#!/usr/bin/env python from __future__ import print_function import numpy as np import cv2 as cv import tempfile from tests_common import NewOpenCVTests class photo_test(NewOpenCVTests): def setUp(self): super(photo_test, self).setUp() self.image_cache = {} def test_model(self): s = np.array([ [214.11, 98.67, 37.97], [231.94, 153.1, 85.27], [204.08, 143.71, 78.46], [190.58, 122.99, 30.84], [230.93, 148.46, 100.84], [228.64, 206.97, 97.5], [229.09, 137.07, 55.29], [189.21, 111.22, 92.66], [223.5, 96.42, 75.45], [201.82, 69.71, 50.9], [240.52, 196.47, 59.3], [235.73, 172.13, 54.], [131.6, 75.04, 68.86], [189.04, 170.43, 42.05], [222.23, 74., 71.95], [241.01, 199.1, 61.15], [224.99, 101.4, 100.24], [174.58, 152.63, 91.52], [248.06, 227.69, 140.5], [241.15, 201.38, 115.58], [236.49, 175.87, 88.86], [212.19, 133.49, 54.79], [181.17, 102.94, 36.18], [115.1, 53.77, 15.23] ], dtype=np.float64) src = (s / 255.).astype(np.float64).reshape(-1, 1, 3) model = cv.ccm.ColorCorrectionModel(src, cv.ccm.COLORCHECKER_MACBETH) colorCorrectionMat = model.compute() src_rgbl = np.array([ [0.68078957, 0.12382801, 0.01514889], [0.81177942, 0.32550452, 0.089818], [0.61259378, 0.2831933, 0.07478902], [0.52696493, 0.20105976, 0.00958657], [0.80402284, 0.30419523, 0.12989841], [0.78658646, 0.63184111, 0.12062068], [0.78999637, 0.25520249, 0.03462853], [0.51866697, 0.16114393, 0.1078387], [0.74820768, 0.11770076, 0.06862177], [0.59776825, 0.05765816, 0.02886627], [0.8793145, 0.56346033, 0.0403954], [0.84124847, 0.42120746, 0.03287592], [0.23333214, 0.06780408, 0.05612276], [0.5176423, 0.41210976, 0.01896255], [0.73888613, 0.06575388, 0.06181293], [0.88326036, 0.58018751, 0.04321991], [0.75922531, 0.13149072, 0.1282041], [0.4345097, 0.32331019, 0.10494139], [0.94110142, 0.77941419, 0.26946323], [0.88438952, 0.5949049, 0.17536928], [0.84722687, 0.44160449, 0.09834799], [0.66743106, 0.24076803, 0.03394333], [0.47141286, 0.13592419, 0.01362205], [0.17377101, 0.03256864, 0.00203026] ], dtype=np.float64) np.testing.assert_allclose(src_rgbl, model.getSrcLinearRGB().reshape(-1, 3), rtol=1e-4, atol=1e-4) dst_rgbl = np.array([ [0.17303173, 0.08211037, 0.05672686], [0.56832031, 0.29269488, 0.21835529], [0.10365019, 0.19588357, 0.33140475], [0.10159676, 0.14892193, 0.05188294], [0.22159627, 0.21584476, 0.43461196], [0.10806379, 0.51437196, 0.41264213], [0.74736423, 0.20062878, 0.02807988], [0.05757947, 0.10516793, 0.40296109], [0.56676218, 0.08424805, 0.11969461], [0.11099515, 0.04230796, 0.14292554], [0.34546869, 0.50872001, 0.04944204], [0.79461323, 0.35942459, 0.02051968], [0.01710416, 0.05022043, 0.29220674], [0.05598012, 0.30021149, 0.06871162], [0.45585457, 0.03033727, 0.04085654], [0.85737614, 0.56757335, 0.0068503], [0.53348585, 0.08861148, 0.30750446], [-0.0374061, 0.24699498, 0.40041217], [0.91262695, 0.91493909, 0.89367049], [0.57981916, 0.59200418, 0.59328881], [0.35490581, 0.36544831, 0.36755375], [0.19007357, 0.19186587, 0.19308397], [0.08529188, 0.08887994, 0.09257601], [0.0303193, 0.03113818, 0.03274845] ], dtype=np.float64) np.testing.assert_allclose(dst_rgbl, model.getRefLinearRGB().reshape(-1, 