import numpy as np, cv2 as cv, matplotlib.pyplot as plt, time, sys, os from mpl_toolkits.mplot3d import axes3d, Axes3D def getEpipolarError(F, pts1_, pts2_, inliers): pts1 = np.concatenate((pts1_.T, np.ones((1, pts1_.shape[0]))))[:,inliers] pts2 = np.concatenate((pts2_.T, np.ones((1, pts2_.shape[0]))))[:,inliers] lines2 = np.dot(F , pts1) lines1 = np.dot(F.T, pts2) return np.median((np.abs(np.sum(pts1 * lines1, axis=0)) / np.sqrt(lines1[0,:]**2 + lines1[1,:]**2) + np.abs(np.sum(pts2 * lines2, axis=0)) / np.sqrt(lines2[0,:]**2 + lines2[1,:]**2))/2) if __name__ == '__main__': if len(sys.argv) < 3: print("Path to data file and directory to image files are missing!\nData file must have" " format:\n--------------\n image_name_1\nimage_name_2\nk11 k12 k13\n0 k22 k23\n" "0 0 1\n--------------\nIf image_name_{1,2} are not in the same directory as " "the data file then add argument with directory to image files.\nFor example: " "python essential_mat_reconstr.py essential_mat_data.txt ./") exit(1) else: data_file = sys.argv[1] image_dir = sys.argv[2] if not os.path.isfile(data_file): print('Incorrect path to data file!') exit(1) with open(data_file, 'r') as f: image1 = cv.imread(image_dir+f.readline()[:-1]) # remove '\n' image2 = cv.imread(image_dir+f.readline()[:-1]) K = np.array([[float(x) for x in f.readline().split(' ')], [float(x) for x in f.readline().split(' ')], [float(x) for x in f.readline().split(' ')]]) if image1 is None or image2 is None: print('Incorrect directory to images!') exit(1) if K.shape != (3,3): print('Intrinsic matrix has incorrect format!') exit(1) print('find keypoints and compute descriptors') detector = cv.SIFT_create(nfeatures=20000) keypoints1, descriptors1 = detector.detectAndCompute(cv.cvtColor(image1, cv.COLOR_BGR2GRAY), None) keypoints2, descriptors2 = detector.detectAndCompute(cv.cvtColor(image2, cv.COLOR_BGR2GRAY), None) matcher = cv.FlannBasedMatcher(dict(algorithm=0, trees=5), dict(checks=32)) print('match with FLANN, size of descriptors', descriptors1.shape, descriptors2.shape) matches_vector = matcher.knnMatch(descriptors1, descriptors2, k=2) print('find good keypoints') pts1 = []; pts2 = [] for m in matches_vector: # compare best and second match using Lowe ratio test if m[0].distance / m[1].distance < 0.75: pts1.append(keypoints1[m[0].queryIdx].pt) pts2.append(keypoints2[m[0].trainIdx].pt) pts1 = np.array(pts1); pts2 = np.array(pts2) print('points size', pts1.shape[0]) print('Essential matrix RANSAC') start = time.time() E, inliers = cv.findEssentialMat(pts1, pts2, K, cv.RANSAC, 0.999, 1.0) print('RANSAC time', time.time() - start, 'seconds') print('Median error to epipolar lines', getEpipolarError (np.dot(np.linalg.inv(K).T, np.dot(E, np.linalg.inv(K))), pts1, pts2, inliers.squeeze()), 'number of inliers', inliers.sum()) print('Decompose essential matrix') R1, R2, t = cv.decomposeEssentialMat(E) # Assume relative pose. Fix the first camera P1 = np.concatenate((K, np.zeros((3,1))), axis=1) # K [I | 0] P2s = [np.dot(K, np.concatenate((R1, t), axis=1)), # K[R1 | t] np.dot(K, np.concatenate((R1, -t), axis=1)), # K[R1 | -t] np.dot(K, np.concatenate((R2, t), axis=1)), # K[R2 | t] np.dot(K, np.concatenate((R2, -t), axis=1))] # K[R2 | -t] obj_pts_per_cam = [] # enumerate over all P2 projection matrices for cam_idx, P2 in enumerate(P2s): obj_pts = [] for i, (pt1, pt2) in enumerate(zip(pts1, pts2)): if not inliers[i]: continue # find object point by triangulation of image points by projection matrices obj_pt = cv.triangulatePoints(P1, P2, pt1, pt2) obj_pt /= obj_pt[3] # check if reprojected point has positive depth if obj_pt[2] > 0: obj_pts.append([obj_pt[0], obj_pt[1], obj_pt[2]]) obj_pts_per_cam.append(obj_pts) best_cam_idx = np.array([len(obj_pts_per_cam[0]),len(obj_pts_per_cam[1]), len(obj_pts_per_cam[2]),len(obj_pts_per_cam[3])]).argmax() max_pts = len(obj_pts_per_cam[best_cam_idx]) print('Number of object points', max_pts) # filter object points to have reasonable depth MAX_DEPTH = 6. obj_pts = [] for pt in obj_pts_per_cam[best_cam_idx]: if pt[2] < MAX_DEPTH: obj_pts.append(pt) obj_pts = np.array(obj_pts).reshape(len(obj_pts), 3) # visualize image points for i, (pt1, pt2) in enumerate(zip(pts1, pts2)): if inliers[i]: cv.circle(image1, (int(pt1[0]), int(pt1[1])), 7, (255,0,0), -1) cv.circle(image2, (int(pt2[0]), int(pt2[1])), 7, (255,0,0), -1) # concatenate two images image1 = np.concatenate((image1, image2), axis=1) # resize concatenated image new_img_size = 1200. * 800. image1 = cv.resize(image1, (int(np.sqrt(image1.shape[1] * new_img_size / image1.shape[0])), int(np.sqrt (image1.shape[0] * new_img_size / image1.shape[1])))) # plot object points fig = plt.figure(figsize=(13.0, 11.0)) ax = fig.add_subplot(111, projection='3d') ax.set_aspect('equal') ax.scatter(obj_pts[:,0], obj_pts[:,1], obj_pts[:,2], c='r', marker='o', s=3) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('depth') ax.view_init(azim=-80, elev=110) # save figures cv.imshow("matches", image1) cv.imwrite('matches_E.png', image1) plt.savefig('reconstruction_3D.png') cv.waitKey(0) plt.show()