// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2017-2019, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // This tests doesn't require any external data. They just compare outputs of // layers using different computation backends. Input and parameters are random. #include "test_precomp.hpp" namespace opencv_test { namespace { using namespace cv; using namespace cv::dnn; using namespace testing; static void test(Mat& input, Net& net, Backend backendId, Target targetId, bool skipCheck = false, bool randInput = true, double l1 = 0.0, double lInf = 0.0) { DNNTestLayer::checkBackend(backendId, targetId); if (randInput) randu(input, -1.0f, 1.0f); net.setInput(input); net.setPreferableBackend(DNN_BACKEND_OPENCV); Mat outputDefault = net.forward().clone(); net.setPreferableBackend(backendId); net.setPreferableTarget(targetId); Mat outputHalide = net.forward().clone(); if (skipCheck) return; double default_l1, default_lInf; DNNTestLayer::getDefaultThresholds(backendId, targetId, &default_l1, &default_lInf); if (l1 == 0.0) l1 = default_l1; if (lInf == 0.0) lInf = default_lInf; normAssert(outputDefault, outputHalide, "", l1, lInf); if (cvtest::debugLevel > 0 || testing::Test::HasFailure()) { std::cout << "l1=" << l1 << " lInf=" << lInf << std::endl; std::cout << outputDefault.reshape(1, outputDefault.total()).t() << std::endl; std::cout << outputHalide.reshape(1, outputDefault.total()).t() << std::endl; } } static void test(LayerParams& params, Mat& input, Backend backendId, Target targetId, bool skipCheck = false, double l1 = 0.0, double lInf = 0.0) { Net net; net.addLayerToPrev(params.name, params.type, params); test(input, net, backendId, targetId, skipCheck, true, l1, lInf); } static inline testing::internal::ParamGenerator > dnnBackendsAndTargetsWithHalide() { return dnnBackendsAndTargets(true, true, false); // OpenCV/CPU is used as reference } class Test_Halide_layers : public DNNTestLayer {}; //////////////////////////////////////////////////////////////////////////////// // Padding //////////////////////////////////////////////////////////////////////////////// TEST_P(Test_Halide_layers, Padding) { static const int kNumRuns = 10; std::vector paddings(8); cv::RNG& rng = cv::theRNG(); for (int t = 0; t < kNumRuns; ++t) { for (int i = 0; i < paddings.size(); ++i) paddings[i] = rng(5); LayerParams lp; lp.set("paddings", DictValue::arrayInt(&paddings[0], paddings.size())); lp.type = "Padding"; lp.name = "testLayer"; int sz[] = {1 + (int)rng(10), 1 + (int)rng(10), 1 + (int)rng(10), 1 + (int)rng(10)}; Mat input(4, &sz[0], CV_32F); test(lp, input, backend, target); } } //////////////////////////////////////////////////////////////////////////////// // Convolution //////////////////////////////////////////////////////////////////////////////// typedef TestWithParam > > Convolution; TEST_P(Convolution, Accuracy) { int inChannels = get<0>(GetParam())[0]; int outChannels = get<0>(GetParam())[1]; int group = get<0>(GetParam())[2]; Size inSize = get<1>(GetParam()); Size kernel = get<2>(GetParam()); Size stride = get<3>(GetParam()); Size pad = get<4>(GetParam()); Size dilation = get<5>(GetParam()); bool hasBias = get<6>(GetParam()); Backend backendId = get<0>(get<7>(GetParam())); Target targetId = get<1>(get<7>(GetParam())); bool skipCheck = false; int sz[] = {outChannels, inChannels / group, kernel.height, kernel.width}; Mat weights(4, &sz[0], CV_32F); randu(weights, -1.0f, 1.0f); LayerParams lp; lp.set("kernel_w", kernel.width); lp.set("kernel_h", kernel.height); lp.set("pad_w", pad.width); lp.set("pad_h", pad.height); lp.set("stride_w", stride.width); lp.set("stride_h", stride.height); lp.set("dilation_w", dilation.width); lp.set("dilation_h", dilation.height); lp.set("num_output", outChannels); lp.set("group", group); lp.set("bias_term", hasBias); lp.type = "Convolution"; lp.name = "testLayer"; lp.blobs.push_back(weights); if (hasBias) { Mat bias(1, outChannels, CV_32F); randu(bias, -1.0f, 1.0f); lp.blobs.push_back(bias); } int inpSz[] = {1, inChannels, inSize.height, inSize.width}; Mat input(4, &inpSz[0], CV_32F); test(lp, input, backendId, targetId, skipCheck); if (skipCheck) throw SkipTestException("Skip checks in unstable test"); } INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Convolution, Combine( /*in channels, out channels, group*/ Values(Vec3i(6, 4, 1), Vec3i(6, 9, 1), Vec3i(6, 4, 2), Vec3i(6, 9, 3)), /*in size*/ Values(Size(5, 6)), /*kernel*/ Values(Size(3, 1), Size(1, 3)), /*stride*/ Values(Size(1, 1), Size(2, 2)), /*pad*/ Values(Size(1, 0), Size(0, 1)), /*dilation*/ Values(Size(1, 1), Size(2, 2)), /*has bias*/ Bool(), dnnBackendsAndTargetsWithHalide() )); //////////////////////////////////////////////////////////////////////////////// // Deconvolution //////////////////////////////////////////////////////////////////////////////// typedef TestWithParam > > Deconvolution; TEST_P(Deconvolution, Accuracy) { int inChannels = get<0>(GetParam())[0]; int outChannels = get<0>(GetParam())[1]; int group = get<0>(GetParam())[2]; Size inSize = get<1>(GetParam()); Size kernel = get<2>(GetParam()); Size pad = get<3>(GetParam()); Size dilation = get<4>(GetParam()); Size stride = Size(get<5>(GetParam())[0], get<5>(GetParam())[1]); Size adjPad = Size(get<5>(GetParam())[2], get<5>(GetParam())[3]); bool hasBias = get<6>(GetParam()); Backend backendId = get<0>(get<7>(GetParam())); Target targetId = get<1>(get<7>(GetParam())); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000) if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16) && inChannels == 6 && outChannels == 4 && group == 1 && kernel == Size(3, 1) && pad == Size(0, 1) && stride == Size(1, 1) && dilation == Size(1, 1)) applyTestTag(targetId == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16) && inChannels == 6 && outChannels == 4 && group == 1 && kernel == Size(1, 3) && pad == Size(1, 0) && stride == Size(1, 1) && dilation == Size(1, 1)) applyTestTag(targetId == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION ); #endif #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X && inChannels == 6 && outChannels == 4 && group == 1 && kernel == Size(1, 3) && pad == Size(1, 0) && stride == Size(1, 1) && dilation == Size(1, 1)) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); #endif if (targetId == DNN_TARGET_CUDA_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16); int sz[] = {inChannels, outChannels / group, kernel.height, kernel.width}; Mat weights(4, &sz[0], CV_32F); randu(weights, -1.0f, 1.0f); LayerParams lp; lp.set("kernel_w", kernel.width); lp.set("kernel_h", kernel.height); lp.set("pad_w", pad.width); lp.set("pad_h", pad.height); lp.set("stride_w", stride.width); lp.set("stride_h", stride.height); lp.set("dilation_w", dilation.width); lp.set("dilation_h", dilation.height); lp.set("adj_w", adjPad.width); lp.set("adj_h", adjPad.height); lp.set("num_output", outChannels); lp.set("group", group); lp.set("bias_term", hasBias); lp.type = "Deconvolution"; lp.name = "testLayer"; lp.blobs.push_back(weights); if (hasBias) { Mat bias(1, outChannels, CV_32F); randu(bias, -1.0f, 1.0f); lp.blobs.push_back(bias); } int inpSz[] = {1, inChannels, inSize.height, inSize.width}; Mat input(4, &inpSz[0], CV_32F); test(lp, input, backendId, targetId); } INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Deconvolution, Combine( /*in channels, out channels, group*/ Values(Vec3i(6, 4, 1), Vec3i(6, 9, 3)), /*in size*/ Values(Size(5, 6)), /*kernel*/ Values(Size(3, 1), Size(1, 3)), /*pad*/ Values(Size(1, 0), Size(0, 1)), /*dilation*/ Values(Size(1, 1)), /*stride, adj. pad*/ Values(Vec4i(1,1, 0,0), Vec4i(2,2, 1,0), Vec4i(1,2, 0,1)), /*has bias*/ Bool(), dnnBackendsAndTargetsWithHalide() )); //////////////////////////////////////////////////////////////////////////////// // LRN //////////////////////////////////////////////////////////////////////////////// typedef TestWithParam > > LRN; TEST_P(LRN, Accuracy) { int inChannels = get<0>(GetParam())[0]; Size inSize = Size(get<0>(GetParam())[1], get<0>(GetParam())[2]); int localSize = get<1>(GetParam()); float alpha = get<2>(GetParam())[0]; float beta = get<2>(GetParam())[1]; float bias = get<2>(GetParam())[2]; bool normBySize = get<3>(GetParam()); std::string nrmType = get<4>(GetParam()); Backend backendId = get<0>(get<5>(GetParam())); Target targetId = get<1>(get<5>(GetParam())); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if ((inSize.width == 5 || inSize.height == 5) && targetId == DNN_TARGET_MYRIAD && nrmType == "ACROSS_CHANNELS") applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); #endif LayerParams lp; lp.set("norm_region", nrmType); lp.set("local_size", localSize); lp.set("alpha", alpha); lp.set("beta", beta); lp.set("bias", bias); lp.set("norm_by_size", normBySize); lp.type = "LRN"; lp.name = "testLayer"; int sz[] = {1, inChannels, inSize.height, inSize.width}; Mat input(4, &sz[0], CV_32F); double l1 = 0.0, lInf = 0.0; // The OpenCL kernels use the native_ math functions which have // implementation defined accuracy, so we use relaxed thresholds. See // https://github.com/opencv/opencv/issues/9821 for more details. if (targetId == DNN_TARGET_OPENCL) { l1 = 0.01; lInf = 0.01; } test(lp, input, backendId, targetId, false, l1, lInf); } INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, LRN, Combine( /*input ch,w,h*/ Values(Vec3i(6, 5, 8), Vec3i(7, 11, 6)), /*local size*/ Values(3, 5), Values(Vec3f(0.9f, 1.0f, 1.1f), Vec3f(0.9f, 1.1f, 1.0f), /*alpha, beta, bias*/ Vec3f(1.0f, 0.9f, 1.1f), Vec3f(1.0f, 1.1f, 0.9f), Vec3f(1.1f, 0.9f, 1.0f), Vec3f(1.1f, 1.0f, 0.9f)), /*norm_by_size*/ Bool(), /*norm_type*/ Values("ACROSS_CHANNELS", "WITHIN_CHANNEL"), dnnBackendsAndTargetsWithHalide() )); //////////////////////////////////////////////////////////////////////////////// // Average pooling //////////////////////////////////////////////////////////////////////////////// typedef TestWithParam > > AvePooling; TEST_P(AvePooling, Accuracy) { int inChannels = get<0>(GetParam()); Size outSize = get<1>(GetParam());; // Input size will be computed from parameters. Size kernel = get<2>(GetParam()); Size stride = get<3>(GetParam()); Backend backendId = get<0>(get<4>(GetParam())); Target targetId = get<1>(get<4>(GetParam())); #if defined(INF_ENGINE_RELEASE) if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X && kernel == Size(1, 1) && (stride == Size(1, 1) || stride == Size(2, 2))) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); #endif const int inWidth = (outSize.width - 1) * stride.width + kernel.width; const int inHeight = (outSize.height - 1) * stride.height + kernel.height; LayerParams lp; lp.set("pool", "ave"); lp.set("kernel_w", kernel.width); lp.set("kernel_h", kernel.height); lp.set("stride_w", stride.width); lp.set("stride_h", stride.height); lp.type = "Pooling"; lp.name = "testLayer"; int sz[] = {1, inChannels, inHeight, inWidth}; Mat input(4, &sz[0], CV_32F); test(lp, input, backendId, targetId); } INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, AvePooling, Combine( /*in channels*/ Values(3, 4), /*out size*/ Values(Size(1, 1), Size(2, 2), Size(3, 2), Size(4, 7)), /*kernel*/ Values(Size(1, 