/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include "opencv2/imgproc/imgproc_c.h" namespace opencv_test { namespace { class CV_DefaultNewCameraMatrixTest : public cvtest::ArrayTest { public: CV_DefaultNewCameraMatrixTest(); protected: int prepare_test_case (int test_case_idx); void prepare_to_validation( int test_case_idx ); void get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ); void run_func(); private: cv::Size img_size; cv::Mat camera_mat; cv::Mat new_camera_mat; int matrix_type; bool center_principal_point; static const int MAX_X = 2048; static const int MAX_Y = 2048; //static const int MAX_VAL = 10000; }; CV_DefaultNewCameraMatrixTest::CV_DefaultNewCameraMatrixTest() { test_array[INPUT].push_back(NULL); test_array[OUTPUT].push_back(NULL); test_array[REF_OUTPUT].push_back(NULL); matrix_type = 0; center_principal_point = false; } void CV_DefaultNewCameraMatrixTest::get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ) { cvtest::ArrayTest::get_test_array_types_and_sizes(test_case_idx,sizes,types); RNG& rng = ts->get_rng(); matrix_type = types[INPUT][0] = types[OUTPUT][0]= types[REF_OUTPUT][0] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; sizes[INPUT][0] = sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(3,3); } int CV_DefaultNewCameraMatrixTest::prepare_test_case(int test_case_idx) { int code = cvtest::ArrayTest::prepare_test_case( test_case_idx ); if (code <= 0) return code; RNG& rng = ts->get_rng(); img_size.width = cvtest::randInt(rng) % MAX_X + 1; img_size.height = cvtest::randInt(rng) % MAX_Y + 1; center_principal_point = ((cvtest::randInt(rng) % 2)!=0); // Generating camera_mat matrix double sz = MAX(img_size.width, img_size.height); double aspect_ratio = cvtest::randReal(rng)*0.6 + 0.7; double a[9] = {0,0,0,0,0,0,0,0,1}; Mat _a(3,3,CV_64F,a); a[2] = (img_size.width - 1)*0.5 + cvtest::randReal(rng)*10 - 5; a[5] = (img_size.height - 1)*0.5 + cvtest::randReal(rng)*10 - 5; a[0] = sz/(0.9 - cvtest::randReal(rng)*0.6); a[4] = aspect_ratio*a[0]; Mat& _a0 = test_mat[INPUT][0]; cvtest::convert(_a, _a0, _a0.type()); camera_mat = _a0; return code; } void CV_DefaultNewCameraMatrixTest::run_func() { new_camera_mat = cv::getDefaultNewCameraMatrix(camera_mat,img_size,center_principal_point); } void CV_DefaultNewCameraMatrixTest::prepare_to_validation( int /*test_case_idx*/ ) { const Mat& src = test_mat[INPUT][0]; Mat& dst = test_mat[REF_OUTPUT][0]; Mat& test_output = test_mat[OUTPUT][0]; Mat& output = new_camera_mat; cvtest::convert( output, test_output, test_output.type() ); if (!center_principal_point) { cvtest::copy(src, dst); } else { double a[9] = {0,0,0,0,0,0,0,0,1}; Mat _a(3,3,CV_64F,a); if (matrix_type == CV_64F) { a[0] = src.at(0,0); a[4] = src.at(1,1); } else { a[0] = src.at(0,0); a[4] = src.at(1,1); } a[2] = (img_size.width - 1)*0.5; a[5] = (img_size.height - 1)*0.5; cvtest::convert( _a, dst, dst.type() ); } } //--------- class CV_UndistortPointsTest : public cvtest::ArrayTest { public: CV_UndistortPointsTest(); protected: int prepare_test_case (int test_case_idx); void prepare_to_validation( int test_case_idx ); void get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ); double get_success_error_level( int test_case_idx, int i, int j ); void run_func(); void distortPoints(const CvMat* _src, CvMat* _dst, const CvMat* _cameraMatrix, const CvMat* _distCoeffs, const CvMat* matR, const CvMat* matP); private: bool useDstMat; static const int N_POINTS = 10; static const int MAX_X = 2048; static const int MAX_Y = 2048; bool zero_new_cam; bool zero_distortion; bool zero_R; cv::Size img_size; cv::Mat dst_points_mat; cv::Mat camera_mat; cv::Mat R; cv::Mat P; cv::Mat distortion_coeffs; cv::Mat src_points; std::vector dst_points; }; CV_UndistortPointsTest::CV_UndistortPointsTest() { test_array[INPUT].push_back(NULL); // points matrix test_array[INPUT].push_back(NULL); // camera matrix test_array[INPUT].push_back(NULL); // distortion coeffs test_array[INPUT].push_back(NULL); // R matrix test_array[INPUT].push_back(NULL); // P matrix test_array[OUTPUT].push_back(NULL); // distorted dst points test_array[TEMP].push_back(NULL); // dst points test_array[REF_OUTPUT].push_back(NULL); useDstMat = false; zero_new_cam = zero_distortion = zero_R = false; } void CV_UndistortPointsTest::get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ) { cvtest::ArrayTest::get_test_array_types_and_sizes(test_case_idx,sizes,types); RNG& rng = ts->get_rng(); //rng.next(); types[INPUT][0] = types[OUTPUT][0] = types[REF_OUTPUT][0] = types[TEMP][0]= CV_32FC2; types[INPUT][1] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; types[INPUT][2] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; types[INPUT][3] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; types[INPUT][4] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; sizes[INPUT][0] = sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = sizes[TEMP][0]= cvtest::randInt(rng)%2 ? cvSize(1,N_POINTS) : cvSize(N_POINTS,1); sizes[INPUT][1] = sizes[INPUT][3] = cvSize(3,3); sizes[INPUT][4] = cvtest::randInt(rng)%2 ? cvSize(3,3) : cvSize(4,3); if (cvtest::randInt(rng)%2) { if (cvtest::randInt(rng)%2) { sizes[INPUT][2] = cvSize(1,4); } else { sizes[INPUT][2] = cvSize(1,5); } } else { if (cvtest::randInt(rng)%2) { sizes[INPUT][2] = cvSize(4,1); } else { sizes[INPUT][2] = cvSize(5,1); } } } int CV_UndistortPointsTest::prepare_test_case(int test_case_idx) { RNG& rng = ts->get_rng(); int code = cvtest::ArrayTest::prepare_test_case( test_case_idx ); if (code <= 0) return code; useDstMat = (cvtest::randInt(rng) % 2) == 0; img_size.width = cvtest::randInt(rng) % MAX_X + 1; img_size.height = cvtest::randInt(rng) % MAX_Y + 1; int dist_size = test_mat[INPUT][2].cols > test_mat[INPUT][2].rows ? test_mat[INPUT][2].cols : test_mat[INPUT][2].rows; double cam[9] = {0,0,0,0,0,0,0,0,1}; vector dist(dist_size); vector proj(test_mat[INPUT][4].cols * test_mat[INPUT][4].rows); vector points(N_POINTS); Mat _camera(3,3,CV_64F,cam); Mat _distort(test_mat[INPUT][2].rows,test_mat[INPUT][2].cols,CV_64F,&dist[0]); Mat _proj(test_mat[INPUT][4].size(), CV_64F, &proj[0]); Mat _points(test_mat[INPUT][0].size(), CV_64FC2, &points[0]); _proj = Scalar::all(0); //Generating points for( int i = 0; i < N_POINTS; i++ ) { points[i].x = cvtest::randReal(rng)*img_size.width; points[i].y = cvtest::randReal(rng)*img_size.height; } //Generating camera matrix double sz = MAX(img_size.width,img_size.height); double aspect_ratio = cvtest::randReal(rng)*0.6 + 0.7; cam[2] = (img_size.width - 1)*0.5 + cvtest::randReal(rng)*10 - 5; cam[5] = (img_size.height - 1)*0.5 + cvtest::randReal(rng)*10 - 5; cam[0] = sz/(0.9 - cvtest::randReal(rng)*0.6); cam[4] = aspect_ratio*cam[0]; //Generating distortion coeffs dist[0] = cvtest::randReal(rng)*0.06 - 0.03; dist[1] = cvtest::randReal(rng)*0.06 - 0.03; if( dist[0]*dist[1] > 0 ) dist[1] = -dist[1]; if( cvtest::randInt(rng)%4 != 0 ) { dist[2] = cvtest::randReal(rng)*0.004 - 0.002; dist[3] = cvtest::randReal(rng)*0.004 - 0.002; if (dist_size > 4) dist[4] = cvtest::randReal(rng)*0.004 - 0.002; } else { dist[2] = dist[3] = 0; if (dist_size > 4) dist[4] = 0; } //Generating P matrix (projection) if( test_mat[INPUT][4].cols != 4 ) { proj[8] = 1; if (cvtest::randInt(rng)%2 == 0) // use identity new camera matrix { proj[0] = 1; proj[4] = 1; } else { proj[0] = cam[0] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[0]; //10% proj[4] = cam[4] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[4]; //10% proj[2] = cam[2] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.width; //15% proj[5] = cam[5] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.height; //15% } } else { proj[10] = 1; proj[0] = cam[0] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[0]; //10% proj[5] = cam[4] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[4]; //10% proj[2] = cam[2] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.width; //15% proj[6] = cam[5] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.height; //15% proj[3] = (img_size.height + img_size.width - 1)*0.5 + cvtest::randReal(rng)*10 - 5; proj[7] = (img_size.height + img_size.width - 1)*0.5 + cvtest::randReal(rng)*10 - 5; proj[11] = (img_size.height + img_size.width - 1)*0.5 + cvtest::randReal(rng)*10 - 5; } //Generating R matrix Mat _rot(3,3,CV_64F); Mat rotation(1,3,CV_64F); rotation.at(0) = CV_PI*(cvtest::randReal(rng) - (double)0.5); // phi rotation.at(1) = CV_PI*(cvtest::randReal(rng) - (double)0.5); // ksi rotation.at(2) = CV_PI*(cvtest::randReal(rng) - (double)0.5); //khi cvtest::Rodrigues(rotation, _rot); //copying data //src_points = &_points; _points.convertTo(test_mat[INPUT][0], test_mat[INPUT][0].type()); _camera.convertTo(test_mat[INPUT][1], test_mat[INPUT][1].type()); _distort.convertTo(test_mat[INPUT][2], test_mat[INPUT][2].type()); _rot.convertTo(test_mat[INPUT][3], test_mat[INPUT][3].type()); _proj.convertTo(test_mat[INPUT][4], test_mat[INPUT][4].type()); zero_distortion = (cvtest::randInt(rng)%2) == 0 ? false : true; zero_new_cam = (cvtest::randInt(rng)%2) == 0 ? false : true; zero_R = (cvtest::randInt(rng)%2) == 0 ? false : true; _points.convertTo(src_points, CV_32F); camera_mat = test_mat[INPUT][1]; distortion_coeffs = test_mat[INPUT][2]; R = test_mat[INPUT][3]; P = test_mat[INPUT][4]; return code; } void CV_UndistortPointsTest::prepare_to_validation(int /*test_case_idx*/) { int dist_size = test_mat[INPUT][2].cols > test_mat[INPUT][2].rows ? test_mat[INPUT][2].cols : test_mat[INPUT][2].rows; double cam[9] = {0,0,0,0,0,0,0,0,1}; double rot[9] = {1,0,0,0,1,0,0,0,1}; double* dist = new double[dist_size ]; double* proj = new double[test_mat[INPUT][4].cols * test_mat[INPUT][4].rows]; double* points = new double[N_POINTS*2]; double* r_points = new double[N_POINTS*2]; //Run reference calculations CvMat ref_points= cvMat(test_mat[INPUT][0].rows,test_mat[INPUT][0].cols,CV_64FC2,r_points); CvMat _camera = cvMat(3,3,CV_64F,cam); CvMat _rot = cvMat(3,3,CV_64F,rot); CvMat _distort = cvMat(test_mat[INPUT][2].rows,test_mat[INPUT][2].cols,CV_64F,dist); CvMat _proj = cvMat(test_mat[INPUT][4].rows,test_mat[INPUT][4].cols,CV_64F,proj); CvMat _points= cvMat(test_mat[TEMP][0].rows,test_mat[TEMP][0].cols,CV_64FC2,points); Mat __camera = cvarrToMat(&_camera); Mat __distort = cvarrToMat(&_distort); Mat __rot = cvarrToMat(&_rot); Mat __proj = cvarrToMat(&_proj); Mat __points = cvarrToMat(&_points); Mat _ref_points = cvarrToMat(&ref_points); cvtest::convert(test_mat[INPUT][1], __camera, __camera.type()); cvtest::convert(test_mat[INPUT][2], __distort, __distort.type()); cvtest::convert(test_mat[INPUT][3], __rot, __rot.type()); cvtest::convert(test_mat[INPUT][4], __proj, __proj.type()); if (useDstMat) { CvMat temp = cvMat(dst_points_mat); for (int i=0;icols == 3)) __P = cvCreateMat(3,3,CV_64F); else __P = cvCreateMat(3,4,CV_64F); if (matP) { cvtest::convert(cvarrToMat(matP), cvarrToMat(__P), -1); } else { cvZero(__P); __P->data.db[0] = 1; __P->data.db[4] = 1; __P->data.db[8] = 1; } CvMat* __R = cvCreateMat(3,3,CV_64F); if (matR) { cvCopy(matR,__R); } else { cvZero(__R); __R->data.db[0] = 1; __R->data.db[4] = 1; __R->data.db[8] = 1; } for (int i=0;icols > 3 ? 1 : 0; double x = (_src->data.db[2*i]-__P->data.db[2])/__P->data.db[0]; double y = (_src->data.db[2*i+1]-__P->data.db[5+movement])/__P->data.db[4+movement]; CvMat inverse = cvMat(3,3,CV_64F,a); cvInvert(__R,&inverse); double w1 = x*inverse.data.db[6]+y*inverse.data.db[7]+inverse.data.db[8]; double _x = (x*inverse.data.db[0]+y*inverse.data.db[1]+inverse.data.db[2])/w1; double _y = (x*inverse.data.db[3]+y*inverse.data.db[4]+inverse.data.db[5])/w1; //Distortions double __x = _x; double __y = _y; if (_distCoeffs) { double r2 = _x*_x+_y*_y; __x = _x*(1+_distCoeffs->data.db[0]*r2+_distCoeffs->data.db[1]*r2*r2)+ 2*_distCoeffs->data.db[2]*_x*_y+_distCoeffs->data.db[3]*(r2+2*_x*_x); __y = _y*(1+_distCoeffs->data.db[0]*r2+_distCoeffs->data.db[1]*r2*r2)+ 2*_distCoeffs->data.db[3]*_x*_y+_distCoeffs->data.db[2]*(r2+2*_y*_y); if ((_distCoeffs->cols > 4) || (_distCoeffs->rows > 4)) { __x+=_x*_distCoeffs->data.db[4]*r2*r2*r2; __y+=_y*_distCoeffs->data.db[4]*r2*r2*r2; } } _dst->data.db[2*i] = __x*_cameraMatrix->data.db[0]+_cameraMatrix->data.db[2]; _dst->data.db[2*i+1] = __y*_cameraMatrix->data.db[4]+_cameraMatrix->data.db[5]; } cvReleaseMat(&__R); cvReleaseMat(&__P); } double CV_UndistortPointsTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) { return 5e-2; } //------------------------------------------------------ class CV_InitUndistortRectifyMapTest : public cvtest::ArrayTest { public: CV_InitUndistortRectifyMapTest(); protected: int prepare_test_case (int test_case_idx); void prepare_to_validation( int test_case_idx ); void get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ); double get_success_error_level( int test_case_idx, int i, int j ); void run_func(); private: static const int MAX_X = 1024; static const int MAX_Y = 1024; bool zero_new_cam; bool zero_distortion; bool zero_R; cv::Size img_size; int map_type; }; CV_InitUndistortRectifyMapTest::CV_InitUndistortRectifyMapTest() { test_array[INPUT].push_back(NULL); // camera matrix test_array[INPUT].push_back(NULL); // distortion coeffs test_array[INPUT].push_back(NULL); // R matrix test_array[INPUT].push_back(NULL); // new camera matrix test_array[OUTPUT].push_back(NULL); // distorted mapx test_array[OUTPUT].push_back(NULL); // distorted mapy test_array[REF_OUTPUT].push_back(NULL); test_array[REF_OUTPUT].push_back(NULL); zero_distortion = zero_new_cam = zero_R = false; map_type = 0; } void CV_InitUndistortRectifyMapTest::get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ) { cvtest::ArrayTest::get_test_array_types_and_sizes(test_case_idx,sizes,types); RNG& rng = ts->get_rng(); //rng.next(); map_type = CV_32F; types[OUTPUT][0] = types[OUTPUT][1] = types[REF_OUTPUT][0] = types[REF_OUTPUT][1] = map_type; img_size.width = cvtest::randInt(rng) % MAX_X + 1; img_size.height = cvtest::randInt(rng) % MAX_Y + 1; types[INPUT][0] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; types[INPUT][1] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; types[INPUT][2] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; types[INPUT][3] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; sizes[OUTPUT][0] = sizes[OUTPUT][1] = sizes[REF_OUTPUT][0] = sizes[REF_OUTPUT][1] = img_size; sizes[INPUT][0] = sizes[INPUT][2] = sizes[INPUT][3] = cvSize(3,3); Size dsize; if (cvtest::randInt(rng)%2) { if (cvtest::randInt(rng)%2) { dsize = Size(1,4); } else { dsize = Size(1,5); } } else { if (cvtest::randInt(rng)%2) { dsize = Size(4,1); } else { dsize = Size(5,1); } } sizes[INPUT][1] = dsize; } int CV_InitUndistortRectifyMapTest::prepare_test_case(int test_case_idx) { RNG& rng = ts->get_rng(); int code = cvtest::ArrayTest::prepare_test_case( test_case_idx ); if (code <= 0) return code; int dist_size = test_mat[INPUT][1].cols > test_mat[INPUT][1].rows ? test_mat[INPUT][1].cols : test_mat[INPUT][1].rows; double cam[9] = {0,0,0,0,0,0,0,0,1}; vector dist(dist_size); vector new_cam(test_mat[INPUT][3].cols * test_mat[INPUT][3].rows); Mat _camera(3,3,CV_64F,cam); Mat _distort(test_mat[INPUT][1].size(),CV_64F,&dist[0]); Mat _new_cam(test_mat[INPUT][3].size(),CV_64F,&new_cam[0]); //Generating camera matrix double sz = MAX(img_size.width,img_size.height); double aspect_ratio = cvtest::randReal(rng)*0.6 + 0.7; cam[2] = (img_size.width - 1)*0.5 + cvtest::randReal(rng)*10 - 5; cam[5] = (img_size.height - 1)*0.5 + cvtest::randReal(rng)*10 - 5; cam[0] = sz/(0.9 - cvtest::randReal(rng)*0.6); cam[4] = aspect_ratio*cam[0]; //Generating distortion coeffs dist[0] = cvtest::randReal(rng)*0.06 - 0.03; dist[1] = cvtest::randReal(rng)*0.06 - 0.03; if( dist[0]*dist[1] > 0 ) dist[1] = -dist[1]; if( cvtest::randInt(rng)%4 != 0 ) { dist[2] = cvtest::randReal(rng)*0.004 - 0.002; dist[3] = cvtest::randReal(rng)*0.004 - 0.002; if (dist_size > 4) dist[4] = cvtest::randReal(rng)*0.004 - 0.002; } else { dist[2] = dist[3] = 0; if (dist_size > 4) dist[4] = 0; } //Generating new camera matrix _new_cam = Scalar::all(0); new_cam[8] = 1; //new_cam[0] = cam[0]; //new_cam[4] = cam[4]; //new_cam[2] = cam[2]; //new_cam[5] = cam[5]; new_cam[0] = cam[0] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[0]; //10% new_cam[4] = cam[4] + (cvtest::randReal(rng) - (double)0.5)*0.2*cam[4]; //10% new_cam[2] = cam[2] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.width; //15% new_cam[5] = cam[5] + (cvtest::randReal(rng) - (double)0.5)*0.3*img_size.height; //15% //Generating R matrix Mat _rot(3,3,CV_64F); Mat rotation(1,3,CV_64F); rotation.at(0) = CV_PI/8*(cvtest::randReal(rng) - (double)0.5); // phi rotation.at(1) = CV_PI/8*(cvtest::randReal(rng) - (double)0.5); // ksi rotation.at(2) = CV_PI/3*(cvtest::randReal(rng) - (double)0.5); //khi cvtest::Rodrigues(rotation, _rot); //cvSetIdentity(_rot); //copying data cvtest::convert( _camera, test_mat[INPUT][0], test_mat[INPUT][0].type()); cvtest::convert( _distort, test_mat[INPUT][1], test_mat[INPUT][1].type()); cvtest::convert( _rot, test_mat[INPUT][2], test_mat[INPUT][2].type()); cvtest::convert( _new_cam, test_mat[INPUT][3], test_mat[INPUT][3].type()); zero_distortion = (cvtest::randInt(rng)%2) == 0 ? false : true; zero_new_cam = (cvtest::randInt(rng)%2) == 0 ? false : true; zero_R = (cvtest::randInt(rng)%2) == 0 ? false : true; return code; } void CV_InitUndistortRectifyMapTest::prepare_to_validation(int/* test_case_idx*/) { cvtest::initUndistortMap(test_mat[INPUT][0], zero_distortion ? cv::Mat() : test_mat[INPUT][1], zero_R ? cv::Mat() : test_mat[INPUT][2], zero_new_cam ? test_mat[INPUT][0] : test_mat[INPUT][3], img_size, test_mat[REF_OUTPUT][0], test_mat[REF_OUTPUT][1], test_mat[REF_OUTPUT][0].type()); } void CV_InitUndistortRectifyMapTest::run_func() { cv::Mat camera_mat = test_mat[INPUT][0]; cv::Mat dist = zero_distortion ? cv::Mat() : test_mat[INPUT][1]; cv::Mat R = zero_R ? cv::Mat() : test_mat[INPUT][2]; cv::Mat new_cam = zero_new_cam ? cv::Mat() : test_mat[INPUT][3]; cv::Mat& mapx = test_mat[OUTPUT][0], &mapy = test_mat[OUTPUT][1]; cv::initUndistortRectifyMap(camera_mat,dist,R,new_cam,img_size,map_type,mapx,mapy); } double CV_InitUndistortRectifyMapTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) { return 8; } ////////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Calib3d_DefaultNewCameraMatrix, accuracy) { CV_DefaultNewCameraMatrixTest test; test.safe_run(); } TEST(Calib3d_UndistortPoints, accuracy) { CV_UndistortPointsTest test; test.safe_run(); } TEST(Calib3d_InitUndistortRectifyMap, accuracy) { CV_InitUndistortRectifyMapTest test; test.safe_run(); } ////////////////////////////// undistort ///////////////////////////////// static void test_remap( const Mat& src, Mat& dst, const Mat& mapx, const Mat& mapy, Mat* mask=0, int interpolation=CV_INTER_LINEAR ) { int x, y, k; int drows = dst.rows, dcols = dst.cols; int srows = src.rows, scols = src.cols; const uchar* sptr0 = src.ptr(); int depth = src.depth(), cn = src.channels(); int elem_size = (int)src.elemSize(); int step = (int)(src.step / CV_ELEM_SIZE(depth)); int delta; if( interpolation != CV_INTER_CUBIC ) { delta = 0; scols -= 1; srows -= 1; } else { delta = 1; scols = MAX(scols - 3, 0); srows = MAX(srows - 3, 0); } int scols1 = MAX(scols - 2, 0); int srows1 = MAX(srows - 2, 0); if( mask ) *mask = Scalar::all(0); for( y = 0; y < drows; y++ ) { uchar* dptr = dst.ptr(y); const float* mx = mapx.ptr(y); const float* my = mapy.ptr(y); uchar* m = mask ? mask->ptr(y) : 0; for( x = 0; x < dcols; x++, dptr += elem_size ) { float xs = mx[x]; float ys = my[x]; int ixs = cvFloor(xs); int iys = cvFloor(ys); if( (unsigned)(ixs - delta - 1) >= (unsigned)scols1 || (unsigned)(iys - delta - 1) >= (unsigned)srows1 ) { if( m ) m[x] = 1; if( (unsigned)(ixs - delta) >= (unsigned)scols || (unsigned)(iys - delta) >= (unsigned)srows ) continue; } xs -= ixs; ys -= iys; switch( depth ) { case CV_8U: { const uchar* sptr = sptr0 + iys*step + ixs*cn; for( k = 0; k < cn; k++ ) { float v00 = sptr[k]; float v01 = sptr[cn + k]; float v10 = sptr[step + k]; float v11 = sptr[step + cn + k]; v00 = v00 + xs*(v01 - v00); v10 = v10 + xs*(v11 - v10); v00 = v00 + ys*(v10 - v00); dptr[k] = (uchar)cvRound(v00); } } break; case CV_16U: { const ushort* sptr = (const ushort*)sptr0 + iys*step + ixs*cn; for( k = 0; k < cn; k++ ) { float v00 = sptr[k]; float v01 = sptr[cn + k]; float v10 = sptr[step + k]; float v11 = sptr[step + cn + k]; v00 = v00 + xs*(v01 - v00); v10 = v10 + xs*(v11 - v10); v00 = v00 + ys*(v10 - v00); ((ushort*)dptr)[k] = (ushort)cvRound(v00); } } break; case CV_32F: { const float* sptr = (const float*)sptr0 + iys*step + ixs*cn; for( k = 0; k < cn; k++ ) { float v00 = sptr[k]; float v01 = sptr[cn + k]; float v10 = sptr[step + k]; float v11 = sptr[step + cn + k]; v00 = v00 + xs*(v01 - v00); v10 = v10 + xs*(v11 - v10); v00 = v00 + ys*(v10 - v00); ((float*)dptr)[k] = (float)v00; } } break; default: assert(0); } } } } class CV_ImgWarpBaseTest : public cvtest::ArrayTest { public: CV_ImgWarpBaseTest( bool warp_matrix ); protected: int read_params( const cv::FileStorage& fs ); int prepare_test_case( int test_case_idx ); void get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ); void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high ); void fill_array( int test_case_idx, int i, int j, Mat& arr ); int interpolation; int max_interpolation; double spatial_scale_zoom, spatial_scale_decimate; }; CV_ImgWarpBaseTest::CV_ImgWarpBaseTest( bool warp_matrix ) { test_array[INPUT].push_back(NULL); if( warp_matrix ) test_array[INPUT].push_back(NULL); test_array[INPUT_OUTPUT].push_back(NULL); test_array[REF_INPUT_OUTPUT].push_back(NULL); max_interpolation = 5; interpolation = 0; element_wise_relative_error = false; spatial_scale_zoom = 0.01; spatial_scale_decimate = 0.005; } int CV_ImgWarpBaseTest::read_params( const cv::FileStorage& fs ) { int code = cvtest::ArrayTest::read_params( fs ); return code; } void CV_ImgWarpBaseTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high ) { cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high ); if( CV_MAT_DEPTH(type) == CV_32F ) { low = Scalar::all(-10.); high = Scalar::all(10); } } void CV_ImgWarpBaseTest::get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ) { RNG& rng = ts->get_rng(); int depth = cvtest::randInt(rng) % 3; int cn = cvtest::randInt(rng) % 3 + 1; cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); depth = depth == 0 ? CV_8U : depth == 1 ? CV_16U : CV_32F; cn += cn == 2; types[INPUT][0] = types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = CV_MAKETYPE(depth, cn); if( test_array[INPUT].size() > 1 ) types[INPUT][1] = cvtest::randInt(rng) & 1 ? CV_32FC1 : CV_64FC1; interpolation = cvtest::randInt(rng) % max_interpolation; } void CV_ImgWarpBaseTest::fill_array( int test_case_idx, int i, int j, Mat& arr ) { if( i != INPUT || j != 0 ) cvtest::ArrayTest::fill_array( test_case_idx, i, j, arr ); } int CV_ImgWarpBaseTest::prepare_test_case( int test_case_idx ) { int code = cvtest::ArrayTest::prepare_test_case( test_case_idx ); Mat& img = test_mat[INPUT][0]; int i, j, cols = img.cols; int type = img.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); double scale = depth == CV_16U ? 1000. : 255.*0.5; double space_scale = spatial_scale_decimate; vector buffer(img.cols*cn); if( code <= 0 ) return code; if( test_mat[INPUT_OUTPUT][0].cols >= img.cols && test_mat[INPUT_OUTPUT][0].rows >= img.rows ) space_scale = spatial_scale_zoom; for( i = 0; i < img.rows; i++ ) { uchar* ptr = img.ptr(i); switch( cn ) { case 1: for( j = 0; j < cols; j++ ) buffer[j] = (float)((sin((i+1)*space_scale)*sin((j+1)*space_scale)+1.)*scale); break; case 2: for( j = 0; j < cols; j++ ) { buffer[j*2] = (float)((sin((i+1)*space_scale)+1.)*scale); buffer[j*2+1] = (float)((sin((i+j)*space_scale)+1.)*scale); } break; case 3: for( j = 0; j < cols; j++ ) { buffer[j*3] = (float)((sin((i+1)*space_scale)+1.)*scale); buffer[j*3+1] = (float)((sin(j*space_scale)+1.)*scale); buffer[j*3+2] = (float)((sin((i+j)*space_scale)+1.)*scale); } break; case 4: for( j = 0; j < cols; j++ ) { buffer[j*4] = (float)((sin((i+1)*space_scale)+1.)*scale); buffer[j*4+1] = (float)((sin(j*space_scale)+1.)*scale); buffer[j*4+2] = (float)((sin((i+j)*space_scale)+1.)*scale); buffer[j*4+3] = (float)((sin((i-j)*space_scale)+1.)*scale); } break; default: assert(0); } /*switch( depth ) { case CV_8U: for( j = 0; j < cols*cn; j++ ) ptr[j] = (uchar)cvRound(buffer[j]); break; case CV_16U: for( j = 0; j < cols*cn; j++ ) ((ushort*)ptr)[j] = (ushort)cvRound(buffer[j]); break; case CV_32F: for( j = 0; j < cols*cn; j++ ) ((float*)ptr)[j] = (float)buffer[j]; break; default: assert(0); }*/ cv::Mat src(1, cols*cn, CV_32F, &buffer[0]); cv::Mat dst(1, cols*cn, depth, ptr); src.convertTo(dst, dst.type()); } return code; } class CV_UndistortTest : public CV_ImgWarpBaseTest { public: CV_UndistortTest(); protected: void get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ); void run_func(); int prepare_test_case( int test_case_idx ); void prepare_to_validation( int /*test_case_idx*/ ); double get_success_error_level( int test_case_idx, int i, int j ); void fill_array( int test_case_idx, int i, int j, Mat& arr ); private: cv::Mat input0; cv::Mat input1; cv::Mat input2; cv::Mat input_new_cam; cv::Mat input_output; bool zero_new_cam; bool zero_distortion; }; CV_UndistortTest::CV_UndistortTest() : CV_ImgWarpBaseTest( false ) { //spatial_scale_zoom = spatial_scale_decimate; test_array[INPUT].push_back(NULL); test_array[INPUT].push_back(NULL); test_array[INPUT].push_back(NULL); spatial_scale_decimate = spatial_scale_zoom; } void CV_UndistortTest::get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ) { RNG& rng = ts->get_rng(); CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); int type = types[INPUT][0]; type = CV_MAKETYPE( CV_8U, CV_MAT_CN(type) ); types[INPUT][0] = types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = type; types[INPUT][1] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; types[INPUT][2] = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; sizes[INPUT][1] = cvSize(3,3); sizes[INPUT][2] = cvtest::randInt(rng)%2 ? cvSize(4,1) : cvSize(1,4); types[INPUT][3] = types[INPUT][1]; sizes[INPUT][3] = sizes[INPUT][1]; interpolation = CV_INTER_LINEAR; } void CV_UndistortTest::fill_array( int test_case_idx, int i, int j, Mat& arr ) { if( i != INPUT ) CV_ImgWarpBaseTest::fill_array( test_case_idx, i, j, arr ); } void CV_UndistortTest::run_func() { if (zero_distortion) { cv::undistort(input0,input_output,input1,cv::Mat()); } else { cv::undistort(input0,input_output,input1,input2); } } double CV_UndistortTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) { int depth = test_mat[INPUT][0].depth(); return depth == CV_8U ? 16 : depth == CV_16U ? 1024 : 5e-2; } int CV_UndistortTest::prepare_test_case( int test_case_idx ) { RNG& rng = ts->get_rng(); int code = CV_ImgWarpBaseTest::prepare_test_case( test_case_idx ); const Mat& src = test_mat[INPUT][0]; double k[4], a[9] = {0,0,0,0,0,0,0,0,1}; double new_cam[9] = {0,0,0,0,0,0,0,0,1}; double sz = MAX(src.rows, src.cols); Mat& _new_cam0 = test_mat[INPUT][3]; Mat _new_cam(test_mat[INPUT][3].rows,test_mat[INPUT][3].cols,CV_64F,new_cam); Mat& _a0 = test_mat[INPUT][1]; Mat _a(3,3,CV_64F,a); Mat& _k0 = test_mat[INPUT][2]; Mat _k(_k0.rows,_k0.cols, CV_MAKETYPE(CV_64F,_k0.channels()),k); if( code <= 0 ) return code; double aspect_ratio = cvtest::randReal(rng)*0.6 + 0.7; a[2] = (src.cols - 1)*0.5 + cvtest::randReal(rng)*10 - 5; a[5] = (src.rows - 1)*0.5 + cvtest::randReal(rng)*10 - 5; a[0] = sz/(0.9 - cvtest::randReal(rng)*0.6); a[4] = aspect_ratio*a[0]; k[0] = cvtest::randReal(rng)*0.06 - 0.03; k[1] = cvtest::randReal(rng)*0.06 - 0.03; if( k[0]*k[1] > 0 ) k[1] = -k[1]; if( cvtest::randInt(rng)%4 != 0 ) { k[2] = cvtest::randReal(rng)*0.004 - 0.002; k[3] = cvtest::randReal(rng)*0.004 - 0.002; } else k[2] = k[3] = 0; new_cam[0] = a[0] + (cvtest::randReal(rng) - (double)0.5)*0.2*a[0]; //10% new_cam[4] = a[4] + (cvtest::randReal(rng) - (double)0.5)*0.2*a[4]; //10% new_cam[2] = a[2] + (cvtest::randReal(rng) - (double)0.5)*0.3*test_mat[INPUT][0].rows; //15% new_cam[5] = a[5] + (cvtest::randReal(rng) - (double)0.5)*0.3*test_mat[INPUT][0].cols; //15% _a.convertTo(_a0, _a0.depth()); zero_distortion = (cvtest::randInt(rng)%2) == 0 ? false : true; _k.convertTo(_k0, _k0.depth()); zero_new_cam = (cvtest::randInt(rng)%2) == 0 ? false : true; _new_cam.convertTo(_new_cam0, _new_cam0.depth()); //Testing C++ code //useCPlus = ((cvtest::randInt(rng) % 2)!=0); input0 = test_mat[INPUT][0]; input1 = test_mat[INPUT][1]; input2 = test_mat[INPUT][2]; input_new_cam = test_mat[INPUT][3]; return code; } void CV_UndistortTest::prepare_to_validation( int /*test_case_idx*/ ) { Mat& output = test_mat[INPUT_OUTPUT][0]; input_output.convertTo(output, output.type()); Mat& src = test_mat[INPUT][0]; Mat& dst = test_mat[REF_INPUT_OUTPUT][0]; Mat& dst0 = test_mat[INPUT_OUTPUT][0]; Mat mapx, mapy; cvtest::initUndistortMap( test_mat[INPUT][1], test_mat[INPUT][2], Mat(), Mat(), dst.size(), mapx, mapy, CV_32F ); Mat mask( dst.size(), CV_8U ); test_remap( src, dst, mapx, mapy, &mask, interpolation ); dst.setTo(Scalar::all(0), mask); dst0.setTo(Scalar::all(0), mask); } class CV_UndistortMapTest : public cvtest::ArrayTest { public: CV_UndistortMapTest(); protected: void get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ); void run_func(); int prepare_test_case( int test_case_idx ); void prepare_to_validation( int /*test_case_idx*/ ); double get_success_error_level( int test_case_idx, int i, int j ); void fill_array( int test_case_idx, int i, int j, Mat& arr ); private: bool dualChannel; }; CV_UndistortMapTest::CV_UndistortMapTest() { test_array[INPUT].push_back(NULL); test_array[INPUT].push_back(NULL); test_array[OUTPUT].push_back(NULL); test_array[OUTPUT].push_back(NULL); test_array[REF_OUTPUT].push_back(NULL); test_array[REF_OUTPUT].push_back(NULL); element_wise_relative_error = false; } void CV_UndistortMapTest::get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ) { RNG& rng = ts->get_rng(); cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types ); int depth = cvtest::randInt(rng)%2 ? CV_64F : CV_32F; Size sz = sizes[OUTPUT][0]; types[INPUT][0] = types[INPUT][1] = depth; dualChannel = cvtest::randInt(rng)%2 == 0; types[OUTPUT][0] = types[OUTPUT][1] = types[REF_OUTPUT][0] = types[REF_OUTPUT][1] = dualChannel ? CV_32FC2 : CV_32F; sizes[INPUT][0] = cvSize(3,3); sizes[INPUT][1] = cvtest::randInt(rng)%2 ? cvSize(4,1) : cvSize(1,4); sz.width = MAX(sz.width,16); sz.height = MAX(sz.height,16); sizes[OUTPUT][0] = sizes[OUTPUT][1] = sizes[REF_OUTPUT][0] = sizes[REF_OUTPUT][1] = sz; } void