// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html #include "precomp.hpp" #include "opencl_kernels_core.hpp" #include "stat.hpp" /****************************************************************************************\ * norm * \****************************************************************************************/ namespace cv { namespace hal { extern const uchar popCountTable[256] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 }; static const uchar popCountTable2[] = { 0, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4 }; static const uchar popCountTable4[] = { 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }; int normHamming(const uchar* a, int n, int cellSize) { int output; CALL_HAL_RET(normHamming8u, cv_hal_normHamming8u, output, a, n, cellSize); if( cellSize == 1 ) return normHamming(a, n); const uchar* tab = 0; if( cellSize == 2 ) tab = popCountTable2; else if( cellSize == 4 ) tab = popCountTable4; else return -1; int i = 0; int result = 0; #if (CV_SIMD || CV_SIMD_SCALABLE) v_uint64 t = vx_setzero_u64(); if ( cellSize == 2) { v_uint16 mask = v_reinterpret_as_u16(vx_setall_u8(0x55)); for(; i <= n - VTraits::vlanes(); i += VTraits::vlanes()) { v_uint16 a0 = v_reinterpret_as_u16(vx_load(a + i)); t = v_add(t, v_popcount(v_reinterpret_as_u64(v_and(v_or(a0, v_shr<1>(a0)), mask)))); } } else // cellSize == 4 { v_uint16 mask = v_reinterpret_as_u16(vx_setall_u8(0x11)); for(; i <= n - VTraits::vlanes(); i += VTraits::vlanes()) { v_uint16 a0 = v_reinterpret_as_u16(vx_load(a + i)); v_uint16 a1 = v_or(a0, v_shr<2>(a0)); t = v_add(t, v_popcount(v_reinterpret_as_u64(v_and(v_or(a1, v_shr<1>(a1)), mask)))); } } result += (int)v_reduce_sum(t); vx_cleanup(); #elif CV_ENABLE_UNROLLED for( ; i <= n - 4; i += 4 ) result += tab[a[i]] + tab[a[i+1]] + tab[a[i+2]] + tab[a[i+3]]; #endif for( ; i < n; i++ ) result += tab[a[i]]; return result; } int normHamming(const uchar* a, const uchar* b, int n, int cellSize) { int output; CALL_HAL_RET(normHammingDiff8u, cv_hal_normHammingDiff8u, output, a, b, n, cellSize); if( cellSize == 1 ) return normHamming(a, b, n); const uchar* tab = 0; if( cellSize == 2 ) tab = popCountTable2; else if( cellSize == 4 ) tab = popCountTable4; else return -1; int i = 0; int result = 0; #if (CV_SIMD || CV_SIMD_SCALABLE) v_uint64 t = vx_setzero_u64(); if ( cellSize == 2) { v_uint16 mask = v_reinterpret_as_u16(vx_setall_u8(0x55)); for(; i <= n - VTraits::vlanes(); i += VTraits::vlanes()) { v_uint16 ab0 = v_reinterpret_as_u16(v_xor(vx_load(a + i), vx_load(b + i))); t = v_add(t, v_popcount(v_reinterpret_as_u64(v_and(v_or(ab0, v_shr<1>(ab0)), mask)))); } } else // cellSize == 4 { v_uint16 mask = v_reinterpret_as_u16(vx_setall_u8(0x11)); for(; i <= n - VTraits::vlanes(); i += VTraits::vlanes()) { v_uint16 ab0 = v_reinterpret_as_u16(v_xor(vx_load(a + i), vx_load(b + i))); v_uint16 ab1 = v_or(ab0, v_shr<2>(ab0)); t = v_add(t, v_popcount(v_reinterpret_as_u64(v_and(v_or(ab1, v_shr<1>(ab1)), mask)))); } } result += (int)v_reduce_sum(t); vx_cleanup(); #elif CV_ENABLE_UNROLLED for( ; i <= n - 4; i += 4 ) result += tab[a[i] ^ b[i]] + tab[a[i+1] ^ b[i+1]] + tab[a[i+2] ^ b[i+2]] + tab[a[i+3] ^ b[i+3]]; #endif for( ; i < n; i++ ) result += tab[a[i] ^ b[i]]; return result; } float normL2Sqr_(const float* a, const float* b, int n) { int j = 0; float d = 0.f; #if (CV_SIMD || CV_SIMD_SCALABLE) v_float32 v_d0 = vx_setzero_f32(), v_d1 = vx_setzero_f32(); v_float32 v_d2 = vx_setzero_f32(), v_d3 = vx_setzero_f32(); for (; j <= n - 4 * VTraits::vlanes(); j += 4 * VTraits::vlanes()) { v_float32 t0 = v_sub(vx_load(a + j), vx_load(b + j)); v_float32 t1 = v_sub(vx_load(a + j + VTraits::vlanes()), vx_load(b + j + VTraits::vlanes())); v_d0 = v_muladd(t0, t0, v_d0); v_float32 t2 = v_sub(vx_load(a + j + 2 * VTraits::vlanes()), vx_load(b + j + 2 * VTraits::vlanes())); v_d1 = v_muladd(t1, t1, v_d1); v_float32 t3 = v_sub(vx_load(a + j + 3 * VTraits::vlanes()), vx_load(b + j + 3 * VTraits::vlanes())); v_d2 = v_muladd(t2, t2, v_d2); v_d3 = v_muladd(t3, t3, v_d3); } d = v_reduce_sum(v_add(v_add(v_add(v_d0, v_d1), v_d2), v_d3)); #endif for( ; j < n; j++ ) { float t = a[j] - b[j]; d += t*t; } return d; } float normL1_(const float* a, const float* b, int n) { int j = 0; float d = 0.f; #if (CV_SIMD || CV_SIMD_SCALABLE) v_float32 v_d0 = vx_setzero_f32(), v_d1 = vx_setzero_f32(); v_float32 v_d2 = vx_setzero_f32(), v_d3 = vx_setzero_f32(); for (; j <= n - 4 * VTraits::vlanes(); j += 4 * VTraits::vlanes()) { v_d0 = v_add(v_d0, v_absdiff(vx_load(a + j), vx_load(b + j))); v_d1 = v_add(v_d1, v_absdiff(vx_load(a + j + VTraits::vlanes()), vx_load(b + j + VTraits::vlanes()))); v_d2 = v_add(v_d2, v_absdiff(vx_load(a + j + 2 * VTraits::vlanes()), vx_load(b + j + 2 * VTraits::vlanes()))); v_d3 = v_add(v_d3, v_absdiff(vx_load(a + j + 3 * VTraits::vlanes()), vx_load(b + j + 3 * VTraits::vlanes()))); } d = v_reduce_sum(v_add(v_add(v_add(v_d0, v_d1), v_d2), v_d3)); #endif for( ; j < n; j++ ) d += std::abs(a[j] - b[j]); return d; } int normL1_(const uchar* a, const uchar* b, int n) { int j = 0, d = 0; #if (CV_SIMD || CV_SIMD_SCALABLE) for (; j <= n - 4 * VTraits::vlanes(); j += 4 * VTraits::vlanes()) d += v_reduce_sad(vx_load(a + j), vx_load(b + j)) + v_reduce_sad(vx_load(a + j + VTraits::vlanes()), vx_load(b + j + VTraits::vlanes())) + v_reduce_sad(vx_load(a + j + 2 * VTraits::vlanes()), vx_load(b + j + 2 * VTraits::vlanes())) + v_reduce_sad(vx_load(a + j + 3 * VTraits::vlanes()), vx_load(b + j + 3 * VTraits::vlanes())); #endif for( ; j < n; j++ ) d += std::abs(a[j] - b[j]); return d; } } //cv::hal //================================================================================================== template int normInf_(const T* src, const uchar* mask, ST* _result, int len, int cn) { ST result = *_result; if( !mask ) { result = std::max(result, normInf(src, len*cn)); } else { for( int i = 0; i < len; i++, src += cn ) if( mask[i] ) { for( int k = 0; k < cn; k++ ) result = std::max(result, ST(cv_abs(src[k]))); } } *_result = result; return 0; } template int normL1_(const T* src, const uchar* mask, ST* _result, int len, int cn) { ST result = *_result; if( !mask ) { result += normL1(src, len*cn); } else { for( int i = 0; i < len; i++, src += cn ) if( mask[i] ) { for( int k = 0; k < cn; k++ ) result += cv_abs(src[k]); } } *_result = result; return 0; } template int normL2_(const T* src, const uchar* mask, ST* _result, int len, int cn) { ST result = *_result; if( !mask ) { result += normL2Sqr(src, len*cn); } else { for( int i = 0; i < len; i++, src += cn ) if( mask[i] ) { for( int k = 0; k < cn; k++ ) { T v = src[k]; result += (ST)v*v; } } } *_result = result; return 0; } template int normDiffInf_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn) { ST result = *_result; if( !mask ) { result = std::max(result, normInf(src1, src2, len*cn)); } else { for( int i = 0; i < len; i++, src1 += cn, src2 += cn ) if( mask[i] ) { for( int k = 0; k < cn; k++ ) result = std::max(result, (ST)std::abs(src1[k] - src2[k])); } } *_result = result; return 0; } template int normDiffL1_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn) { ST result = *_result; if( !mask ) { result += normL1(src1, src2, len*cn); } else { for( int i = 0; i < len; i++, src1 += cn, src2 += cn ) if( mask[i] ) { for( int k = 0; k < cn; k++ ) result += std::abs(src1[k] - src2[k]); } } *_result = result; return 0; } template int normDiffL2_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn) { ST result = *_result; if( !mask ) { result += normL2Sqr(src1, src2, len*cn); } else { for( int i = 0; i < len; i++, src1 += cn, src2 += cn ) if( mask[i] ) { for( int k = 0; k < cn; k++ ) { ST v = src1[k] - src2[k]; result += v*v; } } } *_result = result; return 0; } #define CV_DEF_NORM_FUNC(L, suffix, type, ntype) \ static int norm##L##_##suffix(const type* src, const uchar* mask, ntype* r, int len, int cn) \ { return norm##L##_(src, mask, r, len, cn); } \ static int normDiff##L##_##suffix(const type* src1, const type* src2, \ const uchar* mask, ntype* r, int len, int cn) \ { return normDiff##L##_(src1, src2, mask, r, (int)len, cn); } #define CV_DEF_NORM_ALL(suffix, type, inftype, l1type, l2type) \ CV_DEF_NORM_FUNC(Inf, suffix, type, inftype) \ CV_DEF_NORM_FUNC(L1, suffix, type, l1type) \ CV_DEF_NORM_FUNC(L2, suffix, type, l2type) CV_DEF_NORM_ALL(8u, uchar, int, int, int) CV_DEF_NORM_ALL(8s, schar, int, int, int) CV_DEF_NORM_ALL(16u, ushort, int, int, double) CV_DEF_NORM_ALL(16s, short, int, int, double) CV_DEF_NORM_ALL(32s, int, int, double, double) CV_DEF_NORM_ALL(32f, float, float, double, double) CV_DEF_NORM_ALL(64f, double, double, double, double) typedef int (*NormFunc)(const uchar*, const uchar*, uchar*, int, int); typedef int (*NormDiffFunc)(const uchar*, const uchar*, const uchar*, uchar*, int, int); static NormFunc getNormFunc(int normType, int depth) { static NormFunc normTab[3][8] = { { (NormFunc)GET_OPTIMIZED(normInf_8u), (NormFunc)GET_OPTIMIZED(normInf_8s), (NormFunc)GET_OPTIMIZED(normInf_16u), (NormFunc)GET_OPTIMIZED(normInf_16s), (NormFunc)GET_OPTIMIZED(normInf_32s), (NormFunc)GET_OPTIMIZED(normInf_32f), (NormFunc)normInf_64f, 0 }, { (NormFunc)GET_OPTIMIZED(normL1_8u), (NormFunc)GET_OPTIMIZED(normL1_8s), (NormFunc)GET_OPTIMIZED(normL1_16u), (NormFunc)GET_OPTIMIZED(normL1_16s), (NormFunc)GET_OPTIMIZED(normL1_32s), (NormFunc)GET_OPTIMIZED(normL1_32f), (NormFunc)normL1_64f, 0 }, { (NormFunc)GET_OPTIMIZED(normL2_8u), (NormFunc)GET_OPTIMIZED(normL2_8s), (NormFunc)GET_OPTIMIZED(normL2_16u), (NormFunc)GET_OPTIMIZED(normL2_16s), (NormFunc)GET_OPTIMIZED(normL2_32s), (NormFunc)GET_OPTIMIZED(normL2_32f), (NormFunc)normL2_64f, 0 } }; return normTab[normType][depth]; } static NormDiffFunc getNormDiffFunc(int normType, int depth) { static NormDiffFunc normDiffTab[3][8] = { { (NormDiffFunc)GET_OPTIMIZED(normDiffInf_8u), (NormDiffFunc)normDiffInf_8s, (NormDiffFunc)normDiffInf_16u, (NormDiffFunc)normDiffInf_16s, (NormDiffFunc)normDiffInf_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffInf_32f), (NormDiffFunc)normDiffInf_64f, 