3), rtol=1e-4, atol=1e-4) mask = np.ones((24, 1), dtype=np.uint8) np.testing.assert_allclose(model.getMask(), mask, rtol=0.0, atol=0.0) # Test reference color matrix refColorMat = np.array([ [0.37406520, 0.02066507, 0.05804047], [0.12719672, 0.77389268, -0.01569404], [-0.27627010, 0.00603427, 2.74272981] ], dtype=np.float64) np.testing.assert_allclose(colorCorrectionMat, refColorMat, rtol=1e-4, atol=1e-4) def test_masks_weights_1(self): s = np.array([ [214.11, 98.67, 37.97], [231.94, 153.1, 85.27], [204.08, 143.71, 78.46], [190.58, 122.99, 30.84], [230.93, 148.46, 100.84], [228.64, 206.97, 97.5], [229.09, 137.07, 55.29], [189.21, 111.22, 92.66], [223.5, 96.42, 75.45], [201.82, 69.71, 50.9], [240.52, 196.47, 59.3], [235.73, 172.13, 54.], [131.6, 75.04, 68.86], [189.04, 170.43, 42.05], [222.23, 74., 71.95], [241.01, 199.1, 61.15], [224.99, 101.4, 100.24], [174.58, 152.63, 91.52], [248.06, 227.69, 140.5], [241.15, 201.38, 115.58], [236.49, 175.87, 88.86], [212.19, 133.49, 54.79], [181.17, 102.94, 36.18], [115.1, 53.77, 15.23] ], dtype=np.float64) weightsList = np.array([1.1, 0, 0, 1.2, 0, 0, 1.3, 0, 0, 1.4, 0, 0, 0.5, 0, 0, 0.6, 0, 0, 0.7, 0, 0, 0.8, 0, 0], dtype=np.float64) weightsList = weightsList.reshape(-1, 1) src = (s / 255.).astype(np.float64).reshape(-1, 1, 3) model = cv.ccm.ColorCorrectionModel(src, cv.ccm.COLORCHECKER_MACBETH) model.setColorSpace(cv.ccm.COLOR_SPACE_SRGB) model.setCcmType(cv.ccm.CCM_LINEAR) model.setDistance(cv.ccm.DISTANCE_CIE2000) model.setLinearization(cv.ccm.LINEARIZATION_GAMMA) model.setLinearizationGamma(2.2) model.setLinearizationDegree(3) model.setSaturatedThreshold(0, 0.98) model.setWeightsList(weightsList) model.setWeightCoeff(1.5) _ = model.compute() weights = np.array([1.15789474, 1.26315789, 1.36842105, 1.47368421, 0.52631579, 0.63157895, 0.73684211, 0.84210526], dtype=np.float64) np.testing.assert_allclose(model.getWeights(), weights.reshape(-1, 1), rtol=1e-4, atol=1e-4) mask = np.array([True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False, True, False, False], dtype=np.uint8) np.testing.assert_allclose(model.getMask(), mask.reshape(-1, 1), rtol=0.0, atol=0.0) def test_masks_weights_2(self): s = np.array([ [214.11, 98.67, 37.97], [231.94, 153.1, 85.27], [204.08, 143.71, 78.46], [190.58, 122.99, 30.84], [230.93, 148.46, 100.84], [228.64, 206.97, 97.5], [229.09, 137.07, 55.29], [189.21, 111.22, 92.66], [223.5, 96.42, 75.45], [201.82, 69.71, 50.9], [240.52, 196.47, 59.3], [235.73, 172.13, 54.], [131.6, 75.04, 68.86], [189.04, 170.43, 42.05], [222.23, 74., 71.95], [241.01, 199.1, 61.15], [224.99, 101.4, 100.24], [174.58, 152.63, 91.52], [248.06, 227.69, 140.5], [241.15, 201.38, 115.58], [236.49, 175.87, 88.86], [212.19, 133.49, 54.79], [181.17, 102.94, 36.18], [115.1, 53.77, 15.23] ], dtype=np.float64) src = (s / 255.).astype(np.float64).reshape(-1, 1, 3) model = cv.ccm.ColorCorrectionModel(src, cv.ccm.COLORCHECKER_MACBETH) model.setCcmType(cv.ccm.CCM_LINEAR) model.setDistance(cv.ccm.DISTANCE_CIE2000) model.setLinearization(cv.ccm.LINEARIZATION_GAMMA) model.setLinearizationGamma(2.2) model.setLinearizationDegree(3) model.setSaturatedThreshold(0.05, 