1), Size(2, 2), Size(3, 3), Size(3, 2)), /*stride*/ Values(Size(1, 1), Size(2, 2), Size(3, 2)), dnnBackendsAndTargetsWithHalide() )); //////////////////////////////////////////////////////////////////////////////// // Maximum pooling //////////////////////////////////////////////////////////////////////////////// typedef TestWithParam > > MaxPooling; TEST_P(MaxPooling, Accuracy) { int inChannels = get<0>(GetParam()); Size inSize = get<1>(GetParam()); Size kernel = get<2>(GetParam()); Size stride = get<3>(GetParam()); Size pad = get<4>(GetParam()); Backend backendId = get<0>(get<5>(GetParam())); Target targetId = get<1>(get<5>(GetParam())); // https://github.com/openvinotoolkit/openvino/issues/18731 if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && stride != Size(1, 1)) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X && (stride == Size(1, 1) || stride == Size(2, 2)) && (pad == Size(0, 1) || pad == Size(1, 1)) ) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000) if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif LayerParams lp; lp.set("pool", "max"); lp.set("kernel_w", kernel.width); lp.set("kernel_h", kernel.height); lp.set("stride_w", stride.width); lp.set("stride_h", stride.height); lp.set("pad_w", pad.width); lp.set("pad_h", pad.height); lp.type = "Pooling"; lp.name = "testLayer"; int sz[] = {1, inChannels, inSize.height, inSize.width}; Mat input(4, &sz[0], CV_32F); test(lp, input, backendId, targetId); } INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, MaxPooling, Combine( /*in channels*/ Values(3, 4), /*in size*/ Values(Size(5, 5), Size(7, 6)), /*kernel*/ Values(Size(2, 2), Size(3, 3), Size(3, 2)), /*stride*/ Values(Size(1, 1), Size(2, 2), Size(3, 2)), /*pad*/ Values(Size(0, 0), Size(1, 1), Size(0, 1)), dnnBackendsAndTargetsWithHalide() )); //////////////////////////////////////////////////////////////////////////////// // Fully-connected //////////////////////////////////////////////////////////////////////////////// typedef TestWithParam > > FullyConnected; TEST_P(FullyConnected, Accuracy) { int batch = get<0>(GetParam()); int inChannels = get<1>(GetParam()); Size inSize = get<2>(GetParam()); int outChannels = get<3>(GetParam()); bool hasBias = get<4>(GetParam()); Backend backendId = get<0>(get<5>(GetParam())); Target targetId = get<1>(get<5>(GetParam())); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if ((backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && (targetId == DNN_TARGET_OPENCL_FP16 || (targetId == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X))) { applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); } #endif // https://github.com/openvinotoolkit/openvino/issues/19436 if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_OPENCL_FP16 && batch == 16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2023000000) if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_OPENCL && batch == 16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL); #endif Mat weights(outChannels, inChannels * inSize.height * inSize.width, CV_32F); randu(weights, -1.0f, 1.0f); Mat bias(1, outChannels, CV_32F); randu(bias, -1.0f, 1.0f); LayerParams lp; lp.set("num_output", outChannels); lp.set("bias_term", hasBias); lp.blobs.push_back(weights); lp.blobs.push_back(bias); lp.type = "InnerProduct"; lp.name = "testLayer"; int sz[] = {batch, inChannels, inSize.height, inSize.width}; Mat input(4, &sz[0], CV_32F); double l1 = 0.0; double lInf = 0.0; #if defined(INF_ENGINE_RELEASE) if (targetId == DNN_TARGET_MYRIAD) { l1 = 0.015; lInf = 0.025; } if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_OPENCL_FP16) { l1 = 0.01; if (INF_ENGINE_VER_MAJOR_GE(2023000000)) lInf = 0.016; } if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_OPENCL) { l1 = 5e-3; lInf = INF_ENGINE_VER_MAJOR_GE(2023000000) ? 