0 }, { (NormDiffFunc)GET_OPTIMIZED(normDiffL1_8u), (NormDiffFunc)normDiffL1_8s, (NormDiffFunc)normDiffL1_16u, (NormDiffFunc)normDiffL1_16s, (NormDiffFunc)normDiffL1_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffL1_32f), (NormDiffFunc)normDiffL1_64f, 0 }, { (NormDiffFunc)GET_OPTIMIZED(normDiffL2_8u), (NormDiffFunc)normDiffL2_8s, (NormDiffFunc)normDiffL2_16u, (NormDiffFunc)normDiffL2_16s, (NormDiffFunc)normDiffL2_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffL2_32f), (NormDiffFunc)normDiffL2_64f, 0 } }; return normDiffTab[normType][depth]; } #ifdef HAVE_OPENCL static bool ocl_norm( InputArray _src, int normType, InputArray _mask, double & result ) { const ocl::Device & d = ocl::Device::getDefault(); #ifdef __ANDROID__ if (d.isNVidia()) return false; #endif const int cn = _src.channels(); if (cn > 4) return false; int type = _src.type(), depth = CV_MAT_DEPTH(type); bool doubleSupport = d.doubleFPConfig() > 0, haveMask = _mask.kind() != _InputArray::NONE; if (depth >= CV_16F) return false; // TODO: support FP16 if ( !(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR) || (!doubleSupport && depth == CV_64F)) return false; UMat src = _src.getUMat(); if (normType == NORM_INF) { if (!ocl_minMaxIdx(_src, NULL, &result, NULL, NULL, _mask, std::max(depth, CV_32S), depth != CV_8U && depth != CV_16U)) return false; } else if (normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR) { Scalar sc; bool unstype = depth == CV_8U || depth == CV_16U; if ( !ocl_sum(haveMask ? src : src.reshape(1), sc, normType == NORM_L2 || normType == NORM_L2SQR ? OCL_OP_SUM_SQR : (unstype ? OCL_OP_SUM : OCL_OP_SUM_ABS), _mask) ) return false; double s = 0.0; for (int i = 0; i < (haveMask ? cn : 1); ++i) s += sc[i]; result = normType == NORM_L1 || normType == NORM_L2SQR ? s : std::sqrt(s); } return true; } #endif #ifdef HAVE_IPP static bool ipp_norm(Mat &src, int normType, Mat &mask, double &result) { CV_INSTRUMENT_REGION_IPP(); #if IPP_VERSION_X100 >= 700 size_t total_size = src.total(); int rows = src.size[0], cols = rows ? (int)(total_size/rows) : 0; if( (src.dims == 2 || (src.isContinuous() && mask.isContinuous())) && cols > 0 && (size_t)rows*cols == total_size ) { if( !mask.empty() ) { IppiSize sz = { cols, rows }; int type = src.type(); typedef IppStatus (CV_STDCALL* ippiMaskNormFuncC1)(const void *, int, const void *, int, IppiSize, Ipp64f *); ippiMaskNormFuncC1 ippiNorm_C1MR = normType == NORM_INF ? (type == CV_8UC1 ? (ippiMaskNormFuncC1)ippiNorm_Inf_8u_C1MR : type == CV_16UC1 ? (ippiMaskNormFuncC1)ippiNorm_Inf_16u_C1MR : type == CV_32FC1 ? (ippiMaskNormFuncC1)ippiNorm_Inf_32f_C1MR : 0) : normType == NORM_L1 ? (type == CV_8UC1 ? (ippiMaskNormFuncC1)ippiNorm_L1_8u_C1MR : type == CV_16UC1 ? (ippiMaskNormFuncC1)ippiNorm_L1_16u_C1MR : type == CV_32FC1 ? (ippiMaskNormFuncC1)ippiNorm_L1_32f_C1MR : 0) : normType == NORM_L2 || normType == NORM_L2SQR ? (type == CV_8UC1 ? (ippiMaskNormFuncC1)ippiNorm_L2_8u_C1MR : type == CV_16UC1 ? (ippiMaskNormFuncC1)ippiNorm_L2_16u_C1MR : type == CV_32FC1 ? (ippiMaskNormFuncC1)ippiNorm_L2_32f_C1MR : 0) : 0; if( ippiNorm_C1MR ) { Ipp64f norm; if( CV_INSTRUMENT_FUN_IPP(ippiNorm_C1MR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, &norm) >= 0 ) { result = (normType == NORM_L2SQR ? (double)(norm * norm) : (double)norm); return true; } } typedef IppStatus (CV_STDCALL* ippiMaskNormFuncC3)(const void *, int, const void *, int, IppiSize, int, Ipp64f *); ippiMaskNormFuncC3 ippiNorm_C3CMR = normType == NORM_INF ? (type == CV_8UC3 ? (ippiMaskNormFuncC3)ippiNorm_Inf_8u_C3CMR : type == CV_16UC3 ? (ippiMaskNormFuncC3)ippiNorm_Inf_16u_C3CMR : type == CV_32FC3 ? (ippiMaskNormFuncC3)ippiNorm_Inf_32f_C3CMR : 0) : normType == NORM_L1 ? (type == CV_8UC3 ? (ippiMaskNormFuncC3)ippiNorm_L1_8u_C3CMR : type == CV_16UC3 ? (ippiMaskNormFuncC3)ippiNorm_L1_16u_C3CMR : type == CV_32FC3 ? (ippiMaskNormFuncC3)ippiNorm_L1_32f_C3CMR : 0) : normType == NORM_L2 || normType == NORM_L2SQR ? (type == CV_8UC3 ? (ippiMaskNormFuncC3)ippiNorm_L2_8u_C3CMR : type == CV_16UC3 ? (ippiMaskNormFuncC3)ippiNorm_L2_16u_C3CMR : type == CV_32FC3 ? (ippiMaskNormFuncC3)ippiNorm_L2_32f_C3CMR : 0) : 0; if( ippiNorm_C3CMR ) { Ipp64f norm1, norm2, norm3; if( CV_INSTRUMENT_FUN_IPP(ippiNorm_C3CMR, src.data, (int)src.step[0], mask.data, (int)mask.step[0], sz, 1, &norm1) >= 0 && CV_INSTRUMENT_FUN_IPP(ippiNorm_C3CMR, src.data, (int)src.step[0], mask.data, (int)mask.step[0], sz, 2, &norm2) >= 0 && CV_INSTRUMENT_FUN_IPP(ippiNorm_C3CMR, src.data, (int)src.step[0], mask.data, (int)mask.step[0], sz, 3, &norm3) >= 0) { Ipp64f norm = normType == NORM_INF ? std::max(std::max(norm1, norm2), norm3) : normType == NORM_L1 ? norm1 + norm2 + norm3 : normType == NORM_L2 || normType == NORM_L2SQR ? std::sqrt(norm1 * norm1 + norm2 * norm2 + norm3 * norm3) : 0; result = (normType == NORM_L2SQR ? (double)(norm * norm) : (double)norm); return true; } } } else { IppiSize sz = { cols*src.channels(), rows }; int type = src.depth(); typedef IppStatus (CV_STDCALL* ippiNormFuncHint)(const void *, int, IppiSize, Ipp64f *, IppHintAlgorithm hint); typedef IppStatus (CV_STDCALL* ippiNormFuncNoHint)(const void *, int, IppiSize, Ipp64f *); ippiNormFuncHint ippiNormHint = normType == NORM_L1 ? (type == CV_32FC1 ? (ippiNormFuncHint)ippiNorm_L1_32f_C1R : 0) : normType == NORM_L2 || normType == NORM_L2SQR ? (type == CV_32FC1 ? (ippiNormFuncHint)ippiNorm_L2_32f_C1R : 0) : 0; ippiNormFuncNoHint ippiNorm = normType == NORM_INF ? (type == CV_8UC1 ? (ippiNormFuncNoHint)ippiNorm_Inf_8u_C1R : type == CV_16UC1 ? (ippiNormFuncNoHint)ippiNorm_Inf_16u_C1R : type == CV_16SC1 ? (ippiNormFuncNoHint)ippiNorm_Inf_16s_C1R : type == CV_32FC1 ? (ippiNormFuncNoHint)ippiNorm_Inf_32f_C1R : 0) : normType == NORM_L1 ? (type == CV_8UC1 ? (ippiNormFuncNoHint)ippiNorm_L1_8u_C1R : type == CV_16UC1 ? (ippiNormFuncNoHint)ippiNorm_L1_16u_C1R : type == CV_16SC1 ? (ippiNormFuncNoHint)ippiNorm_L1_16s_C1R : 0) : normType == NORM_L2 || normType == NORM_L2SQR ? (type == CV_8UC1 ? (ippiNormFuncNoHint)ippiNorm_L2_8u_C1R : type == CV_16UC1 ? (ippiNormFuncNoHint)ippiNorm_L2_16u_C1R : type == CV_16SC1 ? (ippiNormFuncNoHint)ippiNorm_L2_16s_C1R : 0) : 0; if( ippiNormHint || ippiNorm ) { Ipp64f norm; IppStatus ret = ippiNormHint ? CV_INSTRUMENT_FUN_IPP(ippiNormHint, src.ptr(), (int)src.step[0], sz, &norm, ippAlgHintAccurate) : CV_INSTRUMENT_FUN_IPP(ippiNorm, src.ptr(), (int)src.step[0], sz, &norm); if( ret >= 0 ) { result = (normType == NORM_L2SQR) ? norm * norm : norm; return true; } } } } #else CV_UNUSED(src); CV_UNUSED(normType); CV_UNUSED(mask); CV_UNUSED(result); #endif return false; } // ipp_norm() #endif // HAVE_IPP double norm( InputArray _src, int normType, InputArray _mask ) { CV_INSTRUMENT_REGION(); normType &= NORM_TYPE_MASK; CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR || ((normType == NORM_HAMMING || normType == NORM_HAMMING2) && _src.type() == CV_8U) ); #if defined HAVE_OPENCL || defined HAVE_IPP double _result = 0; #endif #ifdef HAVE_OPENCL CV_OCL_RUN_(OCL_PERFORMANCE_CHECK(_src.isUMat()) && _src.dims() <= 2, ocl_norm(_src, normType, _mask, _result), _result) #endif Mat src = _src.getMat(), mask = _mask.getMat(); CV_IPP_RUN(IPP_VERSION_X100 >= 700, ipp_norm(src, normType, mask, _result), _result); int depth = src.depth(), cn = src.channels(); if( src.isContinuous() && mask.empty() ) { size_t len = src.total()*cn; if( len == (size_t)(int)len ) { if( depth == CV_32F ) { const float* data = src.ptr(); if( normType == NORM_L2 ) { double result = 0; GET_OPTIMIZED(normL2_32f)(data, 0, &result, (int)len, 1); return std::sqrt(result); } if( normType == NORM_L2SQR ) { double result = 0; GET_OPTIMIZED(normL2_32f)(data, 0, &result, (int)len, 1); return result; } if( normType == NORM_L1 ) { double result = 0; GET_OPTIMIZED(normL1_32f)(data, 0, &result, (int)len, 1); return result; } if( normType == NORM_INF ) { float result = 0; GET_OPTIMIZED(normInf_32f)(data, 0, &result, (int)len, 1); return result; } } if( depth == CV_8U ) { const uchar* data = src.ptr(); if( normType == NORM_HAMMING ) { return hal::normHamming(data, (int)len); } if( normType == NORM_HAMMING2 ) { return hal::normHamming(data, (int)len, 2); } } } } CV_Assert( mask.empty() || mask.type() == CV_8U ); if( normType == NORM_HAMMING || normType == NORM_HAMMING2 ) { if( !mask.empty() ) { Mat temp; bitwise_and(src, mask, temp); return norm(temp, normType); } int cellSize = normType == NORM_HAMMING ? 1 : 2; const Mat* arrays[] = {&src, 0}; uchar* ptrs[1] = {}; NAryMatIterator it(arrays, ptrs); int total = (int)it.size; int result = 0; for( size_t i = 0; i < it.nplanes; i++, ++it ) { result += hal::normHamming(ptrs[0], total, cellSize); } return result; } NormFunc func = getNormFunc(normType >> 1, depth == CV_16F ? CV_32F : depth); CV_Assert( func != 0 ); const Mat* arrays[] = {&src, &mask, 0}; uchar* ptrs[2] = {}; union { double d; int i; float f; } result; result.d = 0; NAryMatIterator it(arrays, ptrs); CV_CheckLT((size_t)it.size, (size_t)INT_MAX, ""); if ((normType == NORM_L1 && depth <= CV_16S) || ((normType == NORM_L2 || normType == NORM_L2SQR) && depth <= CV_8S)) { // special case to handle "integer" overflow in accumulator const size_t esz = src.elemSize(); const int total = (int)it.size; const int intSumBlockSize = (normType == NORM_L1 && depth <= CV_8S ? (1 << 23) : (1 << 15))/cn; const int blockSize = std::min(total, intSumBlockSize); int isum = 0; int count = 0; for (size_t i = 0; i < it.nplanes; i++, ++it) { for (int j = 0; j < total; j += blockSize) { int bsz = std::min(total - j, blockSize); func(ptrs[0], ptrs[1], (uchar*)&isum, bsz, cn); count += bsz; if (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) { result.d += isum; isum = 0; count = 0; } ptrs[0] += bsz*esz; if (ptrs[1]) ptrs[1] += bsz; } } } else if (depth == CV_16F) { const