CV_UndistortMapTest::fill_array( int test_case_idx, int i, int j, Mat& arr ) { if( i != INPUT ) cvtest::ArrayTest::fill_array( test_case_idx, i, j, arr ); } void CV_UndistortMapTest::run_func() { cv::Mat a = test_mat[INPUT][0], k = test_mat[INPUT][1]; cv::Mat &mapx = test_mat[OUTPUT][0], &mapy = !dualChannel ? test_mat[OUTPUT][1] : mapx; cv::Size mapsz = test_mat[OUTPUT][0].size(); cv::initUndistortRectifyMap(a, k, cv::Mat(), a, mapsz, dualChannel ? CV_32FC2 : CV_32FC1, mapx, !dualChannel ? cv::_InputOutputArray(mapy) : cv::noArray()); } double CV_UndistortMapTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ ) { return 1e-3; } int CV_UndistortMapTest::prepare_test_case( int test_case_idx ) { RNG& rng = ts->get_rng(); int code = cvtest::ArrayTest::prepare_test_case( test_case_idx ); const Mat& mapx = test_mat[OUTPUT][0]; double k[4], a[9] = {0,0,0,0,0,0,0,0,1}; double sz = MAX(mapx.rows, mapx.cols); Mat& _a0 = test_mat[INPUT][0], &_k0 = test_mat[INPUT][1]; Mat _a(3,3,CV_64F,a); Mat _k(_k0.rows,_k0.cols, CV_MAKETYPE(CV_64F,_k0.channels()),k); if( code <= 0 ) return code; double aspect_ratio = cvtest::randReal(rng)*0.6 + 0.7; a[2] = (mapx.cols - 1)*0.5 + cvtest::randReal(rng)*10 - 5; a[5] = (mapx.rows - 1)*0.5 + cvtest::randReal(rng)*10 - 5; a[0] = sz/(0.9 - cvtest::randReal(rng)*0.6); a[4] = aspect_ratio*a[0]; k[0] = cvtest::randReal(rng)*0.06 - 0.03; k[1] = cvtest::randReal(rng)*0.06 - 0.03; if( k[0]*k[1] > 0 ) k[1] = -k[1]; k[2] = cvtest::randReal(rng)*0.004 - 0.002; k[3] = cvtest::randReal(rng)*0.004 - 0.002; _a.convertTo(_a0, _a0.depth()); _k.convertTo(_k0, _k0.depth()); if (dualChannel) { test_mat[REF_OUTPUT][1] = Scalar::all(0); test_mat[OUTPUT][1] = Scalar::all(0); } return code; } void CV_UndistortMapTest::prepare_to_validation( int ) { Mat mapx, mapy; cvtest::initUndistortMap( test_mat[INPUT][0], test_mat[INPUT][1], Mat(), Mat(), test_mat[REF_OUTPUT][0].size(), mapx, mapy, CV_32F ); if( !dualChannel ) { mapx.copyTo(test_mat[REF_OUTPUT][0]); mapy.copyTo(test_mat[REF_OUTPUT][1]); } else { Mat p[2] = {mapx, mapy}; cv::merge(p, 2, test_mat[REF_OUTPUT][0]); } } TEST(Calib3d_Undistort, accuracy) { CV_UndistortTest test; test.safe_run(); } TEST(Calib3d_InitUndistortMap, accuracy) { CV_UndistortMapTest test; test.safe_run(); } TEST(Calib3d_UndistortPoints, inputShape) { //https://github.com/opencv/opencv/issues/14423 Matx33d cameraMatrix = Matx33d::eye(); { //2xN 1-channel Mat imagePoints(2, 3, CV_32FC1); imagePoints.at(0,0) = 320; imagePoints.at(1,0) = 240; imagePoints.at(0,1) = 0; imagePoints.at(1,1) = 240; imagePoints.at(0,2) = 320; imagePoints.at(1,2) = 0; vector normalized; undistortPoints(imagePoints, normalized, cameraMatrix, noArray()); EXPECT_EQ(static_cast(normalized.size()), imagePoints.cols); for (int i = 0; i < static_cast(normalized.size()); i++) { EXPECT_NEAR(normalized[i].x, imagePoints.at(0,i), std::numeric_limits::epsilon()); EXPECT_NEAR(normalized[i].y, imagePoints.at(1,i), std::numeric_limits::epsilon()); } } { //Nx2 1-channel Mat imagePoints(3, 2, CV_32FC1); imagePoints.at(0,0) = 320; imagePoints.at(0,1) = 240; imagePoints.at(1,0) = 0; imagePoints.at(1,1) = 240; imagePoints.at(2,0) = 320; imagePoints.at(2,1) = 0; vector normalized; undistortPoints(imagePoints, normalized, cameraMatrix, noArray()); EXPECT_EQ(static_cast(normalized.size()), imagePoints.rows); for (int i = 0; i < static_cast(normalized.size()); i++) { EXPECT_NEAR(normalized[i].x, imagePoints.at(i,0), std::numeric_limits::epsilon()); EXPECT_NEAR(normalized[i].y, imagePoints.at(i,1), std::numeric_limits::epsilon()); } } { //1xN 2-channel Mat imagePoints(1, 3, CV_32FC2); imagePoints.at(0,0) = Vec2f(320, 240); imagePoints.at(0,1) = Vec2f(0, 240); imagePoints.at(0,2) = Vec2f(320, 0); vector normalized; undistortPoints(imagePoints, normalized, cameraMatrix, noArray()); EXPECT_EQ(static_cast(normalized.size()), imagePoints.cols); for (int i = 0; i < static_cast(normalized.size()); i++) { EXPECT_NEAR(normalized[i].x, imagePoints.at(0,i)(0), std::numeric_limits::epsilon()); EXPECT_NEAR(normalized[i].y, imagePoints.at(0,i)(1), std::numeric_limits::epsilon()); } } { //Nx1 2-channel Mat imagePoints(3, 1, CV_32FC2); imagePoints.at(0,0) = Vec2f(320, 240); imagePoints.at(1,0) = Vec2f(0, 240); imagePoints.at(2,0) = Vec2f(320, 0); vector normalized; undistortPoints(imagePoints, normalized, cameraMatrix, noArray()); EXPECT_EQ(static_cast(normalized.size()), imagePoints.rows); for (int i = 0; i < static_cast(normalized.size()); i++) { EXPECT_NEAR(normalized[i].x, imagePoints.at(i,0)(0), std::numeric_limits::epsilon()); EXPECT_NEAR(normalized[i].y, imagePoints.at(i,0)(1), std::numeric_limits::epsilon()); } } { //vector vector imagePoints; imagePoints.push_back(Point2f(320, 240)); imagePoints.push_back(Point2f(0, 240)); imagePoints.push_back(Point2f(320, 0)); vector normalized; undistortPoints(imagePoints, normalized, cameraMatrix, noArray()); EXPECT_EQ(normalized.size(), imagePoints.size()); for (int i = 0; i < static_cast(normalized.size()); i++) { EXPECT_NEAR(normalized[i].x, imagePoints[i].x, std::numeric_limits::epsilon()); EXPECT_NEAR(normalized[i].y, imagePoints[i].y, std::numeric_limits::epsilon()); } } { //vector