0.016 : 7e-3; } #endif if (targetId == DNN_TARGET_CUDA_FP16) l1 = 0.015; test(lp, input, backendId, targetId, false, l1, lInf); } INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, FullyConnected, Combine( /*batch*/ Values(1, 2, 4, 8, 16), /*in channels*/ Values(3, 4), /*in size*/ Values(Size(5, 4), Size(4, 5), Size(1, 1)), /*out channels*/ Values(3, 4), /*has bias*/ Bool(), dnnBackendsAndTargetsWithHalide() )); //////////////////////////////////////////////////////////////////////////////// // SoftMax //////////////////////////////////////////////////////////////////////////////// typedef TestWithParam > > SoftMax; TEST_P(SoftMax, Accuracy) { int inChannels = get<0>(GetParam()); Backend backendId = get<0>(get<1>(GetParam())); Target targetId = get<1>(get<1>(GetParam())); LayerParams lp; lp.type = "Softmax"; lp.name = "testLayer"; int sz[] = {1, inChannels, 1, 1}; Mat input(4, &sz[0], CV_32F); test(lp, input, backendId, targetId); } INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, SoftMax, Combine( Values(3, 4, 5, 1024), dnnBackendsAndTargetsWithHalide() )); ////////////////////////////////////////////////////////////////////////////// // Max pooling - unpooling ////////////////////////////////////////////////////////////////////////////// TEST_P(Test_Halide_layers, MaxPoolUnpool) { if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); LayerParams pool; pool.set("pool", "max"); pool.set("kernel_w", 2); pool.set("kernel_h", 2); pool.set("stride_w", 2); pool.set("stride_h", 2); pool.set("pad_w", 0); pool.set("pad_h", 0); pool.type = "Pooling"; pool.name = "testPool"; LayerParams unpool; unpool.set("pool_k_w", 2); unpool.set("pool_k_h", 2); unpool.set("pool_stride_w", 2); unpool.set("pool_stride_h", 2); unpool.set("pool_pad_w", 0); unpool.set("pool_pad_h", 0); unpool.type = "MaxUnpool"; unpool.name = "testUnpool"; Net net; int poolId = net.addLayer(pool.name, pool.type, pool); net.connect(0, 0, poolId, 0); int unpoolId = net.addLayer(unpool.name, unpool.type, unpool); net.connect(poolId, 0, unpoolId, 0); net.connect(poolId, 1, unpoolId, 1); int sz[] = {1, 1, 4, 4}; Mat input(4, &sz[0], CV_32F); test(input, net, backend, target); } //////////////////////////////////////////////////////////////////////////////// // AvePooling + in-place layers //////////////////////////////////////////////////////////////////////////////// static const int kNumChannels = 3; void testInPlaceActivation(LayerParams& lp, Backend backendId, Target targetId, double l1 = 0.0, double lInf = 0.0) { EXPECT_FALSE(lp.name.empty()); LayerParams pool; pool.set("pool", "ave"); pool.set("kernel_w", 2); pool.set("kernel_h", 2); pool.set("stride_w", 2); pool.set("stride_h", 2); pool.type = "Pooling"; pool.name = "ave_pool"; Net net; int poolId = net.addLayer(pool.name, pool.type, pool); net.connect(0, 0, poolId, 0); net.addLayerToPrev(lp.name, lp.type, lp); int sz[] = {1, kNumChannels, 10, 10}; Mat input(4, &sz[0], CV_32F); test(input, net, backendId, targetId, false, true, l1, lInf); } typedef TestWithParam > > BatchNorm; TEST_P(BatchNorm, Accuracy) { bool hasWeights = get<0>(GetParam()); bool hasBias = get<1>(GetParam()); float epsilon = get<2>(GetParam()); Backend backendId = get<0>(get<3>(GetParam())); Target targetId = get<1>(get<3>(GetParam())); LayerParams lp; lp.set("has_weight", hasWeights); lp.set("has_bias", hasBias); lp.set("eps", epsilon); lp.type = "BatchNorm"; lp.name = "testLayer"; lp.blobs.reserve(4); for (int i = 0; i < 3; ++i) lp.blobs.push_back(Mat(1, kNumChannels, CV_32F)); if (hasBias || hasWeights) lp.blobs.push_back(Mat(1, kNumChannels, CV_32F)); for (int i = 0; i < lp.blobs.size(); ++i) randu(lp.blobs[i], 0.0f, 1.0f); testInPlaceActivation(lp, backendId, targetId); } INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, BatchNorm, Combine( /*has weights*/ Bool(), /*has bias*/ Bool(), /*epsilon*/ Values(1e-3f, 1e-5f), dnnBackendsAndTargetsWithHalide() )); typedef TestWithParam > > ReLU; TEST_P(ReLU, Accuracy) { float negativeSlope = get<0>(GetParam()); Backend backendId = get<0>(get<1>(GetParam())); Target targetId = get<1>(get<1>(GetParam())); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019020000) if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD && negativeSlope < 0) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif LayerParams lp; lp.set("negative_slope", negativeSlope); lp.type = "ReLU"; lp.name = "testLayer"; testInPlaceActivation(lp, backendId, targetId); } INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, ReLU, Combine( /*negative slope*/ Values(2.0f, 0.3f, -0.1f, 0.0f), dnnBackendsAndTargetsWithHalide() )); typedef TestWithParam > > NoParamActivation; TEST_P(NoParamActivation, Accuracy) { Backend backendId = get<0>(get<1>(GetParam())); Target targetId = get<1>(get<1>(GetParam())); std::string layer_type = get<0>(GetParam()); LayerParams lp; lp.type = layer_type; lp.name = "testLayer"; testInPlaceActivation(lp, backendId, targetId); } INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, NoParamActivation, Combine( /*type*/ Values("TanH", "Sigmoid", "AbsVal", "BNLL", "Swish", "Mish"), dnnBackendsAndTargetsWithHalide() )); typedef TestWithParam > > Power; TEST_P(Power, Accuracy) { float power = get<0>(GetParam())[0]; float scale = get<0>(GetParam())[1]; float shift = get<0>(GetParam())[2]; Backend backendId = get<0>(get<1>(GetParam())); Target targetId = get<1>(get<1>(GetParam())); LayerParams lp; lp.set("power", power); lp.set("scale", scale); lp.set("shift", shift); lp.type = "Power"; lp.name = "testLayer"; testInPlaceActivation(lp, backendId, targetId); } INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Power, Combine( /*power, scale, shift*/ Values(Vec3f(0.9f, 1.0f, 1.1f), Vec3f(0.9f, 1.1f, 1.0f), Vec3f(1.0f, 0.9f, 1.1f), Vec3f(1.0f, 1.1f, 0.9f), Vec3f(1.1f, 0.9f, 1.0f), Vec3f(1.1f, 1.0f, 0.9f)), dnnBackendsAndTargetsWithHalide() )); typedef TestWithParam > > Exp; TEST_P(Exp, Accuracy) { float base = get<0>(GetParam())[0]; float scale = get<0>(GetParam())[1]; float shift = get<0>(GetParam())[2]; Backend backendId = get<0>(get<1>(GetParam())); Target targetId = get<1>(get<1>(GetParam())); LayerParams lp; lp.set("base", base); lp.set("scale", scale); lp.set("shift", shift); lp.type = "Exp"; lp.name = "testLayer"; testInPlaceActivation(lp, backendId, targetId); } INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Exp, Combine( /*base, scale, shift*/ Values(Vec3f(0.9f, -1.0f, 1.1f), Vec3f(0.9f, 1.1f, -1.0f), Vec3f(-1.0f, 0.9f, 1.1f), Vec3f(-1.0f, 1.1f, 0.9f), Vec3f(1.1f, 0.9f, -1.0f), Vec3f(1.1f, -1.0f, 0.9f)), dnnBackendsAndTargetsWithHalide() )); TEST_P(Test_Halide_layers, ChannelsPReLU) { LayerParams lp; lp.type = "ChannelsPReLU"; lp.name = "testLayer"; lp.blobs.push_back(Mat(1, kNumChannels, CV_32F)); randu(lp.blobs[0], -1.0f, 1.0f); testInPlaceActivation(lp, backend, target); } typedef TestWithParam > > Scale; TEST_P(Scale, Accuracy) { bool hasBias = get<0>(GetParam()); Backend backendId = get<0>(get<1>(GetParam())); Target targetId = get<1>(get<1>(GetParam())); LayerParams lp; lp.set("bias_term", hasBias); lp.type = "Scale"; lp.name = "testLayer"; lp.blobs.push_back(Mat(1, kNumChannels, CV_32F)); randu(lp.blobs[0], -1.0f, 1.0f); if (hasBias) { lp.blobs.push_back(Mat(1, kNumChannels, CV_32F)); randu(lp.blobs[1], -1.0f, 