size_t esz = src.elemSize(); const int total = (int)it.size; const int blockSize = std::min(total, divUp(1024, cn)); AutoBuffer fltbuf(blockSize * cn); float* data0 = fltbuf.data(); for (size_t i = 0; i < it.nplanes; i++, ++it) { for (int j = 0; j < total; j += blockSize) { int bsz = std::min(total - j, blockSize); hal::cvt16f32f((const hfloat*)ptrs[0], data0, bsz * cn); func((uchar*)data0, ptrs[1], (uchar*)&result.f, bsz, cn); ptrs[0] += bsz*esz; if (ptrs[1]) ptrs[1] += bsz; } } } else { // generic implementation for (size_t i = 0; i < it.nplanes; i++, ++it) { func(ptrs[0], ptrs[1], (uchar*)&result, (int)it.size, cn); } } if( normType == NORM_INF ) { if(depth == CV_64F) return result.d; else if (depth == CV_32F || depth == CV_16F) return result.f; else return result.i; } else if( normType == NORM_L2 ) return std::sqrt(result.d); return result.d; } //================================================================================================== #ifdef HAVE_OPENCL static bool ocl_norm( InputArray _src1, InputArray _src2, int normType, InputArray _mask, double & result ) { #ifdef __ANDROID__ if (ocl::Device::getDefault().isNVidia()) return false; #endif Scalar sc1, sc2; int cn = _src1.channels(); if (cn > 4) return false; int type = _src1.type(), depth = CV_MAT_DEPTH(type); bool relative = (normType & NORM_RELATIVE) != 0; normType &= ~NORM_RELATIVE; bool normsum = normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR; #ifdef __APPLE__ if(normType == NORM_L1 && type == CV_16UC3 && !_mask.empty()) return false; #endif if (normsum) { if (!ocl_sum(_src1, sc1, normType == NORM_L2 || normType == NORM_L2SQR ? OCL_OP_SUM_SQR : OCL_OP_SUM, _mask, _src2, relative, sc2)) return false; } else { if (!ocl_minMaxIdx(_src1, NULL, &sc1[0], NULL, NULL, _mask, std::max(CV_32S, depth), false, _src2, relative ? &sc2[0] : NULL)) return false; cn = 1; } double s2 = 0; for (int i = 0; i < cn; ++i) { result += sc1[i]; if (relative) s2 += sc2[i]; } if (normType == NORM_L2) { result = std::sqrt(result); if (relative) s2 = std::sqrt(s2); } if (relative) result /= (s2 + DBL_EPSILON); return true; } // ocl_norm() #endif // HAVE_OPENCL #ifdef HAVE_IPP static bool ipp_norm(InputArray _src1, InputArray _src2, int normType, InputArray _mask, double &result) { CV_INSTRUMENT_REGION_IPP(); #if IPP_VERSION_X100 >= 700 Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat(); if( normType & CV_RELATIVE ) { normType &= NORM_TYPE_MASK; size_t total_size = src1.total(); int rows = src1.size[0], cols = rows ? (int)(total_size/rows) : 0; if( (src1.dims == 2 || (src1.isContinuous() && src2.isContinuous() && mask.isContinuous())) && cols > 0 && (size_t)rows*cols == total_size ) { if( !mask.empty() ) { IppiSize sz = { cols, rows }; int type = src1.type(); typedef IppStatus (CV_STDCALL* ippiMaskNormDiffFuncC1)(const void *, int, const void *, int, const void *, int, IppiSize, Ipp64f *); ippiMaskNormDiffFuncC1 ippiNormRel_C1MR = normType == NORM_INF ? (type == CV_8UC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_Inf_8u_C1MR : type == CV_16UC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_Inf_16u_C1MR : type == CV_32FC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_Inf_32f_C1MR : 0) : normType == NORM_L1 ? (type == CV_8UC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_L1_8u_C1MR : type == CV_16UC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_L1_16u_C1MR : type == CV_32FC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_L1_32f_C1MR : 0) : normType == NORM_L2 || normType == NORM_L2SQR ? (type == CV_8UC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_L2_8u_C1MR : type == CV_16UC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_L2_16u_C1MR : type == CV_32FC1 ? (ippiMaskNormDiffFuncC1)ippiNormRel_L2_32f_C1MR : 0) : 0; if( ippiNormRel_C1MR ) { Ipp64f norm; if( CV_INSTRUMENT_FUN_IPP(ippiNormRel_C1MR, src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], mask.ptr(), (int)mask.step[0], sz, &norm) >= 0 ) { result = (normType == NORM_L2SQR ? (double)(norm * norm) : (double)norm); return true; } } } else { IppiSize sz = { cols*src1.channels(), rows }; int type = src1.depth(); typedef IppStatus (CV_STDCALL* ippiNormRelFuncHint)(const void *, int, const void *, int, IppiSize, Ipp64f *, IppHintAlgorithm hint); typedef IppStatus (CV_STDCALL* ippiNormRelFuncNoHint)(const void *, int, const void *, int, IppiSize, Ipp64f *); ippiNormRelFuncHint ippiNormRelHint = normType == NORM_L1 ? (type == CV_32F ? (ippiNormRelFuncHint)ippiNormRel_L1_32f_C1R : 0) : normType == NORM_L2 || normType == NORM_L2SQR ? (type == CV_32F ? (ippiNormRelFuncHint)ippiNormRel_L2_32f_C1R : 0) : 0; ippiNormRelFuncNoHint ippiNormRel = normType == NORM_INF ? (type == CV_8U ? (ippiNormRelFuncNoHint)ippiNormRel_Inf_8u_C1R : type == CV_16U ? (ippiNormRelFuncNoHint)ippiNormRel_Inf_16u_C1R : type == CV_16S ? (ippiNormRelFuncNoHint)ippiNormRel_Inf_16s_C1R : type == CV_32F ? (ippiNormRelFuncNoHint)ippiNormRel_Inf_32f_C1R : 0) : normType == NORM_L1 ? (type == CV_8U ? (ippiNormRelFuncNoHint)ippiNormRel_L1_8u_C1R : type == CV_16U ? (ippiNormRelFuncNoHint)ippiNormRel_L1_16u_C1R : type == CV_16S ? (ippiNormRelFuncNoHint)ippiNormRel_L1_16s_C1R : 0) : normType == NORM_L2 || normType == NORM_L2SQR ? (type == CV_8U ? (ippiNormRelFuncNoHint)ippiNormRel_L2_8u_C1R : type == CV_16U ? (ippiNormRelFuncNoHint)ippiNormRel_L2_16u_C1R : type == CV_16S ? (ippiNormRelFuncNoHint)ippiNormRel_L2_16s_C1R : 0) : 0; if( ippiNormRelHint || ippiNormRel ) { Ipp64f norm; IppStatus ret = ippiNormRelHint ? CV_INSTRUMENT_FUN_IPP(ippiNormRelHint, src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], sz, &norm, ippAlgHintAccurate) : CV_INSTRUMENT_FUN_IPP(ippiNormRel, src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], sz, &norm); if( ret >= 0 ) { result = (normType == NORM_L2SQR) ? norm * norm : norm; return true; } } } } return false; } normType &= NORM_TYPE_MASK; size_t total_size = src1.total(); int rows = src1.size[0], cols = rows ? (int)(total_size/rows) : 0; if( (src1.dims == 2 || (src1.isContinuous() && src2.isContinuous() && mask.isContinuous())) && cols > 0 && (size_t)rows*cols == total_size ) { if( !mask.empty() ) { IppiSize sz = { cols, rows }; int type = src1.type(); typedef IppStatus (CV_STDCALL* ippiMaskNormDiffFuncC1)(const void *, int, const void *, int, const void *, int, IppiSize, Ipp64f *); ippiMaskNormDiffFuncC1 ippiNormDiff_C1MR = normType == NORM_INF ? (type == CV_8UC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_Inf_8u_C1MR : type == CV_16UC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_Inf_16u_C1MR : type == CV_32FC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_Inf_32f_C1MR : 0) : normType == NORM_L1 ? (type == CV_8UC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_L1_8u_C1MR : type == CV_16UC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_L1_16u_C1MR : type == CV_32FC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_L1_32f_C1MR : 0) : normType == NORM_L2 || normType == NORM_L2SQR ? (type == CV_8UC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_L2_8u_C1MR : type == CV_16UC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_L2_16u_C1MR : type == CV_32FC1 ? (ippiMaskNormDiffFuncC1)ippiNormDiff_L2_32f_C1MR : 0) : 0; if( ippiNormDiff_C1MR ) { Ipp64f norm; if( CV_INSTRUMENT_FUN_IPP(ippiNormDiff_C1MR, src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], mask.ptr(), (int)mask.step[0], sz, &norm) >= 0 ) { result = (normType == NORM_L2SQR ? (double)(norm * norm) : (double)norm); return true; } } typedef IppStatus (CV_STDCALL* ippiMaskNormDiffFuncC3)(const void *, int, const void *, int, const void *, int, IppiSize, int, Ipp64f *); ippiMaskNormDiffFuncC3 ippiNormDiff_C3CMR = normType == NORM_INF ? (type == CV_8UC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_Inf_8u_C3CMR : type == CV_16UC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_Inf_16u_C3CMR : type == CV_32FC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_Inf_32f_C3CMR : 0) : normType == NORM_L1 ? (type == CV_8UC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_L1_8u_C3CMR : type == CV_16UC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_L1_16u_C3CMR : type == CV_32FC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_L1_32f_C3CMR : 0) : normType == NORM_L2 || normType == NORM_L2SQR ? (type == CV_8UC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_L2_8u_C3CMR : type == CV_16UC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_L2_16u_C3CMR : type == CV_32FC3 ? (ippiMaskNormDiffFuncC3)ippiNormDiff_L2_32f_C3CMR : 0) : 0; if( ippiNormDiff_C3CMR ) { Ipp64f norm1, norm2, norm3; if( CV_INSTRUMENT_FUN_IPP(ippiNormDiff_C3CMR, src1.data, (int)src1.step[0], src2.data, (int)src2.step[0], mask.data, (int)mask.step[0], sz, 1, &norm1) >= 0 && CV_INSTRUMENT_FUN_IPP(ippiNormDiff_C3CMR, src1.data, (int)src1.step[0], src2.data, (int)src2.step[0], mask.data, (int)mask.step[0], sz, 2, &norm2) >= 0 && CV_INSTRUMENT_FUN_IPP(ippiNormDiff_C3CMR, src1.data, (int)src1.step[0], src2.data, (int)src2.step[0], mask.data, (int)mask.step[0], sz, 3, &norm3) >= 0) { Ipp64f norm = normType == NORM_INF ? std::max(std::max(norm1, norm2), norm3) : normType == NORM_L1 ? norm1 + norm2 + norm3 : normType == NORM_L2 || normType == NORM_L2SQR ? std::sqrt(norm1 * norm1 + norm2 * norm2 + norm3 * norm3) : 0; result = (normType == NORM_L2SQR ? (double)(norm * norm) : (double)norm); return true; } } } else { IppiSize sz = { cols*src1.channels(), rows }; int type = src1.depth(); typedef IppStatus (CV_STDCALL* ippiNormDiffFuncHint)(const void *, int, const void *, int, IppiSize, Ipp64f *, IppHintAlgorithm hint); typedef IppStatus (CV_STDCALL* ippiNormDiffFuncNoHint)(const void *, int, const void *, int, IppiSize, Ipp64f *); ippiNormDiffFuncHint ippiNormDiffHint = normType == NORM_L1 ? (type == CV_32F ? (ippiNormDiffFuncHint)ippiNormDiff_L1_32f_C1R : 0) : normType == NORM_L2 || normType == NORM_L2SQR ? (type == CV_32F ? (ippiNormDiffFuncHint)ippiNormDiff_L2_32f_C1R : 0) : 0; ippiNormDiffFuncNoHint ippiNormDiff = normType == NORM_INF ? (type == CV_8U ? (ippiNormDiffFuncNoHint)ippiNormDiff_Inf_8u_C1R : type == CV_16U ? (ippiNormDiffFuncNoHint)ippiNormDiff_Inf_16u_C1R : type == CV_16S ? (ippiNormDiffFuncNoHint)ippiNormDiff_Inf_16s_C1R : type == CV_32F ? (ippiNormDiffFuncNoHint)ippiNormDiff_Inf_32f_C1R : 0) : normType == NORM_L1 ? (type == CV_8U ? (ippiNormDiffFuncNoHint)ippiNormDiff_L1_8u_C1R : type == CV_16U ? (ippiNormDiffFuncNoHint)ippiNormDiff_L1_16u_C1R : type == CV_16S ? (ippiNormDiffFuncNoHint)ippiNormDiff_L1_16s_C1R : 0) : normType == NORM_L2 || normType == NORM_L2SQR ? (type == CV_8U ? (ippiNormDiffFuncNoHint)ippiNormDiff_L2_8u_C1R : type == CV_16U ? (ippiNormDiffFuncNoHint)ippiNormDiff_L2_16u_C1R : type == CV_16S ? (ippiNormDiffFuncNoHint)ippiNormDiff_L2_16s_C1R : 0) : 0; if( ippiNormDiffHint || ippiNormDiff ) { Ipp64f norm; IppStatus ret = ippiNormDiffHint ? CV_INSTRUMENT_FUN_IPP(ippiNormDiffHint, src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], sz, &norm, ippAlgHintAccurate) : CV_INSTRUMENT_FUN_IPP(ippiNormDiff, src1.ptr(), (int)src1.step[0], src2.ptr(), (int)src2.step[0], sz, &norm); if( ret >= 0 ) { result = (normType == NORM_L2SQR) ? norm * norm : norm; return true; } } } } #else CV_UNUSED(_src1); CV_UNUSED(_src2); CV_UNUSED(normType); CV_UNUSED(_mask); CV_UNUSED(result); #endif return false; } // ipp_norm #endif // HAVE_IPP double norm( InputArray _src1, InputArray _src2, int normType, InputArray _mask ) { CV_INSTRUMENT_REGION(); CV_CheckTypeEQ(_src1.type(), _src2.type(), "Input type mismatch"); CV_Assert(_src1.sameSize(_src2)); #if defined HAVE_OPENCL || defined HAVE_IPP double _result = 0; #endif #ifdef HAVE_OPENCL CV_OCL_RUN_(OCL_PERFORMANCE_CHECK(_src1.isUMat()), ocl_norm(_src1, _src2, normType, _mask, _result), _result) #endif CV_IPP_RUN(IPP_VERSION_X100 >= 700, ipp_norm(_src1, _src2, normType, _mask, _result), _result); if( normType & CV_RELATIVE ) { return norm(_src1, _src2, normType & ~CV_RELATIVE, _mask)/(norm(_src2, normType, _mask) + DBL_EPSILON); } Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat(); int depth = src1.depth(), cn = src1.channels(); normType &= 7; CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR || ((normType == NORM_HAMMING || normType == NORM_HAMMING2) && src1.type() == CV_8U) ); if( src1.isContinuous() && src2.isContinuous() && mask.empty() ) { size_t len = src1.total()*src1.channels(); if( len == (size_t)(int)len ) { if( src1.depth() == CV_32F ) { const float* data1 = src1.ptr(); const float* data2 = src2.ptr(); if( normType == NORM_L2 ) { double result = 0; GET_OPTIMIZED(normDiffL2_32f)(data1, data2, 0, &result, (int)len, 1); return std::sqrt(result); } if( normType == NORM_L2SQR ) { double result = 0; GET_OPTIMIZED(normDiffL2_32f)(data1, data2, 0, &result, (int)len, 1); return result; } if( normType == NORM_L1 ) { double result = 0; GET_OPTIMIZED(normDiffL1_32f)(data1, data2, 0, &result, (int)len, 1); return result; } if( normType == NORM_INF ) { float result = 0; GET_OPTIMIZED(normDiffInf_32f)(data1, data2, 0, &result, (int)len, 1); return result; } } } } CV_Assert( mask.empty() || mask.type() == CV_8U ); if( normType == NORM_HAMMING || normType == NORM_HAMMING2 ) { if( !mask.empty() ) { Mat temp; bitwise_xor(src1, src2, temp); bitwise_and(temp, mask, temp); return norm(temp, normType); } int cellSize = normType == NORM_HAMMING ? 1 : 2; const Mat* arrays[] = {&src1, &src2, 0}; uchar* ptrs[2] = {}; NAryMatIterator it(arrays, ptrs); int total = (int)it.size; int result = 0; for( size_t i = 0; i < it.nplanes; i++, ++it ) { result += hal::normHamming(ptrs[0], ptrs[1], total, cellSize); } return result; } NormDiffFunc func = getNormDiffFunc(normType >> 1, depth == CV_16F ? CV_32F : depth); CV_Assert( func != 0 ); const Mat* arrays[] = {&src1, &src2, &mask, 0}; uchar* ptrs[3] = {}; union { double d; float f; int i; unsigned u; } result; result.d = 0; NAryMatIterator it(arrays, ptrs); CV_CheckLT((size_t)it.size, (size_t)INT_MAX, ""); if ((normType == NORM_L1 && depth <= CV_16S) || ((normType == NORM_L2 || normType == NORM_L2SQR) && depth <= CV_8S)) { // special case to handle "integer" overflow in accumulator const size_t esz = src1.elemSize(); const int total = (int)it.size; const int intSumBlockSize = (normType == NORM_L1 && depth <= CV_8S ? (1 << 23) : (1 << 15))/cn; const int blockSize = std::min(total, intSumBlockSize); int isum = 0; int count = 0; for (size_t i = 0; i < it.nplanes; i++, ++it) { for (int j = 0; j < total; j += blockSize) { int bsz = std::min(total - j, blockSize); func(ptrs[0], ptrs[1], ptrs[2], (uchar*)&isum, bsz, cn); count += bsz; if (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) { result.d += isum; isum = 0; count = 0; } ptrs[0] += bsz*esz; ptrs[1] += bsz*esz; if (ptrs[2]) ptrs[2] += bsz; } } } else if (depth == CV_16F) { const size_t esz = src1.elemSize(); const