), src.type()); // copy_to_with_mask_cus(src, mat, mask, "copy_to_with_mask"); // } // } static void arithmetic_run(const oclMat &src1, oclMat &dst, String kernelName, const char **kernelString, void *_scalar) { if(!src1.clCxt->supportsFeature(Context::CL_DOUBLE) && src1.type() == CV_64F) { CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); return; } //dst.create(src1.size(), src1.type()); //CV_Assert(src1.cols == src2.cols && src2.cols == dst.cols && // src1.rows == src2.rows && src2.rows == dst.rows); CV_Assert(src1.cols == dst.cols && src1.rows == dst.rows); CV_Assert(src1.type() == dst.type()); CV_Assert(src1.depth() != CV_8S); Context *clCxt = src1.clCxt; //int channels = dst.channels(); //int depth = dst.depth(); //int vector_lengths[4][7] = {{4, 0, 4, 4, 1, 1, 1}, // {4, 0, 4, 4, 1, 1, 1}, // {4, 0, 4, 4, 1, 1, 1}, // {4, 0, 4, 4, 1, 1, 1} //}; //size_t vector_length = vector_lengths[channels-1][depth]; //int offset_cols = (dst.offset / dst.elemSize1()) & (vector_length - 1); //int cols = divUp(dst.cols * channels + offset_cols, vector_length); size_t localThreads[3] = { 16, 16, 1 }; //size_t globalThreads[3] = { divUp(cols, localThreads[0]) * localThreads[0], // divUp(dst.rows, localThreads[1]) * localThreads[1], // 1 // }; size_t globalThreads[3] = { src1.cols, src1.rows, 1 }; int dst_step1 = dst.cols * dst.elemSize(); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.offset )); //args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src2.data )); //args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2.step )); //args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_step1 )); //if(_scalar != NULL) //{ float scalar1 = *((float *)_scalar); args.push_back( std::make_pair( sizeof(float), (float *)&scalar1 )); //} openCLExecuteKernel2(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, src1.depth(), CLFLUSH); } static void multiply_cus(const oclMat &src1, oclMat &dst, float scalar) { arithmetic_run(src1, dst, "arithm_muls", &arithm_mul, (void *)(&scalar)); } static void pyrdown_run_cus(const oclMat &src, const oclMat &dst) { CV_Assert(src.type() == dst.type()); CV_Assert(src.depth() != CV_8S); Context *clCxt = src.clCxt; String kernelName = "pyrDown"; size_t localThreads[3] = { 256, 1, 1 }; size_t globalThreads[3] = { src.cols, dst.rows, 1}; std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.rows)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.cols)); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.cols)); openCLExecuteKernel2(clCxt, &pyr_down, kernelName, globalThreads, localThreads, args, src.oclchannels(), src.depth(), CLFLUSH); } static void pyrDown_cus(const oclMat &src, oclMat &dst) { CV_Assert(src.depth() <= CV_32F && src.channels() <= 4); dst.create((src.rows + 1) / 2, (src.cols + 1) / 2, src.type()); pyrdown_run_cus(src, dst); } static void lkSparse_run(oclMat &I, oclMat &J, const oclMat &prevPts, oclMat &nextPts, oclMat &status, oclMat& err, bool /*GET_MIN_EIGENVALS*/, int ptcount, int level, /*dim3 block, */dim3 patch, Size winSize, int iters) { Context *clCxt = I.clCxt; int elemCntPerRow = I.step / I.elemSize(); String kernelName = "lkSparse"; bool isImageSupported = support_image2d(); size_t localThreads[3] = { 8, isImageSupported ? 8 : 32, 1 }; size_t globalThreads[3] = { 8 * ptcount, isImageSupported ? 8 : 32, 1}; int cn = I.oclchannels(); char calcErr; if (level == 0) { calcErr = 1; } else { calcErr = 0; } std::vector > args; cl_mem ITex = isImageSupported ? bindTexture(I) : (cl_mem)I.data; cl_mem JTex = isImageSupported ? bindTexture(J) : (cl_mem)J.data; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&ITex )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&JTex )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&prevPts.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&prevPts.step )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&nextPts.