/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "../precomp.hpp" #include "../op_cuda.hpp" #include "../op_inf_engine.hpp" #include "../ie_ngraph.hpp" #include "../op_cann.hpp" #ifdef HAVE_CUDA #include "../cuda4dnn/primitives/reshape.hpp" using namespace cv::dnn::cuda4dnn; #endif namespace cv { namespace dnn { class BlankLayerImpl CV_FINAL : public BlankLayer { public: BlankLayerImpl(const LayerParams& params) { setParamsFrom(params); } virtual bool supportBackend(int backendId) CV_OVERRIDE { #ifdef HAVE_INF_ENGINE if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) return true; #endif return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA || backendId == DNN_BACKEND_CANN; } bool getMemoryShapes(const std::vector &inputs, const int requiredOutputs, std::vector &outputs, std::vector &internals) const CV_OVERRIDE { Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals); return true; } #ifdef HAVE_OPENCL bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_) { std::vector inputs; std::vector outputs; inputs_.getUMatVector(inputs); outputs_.getUMatVector(outputs); for (int i = 0, n = outputs.size(); i < n; ++i) { void *src_handle = inputs[i].handle(ACCESS_READ); void *dst_handle = outputs[i].handle(ACCESS_WRITE); if (src_handle != dst_handle) inputs[i].copyTo(outputs[i]); } return true; } #endif void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget), forward_ocl(inputs_arr, outputs_arr, internals_arr)) std::vector inputs, outputs; inputs_arr.getMatVector(inputs); outputs_arr.getMatVector(outputs); size_t i, n = outputs.size(); for (i = 0; i < n; ++i) if (outputs[i].data != inputs[i].data) inputs[i].copyTo(outputs[i]); } #ifdef HAVE_CANN virtual Ptr initCann(const std::vector > &inputs, const std::vector > &outputs, const std::vector >& nodes) CV_OVERRIDE { auto x = inputs[0].dynamicCast(); auto x_desc = x->getTensorDesc(); auto op_x = nodes[0].dynamicCast()->getOp(); auto output_desc = std::make_shared(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT); // create operator auto op = std::make_shared(name); // set inputs op->set_input_x_by_name(*op_x, x->name.c_str()); op->update_input_desc_x(*x_desc); // set output op->update_output_desc_y(*output_desc); return Ptr(new CannBackendNode(op)); } #endif #ifdef HAVE_DNN_NGRAPH virtual Ptr initNgraph(const std::vector >& inputs, const std::vector >& nodes) CV_OVERRIDE { auto ieInpNode = nodes[0].dynamicCast()->node; ngraph::OutputVector inp{ieInpNode}; auto blank = std::make_shared(inp, 0); return Ptr(new InfEngineNgraphNode(blank)); } #endif // HAVE_DNN_NGRAPH #ifdef HAVE_CUDA Ptr initCUDA( void *context_, const std::vector>& inputs, const std::vector>& outputs ) override { auto context = reinterpret_cast(context_); return make_cuda_node(preferableTarget, std::move(context->stream)); } #endif virtual bool tryQuantize(const std::vector > &scales, const std::vector > &zeropoints, LayerParams& params) CV_OVERRIDE { return true; } }; Ptr BlankLayer::create(const LayerParams& params) { // In case of Caffe's Dropout layer from Faster-RCNN framework, // https://github.com/rbgirshick/caffe-fast-rcnn/tree/faster-rcnn // return Power layer. if (!params.get("scale_train", true)) { float scale = 1 - params.get("dropout_ratio", 0.5f); CV_Assert(scale > 0); LayerParams powerParams; powerParams.name = params.name; powerParams.type = "Power"; powerParams.set("scale", scale); return PowerLayer::create(powerParams); } else return Ptr(new BlankLayerImpl(params)); } } }