1.0f); } testInPlaceActivation(lp, backendId, targetId); } INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Scale, Combine( Bool(), dnnBackendsAndTargetsWithHalide() )); //////////////////////////////////////////////////////////////////////////////// // Concat layer //////////////////////////////////////////////////////////////////////////////// // // input --- conv --- concat --- output // `--- conv ----^ ^ ^ // `---- ... ------' ' // `-----------------' typedef TestWithParam > > Concat; TEST_P(Concat, Accuracy) { Vec3i inSize = get<0>(GetParam()); Vec3i numChannels = get<1>(GetParam()); Backend backendId = get<0>(get<2>(GetParam())); Target targetId = get<1>(get<2>(GetParam())); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000) if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD && inSize == Vec3i(1, 4, 5) && numChannels == Vec3i(1, 6, 2) ) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); // crash #endif #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_CPU && inSize == Vec3i(1, 4, 5) && numChannels == Vec3i(1, 6, 2) ) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); // TODO: IE_CPU #endif Net net; std::vector convLayerIds; convLayerIds.reserve(numChannels.channels); for (int i = 0, n = numChannels.channels; i < n; ++i) { if (!numChannels[i]) break; int sz[] = {numChannels[i], inSize[0], 1, 1}; Mat weights(4, &sz[0], CV_32F); randu(weights, -1.0f, 1.0f); LayerParams convParam; convParam.set("kernel_w", 1); convParam.set("kernel_h", 1); convParam.set("num_output", numChannels[i]); convParam.set("bias_term", false); convParam.type = "Convolution"; std::ostringstream ss; ss << "convLayer" << i; convParam.name = ss.str(); convParam.blobs.push_back(weights); int layerId = net.addLayer(convParam.name, convParam.type, convParam); convLayerIds.push_back(layerId); net.connect(0, 0, layerId, 0); } LayerParams concatParam; concatParam.type = "Concat"; concatParam.name = "testLayer"; int concatId = net.addLayer(concatParam.name, concatParam.type, concatParam); net.connect(0, 0, concatId, 0); for (int i = 0; i < convLayerIds.size(); ++i) { net.connect(convLayerIds[i], 0, concatId, i + 1); } int sz[] = {1, inSize[0], inSize[1], inSize[2]}; Mat input(4, &sz[0], CV_32F); test(input, net, backendId, targetId); } INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Concat, Combine( /*input size*/ Values(Vec3i(1, 4, 5), Vec3i(2, 8, 6)), /*channels*/ Values(Vec3i(2, 0, 0), Vec3i(3, 4, 0), Vec3i(1, 6, 2)), dnnBackendsAndTargetsWithHalide() )); //////////////////////////////////////////////////////////////////////////////// // Element-wise layers //////////////////////////////////////////////////////////////////////////////// // // input --- conv --- eltwise --- output // `--- conv ----^ ^ ^ // `---- ... ------' ' // `-----------------' typedef TestWithParam > > Eltwise; TEST_P(Eltwise, Accuracy) { Vec3i inSize = get<0>(GetParam()); std::string op = get<1>(GetParam()); int numConv = get<2>(GetParam()); bool weighted = get<3>(GetParam()); Backend backendId = get<0>(get<4>(GetParam())); Target targetId = get<1>(get<4>(GetParam())); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000) // accuracy if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_OPENCL && inSize == Vec3i(1, 4, 5) && op == "sum" && numConv == 1 && !weighted) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_OPENCL && inSize == Vec3i(2, 8, 6) && op == "sum" && numConv == 1 && !weighted) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000) if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD && inSize == Vec3i(1, 4, 5)) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && numConv > 1) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_OPENCL && op == "sum" && numConv == 1 && !weighted) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); #endif #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2021040000) if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && numConv > 1) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif bool convInputShift = 1; int numEltwiseInputs = numConv; if (op == "div") { numConv = 1; convInputShift = 0; // first input is convolution } Net net; std::vector convLayerIds(numConv); for (int i = 0; i < numConv; ++i) { int sz[] = {inSize[0], inSize[0], 1, 1}; Mat weights(4, &sz[0], CV_32F); randu(weights, -1.0f, 1.0f); LayerParams convParam; convParam.set("kernel_w", 1); convParam.set("kernel_h", 1); convParam.set("num_output", inSize[0]); convParam.set("bias_term", false); convParam.type = "Convolution"; std::ostringstream ss; ss << "convLayer" << i; convParam.name = ss.str(); convParam.blobs.push_back(weights); convLayerIds[i] = net.addLayer(convParam.name, convParam.type, convParam); net.connect(0, 0, convLayerIds[i], 0); } LayerParams eltwiseParam; eltwiseParam.set("operation", op); if (op == "sum" && weighted) { RNG& rng = cv::theRNG(); std::vector coeff(1 + numConv); for (int i = 0; i < coeff.size(); ++i) { coeff[i] = rng.uniform(-2.0f, 2.0f); } eltwiseParam.set("coeff", DictValue::arrayReal(&coeff[0], coeff.size())); } eltwiseParam.type = "Eltwise"; eltwiseParam.name = "testLayer"; int eltwiseId = net.addLayer(eltwiseParam.name, eltwiseParam.type, eltwiseParam); if (convInputShift == 1) net.connect(0, 0, eltwiseId, 0); for (int i = 0; i < numConv; ++i) { net.connect(convLayerIds[i], 0, eltwiseId, i + convInputShift); } if (convInputShift == 0) net.connect(0, 0, eltwiseId, numConv); for (int i = numConv; i < numEltwiseInputs; ++i) { net.connect(0, 0, eltwiseId, i + 1); } int sz[] = {1, inSize[0], inSize[1], inSize[2]}; Mat input(4, &sz[0], CV_32F); if (op == "div") randu(input, 1.0f, 1.0f); // ensure no divisor value has absouluate value of less than 0.5 test(input, net, backendId, targetId, /*skipCheck*/false, (op == "div") ? false : true); } INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Eltwise, Combine( /*input size*/ Values(Vec3i(1, 4, 5), Vec3i(2, 8, 6)), /*operation*/ Values("prod", "sum", "div", "max", "min"), /*num convs*/ Values(1, 2, 3), /*weighted(for sum only)*/ Bool(), dnnBackendsAndTargetsWithHalide() )); //////////////////////////////////////////////////////////////////////////// // Mixed backends //////////////////////////////////////////////////////////////////////////// #ifdef HAVE_HALIDE TEST(MixedBackends_Halide_Default_Halide, Accuracy) { // Just a layer that supports Halide backend. LayerParams lrn; lrn.type = "LRN"; lrn.name = "testLRN"; // Some of layers that doesn't supports Halide backend yet. LayerParams mvn; mvn.type = "MVN"; mvn.name = "testMVN"; // Halide layer again. LayerParams lrn2; lrn2.type = "LRN"; lrn2.name = "testLRN2"; Net net; int lrnId = net.addLayer(lrn.name, lrn.type, lrn); net.connect(0, 0, lrnId, 0); net.addLayerToPrev(mvn.name, mvn.type, mvn); net.addLayerToPrev(lrn2.name, lrn2.type, lrn2); int sz[] = {4, 3, 5, 6}; Mat input(4, &sz[0], CV_32F); randu(input, -1.0f, 1.0f); net.setInput(input); net.setPreferableBackend(DNN_BACKEND_OPENCV); Mat outputDefault = net.forward().clone(); net.setPreferableBackend(DNN_BACKEND_HALIDE); net.setInput(input); Mat outputHalide = net.forward().clone(); normAssert(outputDefault, outputHalide); net.setPreferableTarget(DNN_TARGET_OPENCL); net.setInput(input); outputHalide = net.forward().clone(); normAssert(outputDefault, outputHalide); } #endif // HAVE_HALIDE INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_Halide_layers, dnnBackendsAndTargetsWithHalide()); }} // namespace