vector imagePoints; imagePoints.push_back(Point2d(320, 240)); imagePoints.push_back(Point2d(0, 240)); imagePoints.push_back(Point2d(320, 0)); vector normalized; undistortPoints(imagePoints, normalized, cameraMatrix, noArray()); EXPECT_EQ(normalized.size(), imagePoints.size()); for (int i = 0; i < static_cast(normalized.size()); i++) { EXPECT_NEAR(normalized[i].x, imagePoints[i].x, std::numeric_limits::epsilon()); EXPECT_NEAR(normalized[i].y, imagePoints[i].y, std::numeric_limits::epsilon()); } } } TEST(Calib3d_UndistortPoints, outputShape) { Matx33d cameraMatrix = Matx33d::eye(); { vector imagePoints; imagePoints.push_back(Point2f(320, 240)); imagePoints.push_back(Point2f(0, 240)); imagePoints.push_back(Point2f(320, 0)); //Mat --> will be Nx1 2-channel Mat normalized; undistortPoints(imagePoints, normalized, cameraMatrix, noArray()); EXPECT_EQ(static_cast(imagePoints.size()), normalized.rows); for (int i = 0; i < normalized.rows; i++) { EXPECT_NEAR(normalized.at(i,0)(0), imagePoints[i].x, std::numeric_limits::epsilon()); EXPECT_NEAR(normalized.at(i,0)(1), imagePoints[i].y, std::numeric_limits::epsilon()); } } { vector imagePoints; imagePoints.push_back(Point2f(320, 240)); imagePoints.push_back(Point2f(0, 240)); imagePoints.push_back(Point2f(320, 0)); //Nx1 2-channel Mat normalized(static_cast(imagePoints.size()), 1, CV_32FC2); undistortPoints(imagePoints, normalized, cameraMatrix, noArray()); EXPECT_EQ(static_cast(imagePoints.size()), normalized.rows); for (int i = 0; i < normalized.rows; i++) { EXPECT_NEAR(normalized.at(i,0)(0), imagePoints[i].x, std::numeric_limits::epsilon()); EXPECT_NEAR(normalized.at(i,0)(1), imagePoints[i].y, std::numeric_limits::epsilon()); } } { vector imagePoints; imagePoints.push_back(Point2f(320, 240)); imagePoints.push_back(Point2f(0, 240)); imagePoints.push_back(Point2f(320, 0)); //1xN 2-channel Mat normalized(1, static_cast(imagePoints.size()), CV_32FC2); undistortPoints(imagePoints, normalized, cameraMatrix, noArray()); EXPECT_EQ(static_cast(imagePoints.size()), normalized.cols); for (int i = 0; i < normalized.rows; i++) { EXPECT_NEAR(normalized.at(0,i)(0), imagePoints[i].x, std::numeric_limits::epsilon()); EXPECT_NEAR(normalized.at(0,i)(1), imagePoints[i].y, std::numeric_limits::epsilon()); } } { vector imagePoints; imagePoints.push_back(Point2f(320, 240)); imagePoints.push_back(Point2f(0, 240)); imagePoints.push_back(Point2f(320, 0)); //vector vector normalized; undistortPoints(imagePoints, normalized, cameraMatrix, noArray()); EXPECT_EQ(imagePoints.size(), normalized.size()); for (int i = 0; i < static_cast(normalized.size()); i++) { EXPECT_NEAR(normalized[i].x, imagePoints[i].x, std::numeric_limits::epsilon()); EXPECT_NEAR(normalized[i].y, imagePoints[i].y, std::numeric_limits::epsilon()); } } { vector imagePoints; imagePoints.push_back(Point2d(320, 240)); imagePoints.push_back(Point2d(0, 240)); imagePoints.push_back(Point2d(320, 0)); //vector vector normalized; undistortPoints(imagePoints, normalized, cameraMatrix, noArray()); EXPECT_EQ(imagePoints.size(), normalized.size()); for (int i = 0; i < static_cast(normalized.size()); i++) { EXPECT_NEAR(normalized[i].x, imagePoints[i].x, std::numeric_limits::epsilon()); EXPECT_NEAR(normalized[i].y, imagePoints[i].y, std::numeric_limits::epsilon()); } } } TEST(Imgproc_undistort, regression_15286) { double kmat_data[9] = { 3217, 0, 1592, 0, 3217, 1201, 0, 0, 1 }; Mat kmat(3, 3, CV_64F, kmat_data); double dist_coeff_data[5] = { 0.04, -0.4, -0.01, 0.04, 0.7 }; Mat dist_coeffs(5, 1, CV_64F, dist_coeff_data); Mat img = Mat::zeros(512, 512, CV_8UC1); img.at(128, 128) = 255; img.at(128, 384) = 255; img.at(384, 384) = 255; img.at(384, 128) = 255; Mat ref = Mat::zeros(512, 512, CV_8UC1); ref.at(Point(24, 98)) = 78; ref.at(Point(24, 99)) = 114; ref.at(Point(25, 98)) = 36; ref.at(Point(25, 99)) = 60; ref.at(Point(27, 361)) = 6; ref.at(Point(28, 361)) = 188; ref.at(Point(28, 362)) = 49; ref.at(Point(29, 361)) = 44; ref.at(Point(29, 362)) = 16; ref.at(Point(317, 366)) = 134; ref.at(Point(317, 367)) = 78; ref.at(Point(318, 366)) = 40; ref.at(Point(318, 367)) = 29; ref.at(Point(310, 104)) = 106; ref.at(Point(310, 105)) = 30; ref.at(Point(311, 104)) = 112; ref.at(Point(311, 105)) = 38; Mat img_undist; undistort(img, img_undist, kmat, dist_coeffs); ASSERT_EQ(0.0, cvtest::norm(img_undist, ref, cv::NORM_INF)); } TEST(Calib3d_initUndistortRectifyMap, regression_14467) { Size size_w_h(512 + 3, 512); Matx33f k( 6200, 0, size_w_h.width / 2.0f, 0, 6200, size_w_h.height / 2.0f, 0, 0, 1 ); Mat mesh_uv(size_w_h, CV_32FC2); for (int i = 0; i < size_w_h.height; i++) { for (int j = 0; j < size_w_h.width; j++) { mesh_uv.at(i, j) = Vec2f((float)j, (float)i); } } Matx d( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.09, 0.0 ); Mat mapxy, dst; initUndistortRectifyMap(k, d, noArray(), k, size_w_h, CV_32FC2, mapxy, noArray()); undistortPoints(mapxy.reshape(2, (int)mapxy.total()), dst, k, d, noArray(), k); dst = dst.reshape(2, mapxy.rows); EXPECT_LE(cvtest::norm(dst, mesh_uv, NORM_INF), 1e-3); } }} // namespace