''' This is a sample script to run GPT-2 inference in OpenCV using ONNX model. The script loads the GPT-2 model and runs inference on a given prompt. Currently script only works with fixed size window, that means you will have to specify prompt of the same length as when model was exported to ONNX. Exporting GPT-2 model to ONNX. To export GPT-2 model to ONNX, you can use the following procedure: 1. Clone fork of Andrej Karpathy's GPT-2 repository: git clone -b ash/export-gpt2-onnx-dynamic https://github.com/Abdurrahheem/build-nanogpt.git 2. Install the required dependencies: pip install -r requirements.txt 3 Export the model to ONNX: python export2onnx.py --promt= Run the script: 1. Install the required dependencies: pip install tiktoken==0.7.0 numpy tqdm 2. Run the script: python gpt2_inference.py --model= --prompt= ''' import numpy as np import tiktoken import argparse import cv2 as cv def parse_args(): parser = argparse.ArgumentParser(description='Use this script to run GPT-2 inference in OpenCV', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--model', type=str, required=True, help='Path to GPT-2 model ONNX model file.') parser.add_argument("--prompt", type=str, default="Hello, I'm a language model,", help="Prompt to start with.") parser.add_argument("--max_seq_len", type=int, default=1024, help="Number of tokens to continue.") parser.add_argument("--seed", type=int, default=0, help="Random seed") return parser.parse_args() def stable_softmax(logits): exp_logits = np.exp(logits - np.max(logits, axis=-1, keepdims=True)) return exp_logits / np.sum(exp_logits, axis=-1, keepdims=True) def gpt2_inference(net, tokens, max_length, tokenizer): print("Inferencing GPT-2 model...") x = np.array(tokens) x = np.tile(x, (1, 1)).astype(np.int32) pos = np.arange(0, len(x), dtype=np.int32) # warm up net.setInputsNames(['input_ids', 'position_ids']) net.setInput(x, 'input_ids') net.setInput(pos, 'position_ids') logits = net.forward() stop_tokens = (50256, ) ## could be extended to include more stop tokens print("\n", tokenizer.decode(tokens), sep="", end="") while 0 < max_length and x[:, -1] not in stop_tokens: net.setInputsNames(['input_ids', 'position_ids']) net.setInput(x, 'input_ids') net.setInput(pos, 'position_ids') logits = net.forward() # logits is assumed to be (B, seq_length, vocab_size) and needs to be the last token's logits logits = logits[:, -1, :] # (B, vocab_size) # Get the probabilities using softmax probs = stable_softmax(logits) # Do top-k sampling of 50 topk_indices = np.argpartition(probs, -50, axis=-1)[:, -50:] topk_probs = np.take_along_axis(probs, topk_indices, axis=-1) # Normalize top-k probabilities topk_probs /= np.sum(topk_probs, axis=-1, keepdims=True) # Select a token from the top-k probabilities sampled_indices = [np.random.choice(topk_indices[i], p=topk_probs[i]) for i in range(len(topk_probs))] sampled_indices = np.array(sampled_indices).reshape(-1, 1) # Decode and print the new token new_word = tokenizer.decode([sampled_indices[0, 0]]) ## clean the prints from the previous line print(new_word, end='', flush=True) # Append to the sequence x = np.concatenate((x, sampled_indices), axis=1) pos = np.arange(0, x.shape[1], dtype=np.int32) # shape (T) max_length -= 1 print('\n') if __name__ == '__main__': args = parse_args() print("Preparing GPT-2 model...") np.random.seed(args.seed) max_length = args.max_seq_len prompt = args.prompt net = cv.dnn.readNet(args.model) enc = tiktoken.get_encoding('gpt2') tokens = enc.encode(prompt) gpt2_inference(net, tokens, max_length, enc)