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&nextPts.step )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&status.data )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&err.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&level )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&I.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&I.cols )); if (!isImageSupported) args.push_back( std::make_pair( sizeof(cl_int), (void *)&elemCntPerRow ) ); args.push_back( std::make_pair( sizeof(cl_int), (void *)&patch.x )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&patch.y )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cn )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&winSize.width )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&winSize.height )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&iters )); args.push_back( std::make_pair( sizeof(cl_char), (void *)&calcErr )); if(isImageSupported) { openCLExecuteKernel2(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH); releaseTexture(ITex); releaseTexture(JTex); } else { openCLExecuteKernel2(clCxt, &pyrlk_no_image, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH); } } void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &prevImg, const oclMat &nextImg, const oclMat &prevPts, oclMat &nextPts, oclMat &status, oclMat *err) { if (prevPts.empty()) { nextPts.release(); status.release(); //if (err) err->release(); return; } derivLambda = std::min(std::max(derivLambda, 0.0), 1.0); iters = std::min(std::max(iters, 0), 100); const int cn = prevImg.oclchannels(); dim3 block, patch; calcPatchSize(winSize, cn, block, patch, isDeviceArch11_); CV_Assert(derivLambda >= 0); CV_Assert(maxLevel >= 0 && winSize.width > 2 && winSize.height > 2); CV_Assert(prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type()); CV_Assert(patch.x > 0 && patch.x < 6 && patch.y > 0 && patch.y < 6); CV_Assert(prevPts.rows == 1 && prevPts.type() == CV_32FC2); if (useInitialFlow) CV_Assert(nextPts.size() == prevPts.size() && nextPts.type() == CV_32FC2); else ensureSizeIsEnough(1, prevPts.cols, prevPts.type(), nextPts); oclMat temp1 = (useInitialFlow ? nextPts : prevPts).reshape(1); oclMat temp2 = nextPts.reshape(1); //oclMat scalar(temp1.rows, temp1.cols, temp1.type(), Scalar(1.0f / (1 << maxLevel) / 2.0f)); multiply_cus(temp1, temp2, 1.0f / (1 << maxLevel) / 2.0f); //::multiply(temp1, 1.0f / (1 << maxLevel) / 2.0f, temp2); ensureSizeIsEnough(1, prevPts.cols, CV_8UC1, status); //status.setTo(Scalar::all(1)); setTo(status, Scalar::all(1)); bool errMat = false; if (!err) { err = new oclMat(1, prevPts.cols, CV_32FC1); errMat = true; } else ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err); //ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, err); // build the image pyramids. prevPyr_.resize(maxLevel + 1); nextPyr_.resize(maxLevel + 1); if (cn == 1 || cn == 4) { //prevImg.convertTo(prevPyr_[0], CV_32F); //nextImg.convertTo(nextPyr_[0], CV_32F); convertTo(prevImg, prevPyr_[0], CV_32F); convertTo(nextImg, nextPyr_[0], CV_32F); } else { //oclMat buf_; // cvtColor(prevImg, buf_, COLOR_BGR2BGRA); // buf_.convertTo(prevPyr_[0], CV_32F); // cvtColor(nextImg, buf_, COLOR_BGR2BGRA); // buf_.convertTo(nextPyr_[0], CV_32F); } for (int level = 1; level <= maxLevel; ++level) { pyrDown_cus(prevPyr_[level - 1], prevPyr_[level]); pyrDown_cus(nextPyr_[level - 1], nextPyr_[level]); } // dI/dx ~ Ix, dI/dy ~ Iy for (int level = maxLevel; level >= 0; level--) { lkSparse_run(prevPyr_[level], nextPyr_[level], prevPts, nextPts, status, *err, getMinEigenVals, prevPts.cols, level, /*block, */patch, winSize, iters); } clFinish((cl_command_queue)prevImg.clCxt->oclCommandQueue()); if(errMat) delete err; } static void lkDense_run(oclMat &I, oclMat &J, oclMat &u, oclMat &v, oclMat &prevU, oclMat &prevV, oclMat *err, Size winSize, int iters) { Context *clCxt = I.clCxt; bool isImageSupported = support_image2d(); int elemCntPerRow = I.step / I.elemSize(); String kernelName = "lkDense"; size_t localThreads[3] = { 16, 16, 1 }; size_t globalThreads[3] = { I.cols, I.rows, 1}; bool calcErr; if (err) { calcErr = true; } else { calcErr = false; } cl_mem ITex; cl_mem JTex; if (isImageSupported) { ITex = bindTexture(I); JTex = bindTexture(J); } else { ITex = (cl_mem)I.data; JTex = (cl_mem)J.data; } //int2 halfWin = {(winSize.width - 1) / 2, (winSize.height - 1) / 2}; //const int patchWidth = 16 + 2 * halfWin.x; //const int patchHeight = 16 + 2 * halfWin.y; //size_t smem_size = 3 * patchWidth * patchHeight * sizeof(int); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&ITex )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&JTex )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&u.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&u.step )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&v.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&v.step )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&prevU.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&prevU.step )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&prevV.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&prevV.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&I.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&I.cols )); //args.push_back( std::make_pair( sizeof(cl_mem), (void *)&(*err).data )); //args.push_back( std::make_pair( sizeof(cl_int), (void *)&(*err).step )); if (!isImageSupported) { args.push_back( std::make_pair( sizeof(cl_int), (void *)&elemCntPerRow ) ); } args.push_back( std::make_pair( sizeof(cl_int), (void *)&winSize.width )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&winSize.height )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&iters )); args.push_back( std::make_pair( sizeof(cl_char), (void *)&calcErr )); if (isImageSupported) { openCLExecuteKernel2(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH); releaseTexture(ITex); releaseTexture(JTex); } else { //printf("Warning: The image2d_t is not supported by the device. Using alternative method!\n"); openCLExecuteKernel2(clCxt, &pyrlk_no_image, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH); } } void cv::ocl::PyrLKOpticalFlow::dense(const oclMat &prevImg, const oclMat &nextImg, oclMat &u, oclMat &v, oclMat *err) { CV_Assert(prevImg.type() == CV_8UC1); CV_Assert(prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type()); CV_Assert(maxLevel >= 0); CV_Assert(winSize.width > 2 && winSize.height > 2); if (err) err->create(prevImg.size(), CV_32FC1); prevPyr_.resize(maxLevel + 1); nextPyr_.resize(maxLevel + 1); prevPyr_[0] = prevImg; //nextImg.convertTo(nextPyr_[0], CV_32F); convertTo(nextImg, nextPyr_[0], CV_32F); for (int level = 1; level <= maxLevel; ++level) { pyrDown_cus(prevPyr_[level - 1], prevPyr_[level]); pyrDown_cus(nextPyr_[level - 1], nextPyr_[level]); } ensureSizeIsEnough(prevImg.size(), CV_32FC1, uPyr_[0]); ensureSizeIsEnough(prevImg.size(), CV_32FC1, vPyr_[0]); ensureSizeIsEnough(prevImg.size(), CV_32FC1, uPyr_[1]); ensureSizeIsEnough(prevImg.size(), CV_32FC1, vPyr_[1]); //uPyr_[1].setTo(Scalar::all(0)); //vPyr_[1].setTo(Scalar::all(0)); setTo(uPyr_[1], Scalar::all(0)); setTo(vPyr_[1], Scalar::all(0)); Size winSize2i(winSize.width, winSize.height); int idx = 0; for (int level = maxLevel; level >= 0; level--) { int idx2 = (idx + 1) & 1; lkDense_run(prevPyr_[level], nextPyr_[level], uPyr_[idx], vPyr_[idx], uPyr_[idx2], vPyr_[idx2], level == 0 ? err : 0, winSize2i, iters); if (level > 0) idx = idx2; } //uPyr_[idx].copyTo(u); //vPyr_[idx].copyTo(v); copyTo(uPyr_[idx], u); copyTo(vPyr_[idx], v); clFinish((cl_command_queue)prevImg.clCxt->oclCommandQueue()); }