int total = (int)it.size; const int blockSize = std::min(total, divUp(512, cn)); AutoBuffer fltbuf(blockSize * cn * 2); float* data0 = fltbuf.data(); float* data1 = fltbuf.data() + blockSize * cn; for (size_t i = 0; i < it.nplanes; i++, ++it) { for (int j = 0; j < total; j += blockSize) { int bsz = std::min(total - j, blockSize); hal::cvt16f32f((const hfloat*)ptrs[0], data0, bsz * cn); hal::cvt16f32f((const hfloat*)ptrs[1], data1, bsz * cn); func((uchar*)data0, (uchar*)data1, ptrs[2], (uchar*)&result.f, bsz, cn); ptrs[0] += bsz*esz; ptrs[1] += bsz*esz; if (ptrs[2]) ptrs[2] += bsz; } } } else { // generic implementation for (size_t i = 0; i < it.nplanes; i++, ++it) { func(ptrs[0], ptrs[1], ptrs[2], (uchar*)&result, (int)it.size, cn); } } if( normType == NORM_INF ) { if (depth == CV_64F) return result.d; else if (depth == CV_32F || depth == CV_16F) return result.f; else return result.u; } else if( normType == NORM_L2 ) return std::sqrt(result.d); return result.d; } cv::Hamming::ResultType Hamming::operator()( const unsigned char* a, const unsigned char* b, int size ) const { return cv::hal::normHamming(a, b, size); } double PSNR(InputArray _src1, InputArray _src2, double R) { CV_INSTRUMENT_REGION(); //Input arrays must have depth CV_8U CV_Assert( _src1.type() == _src2.type() ); double diff = std::sqrt(norm(_src1, _src2, NORM_L2SQR)/(_src1.total()*_src1.channels())); return 20*log10(R/(diff+DBL_EPSILON)); } #ifdef HAVE_OPENCL static bool ocl_normalize( InputArray _src, InputOutputArray _dst, InputArray _mask, int dtype, double scale, double delta ) { UMat src = _src.getUMat(); if( _mask.empty() ) src.convertTo( _dst, dtype, scale, delta ); else if (src.channels() <= 4) { const ocl::Device & dev = ocl::Device::getDefault(); int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype), ddepth = CV_MAT_DEPTH(dtype), wdepth = std::max(CV_32F, std::max(sdepth, ddepth)), rowsPerWI = dev.isIntel() ? 4 : 1; float fscale = static_cast(scale), fdelta = static_cast(delta); bool haveScale = std::fabs(scale - 1) > DBL_EPSILON, haveZeroScale = !(std::fabs(scale) > DBL_EPSILON), haveDelta = std::fabs(delta) > DBL_EPSILON, doubleSupport = dev.doubleFPConfig() > 0; if (!haveScale && !haveDelta && stype == dtype) { _src.copyTo(_dst, _mask); return true; } if (haveZeroScale) { _dst.setTo(Scalar(delta), _mask); return true; } if ((sdepth == CV_64F || ddepth == CV_64F) && !doubleSupport) return false; char cvt[2][50]; String opts = format("-D srcT=%s -D dstT=%s -D convertToWT=%s -D cn=%d -D rowsPerWI=%d" " -D convertToDT=%s -D workT=%s%s%s%s -D srcT1=%s -D dstT1=%s", ocl::typeToStr(stype), ocl::typeToStr(dtype), ocl::convertTypeStr(sdepth, wdepth, cn, cvt[0], sizeof(cvt[0])), cn, rowsPerWI, ocl::convertTypeStr(wdepth, ddepth, cn, cvt[1], sizeof(cvt[1])), ocl::typeToStr(CV_MAKE_TYPE(wdepth, cn)), doubleSupport ? " -D DOUBLE_SUPPORT" : "", haveScale ? " -D HAVE_SCALE" : "", haveDelta ? " -D HAVE_DELTA" : "", ocl::typeToStr(sdepth), ocl::typeToStr(ddepth)); ocl::Kernel k("normalizek", ocl::core::normalize_oclsrc, opts); if (k.empty()) return false; UMat mask = _mask.getUMat(), dst = _dst.getUMat(); ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src), maskarg = ocl::KernelArg::ReadOnlyNoSize(mask), dstarg = ocl::KernelArg::ReadWrite(dst); if (haveScale) { if (haveDelta) k.args(srcarg, maskarg, dstarg, fscale, fdelta); else k.args(srcarg, maskarg, dstarg, fscale); } else { if (haveDelta) k.args(srcarg, maskarg, dstarg, fdelta); else k.args(srcarg, maskarg, dstarg); } size_t globalsize[2] = { (size_t)src.cols, ((size_t)src.rows + rowsPerWI - 1) / rowsPerWI }; return k.run(2, globalsize, NULL, false); } else { UMat temp; src.convertTo( temp, dtype, scale, delta ); temp.copyTo( _dst, _mask ); } return true; } // ocl_normalize #endif // HAVE_OPENCL void normalize(InputArray _src, InputOutputArray _dst, double a, double b, int norm_type, int rtype, InputArray _mask) { CV_INSTRUMENT_REGION(); double scale = 1, shift = 0; int type = _src.type(), depth = CV_MAT_DEPTH(type); if( rtype < 0 ) rtype = _dst.fixedType() ? _dst.depth() : depth; if( norm_type == CV_MINMAX ) { double smin = 0, smax = 0; double dmin = MIN( a, b ), dmax = MAX( a, b ); minMaxIdx( _src, &smin, &smax, 0, 0, _mask ); scale = (dmax - dmin)*(smax - smin > DBL_EPSILON ? 1./(smax - smin) : 0); if( rtype == CV_32F ) { scale = (float)scale; shift = (float)dmin - (float)(smin*scale); } else shift = dmin - smin*scale; } else if( norm_type == CV_L2 || norm_type == CV_L1 || norm_type == CV_C ) { scale = norm( _src, norm_type, _mask ); scale = scale > DBL_EPSILON ? a/scale : 0.; shift = 0; } else CV_Error( cv::Error::StsBadArg, "Unknown/unsupported norm type" ); CV_OCL_RUN(_dst.isUMat(), ocl_normalize(_src, _dst, _mask, rtype, scale, shift)) Mat src = _src.getMat(); if( _mask.empty() ) src.convertTo( _dst, rtype, scale, shift ); else { Mat temp; src.convertTo( temp, rtype, scale, shift ); temp.copyTo( _dst, _mask ); } } } // namespace