0.93) model.setWeightsList(np.array([])) model.setWeightCoeff(1.5) _ = model.compute() weights = np.array([ 0.65554256, 1.49454705, 1.00499244, 0.79735434, 1.16327759, 1.68623868, 1.37973155, 0.73213388, 1.0169629, 0.47430246, 1.70312161, 0.45414218, 1.15910007, 0.7540434, 1.05049802, 1.04551645, 1.54082353, 1.02453421, 0.6015915, 0.26154558 ], dtype=np.float64) np.testing.assert_allclose(model.getWeights(), weights.reshape(-1, 1), rtol=1e-4, atol=1e-4) # Test mask mask = np.array([True, True, True, True, True, True, True, True, True, True, False, True, True, True, True, False, True, True, False, False, True, True, True, True], dtype=np.uint8) np.testing.assert_allclose(model.getMask(), mask.reshape(-1, 1), rtol=0.0, atol=0.0) def test_compute_color_correction_matrix(self): path = self.find_file('cv/mcc/mcc_ccm_test.yml') fs = cv.FileStorage(path, cv.FileStorage_READ) chartsRGB = fs.getNode("chartsRGB").mat() src = (chartsRGB[:, 1].reshape(-1, 1, 3) / 255.).astype(np.float64) model = cv.ccm.ColorCorrectionModel(src, cv.ccm.COLORCHECKER_MACBETH) colorCorrectionMat = model.compute() gold_ccm = fs.getNode("ccm").mat() fs.release() np.testing.assert_allclose(gold_ccm, colorCorrectionMat, rtol=1e-8, atol=1e-8) gold_loss = 4.6386569120323129 loss = model.getLoss() self.assertAlmostEqual(gold_loss, loss, places=8) def test_correctImage(self): img = self.get_sample('cv/mcc/mcc_ccm_test.jpg') self.assertIsNotNone(img, "Test image can't be loaded: ") gold_img = self.get_sample('cv/mcc/mcc_ccm_test_res.png') self.assertIsNotNone(gold_img, "Ground truth for test image can't be loaded: ") path = self.find_file("cv/mcc/mcc_ccm_test.yml") fs = cv.FileStorage(path, cv.FileStorage_READ) chartsRGB = fs.getNode("chartsRGB").mat() fs.release() src = (chartsRGB[:, 1].reshape(-1, 1, 3) / 255.).astype(np.float64) np.savetxt('src_test_correct.txt',src.reshape(-1,3),fmt="%.2f") model = cv.ccm.ColorCorrectionModel(src, cv.ccm.COLORCHECKER_MACBETH) _ = model.compute() calibratedImage = np.zeros_like(img) model.correctImage(img, calibratedImage) np.testing.assert_allclose(gold_img, calibratedImage, rtol=0.1, atol=0.1) def test_mcc_ccm_combined(self): detector = cv.mcc_CCheckerDetector.create() img = self.get_sample('cv/mcc/mcc_ccm_test.jpg') self.assertIsNotNone(img, "Test image can't be loaded: ") gold_img = self.get_sample('cv/mcc/mcc_ccm_test_res.png') self.assertIsNotNone(gold_img, "Ground truth for test image can't be loaded: ") detector.setColorChartType(cv.mcc.MCC24) self.assertTrue(detector.process(img)) checkers = detector.getListColorChecker() # Get colors from detector and save for debugging src = checkers[0].getChartsRGB(False).reshape(-1, 1, 3) / 255. src = src.astype(np.float64) # Load reference colors from file for comparison path = self.find_file('cv/mcc/mcc_ccm_test.yml') fs = cv.FileStorage(path, cv.FileStorage_READ) chartsRGB = fs.getNode("chartsRGB").mat() ref_src = (chartsRGB[:, 1].reshape(-1, 1, 3) / 255.).astype(np.float64) fs.release() # Verify that detected colors are close to reference colors np.testing.assert_allclose(src, ref_src, rtol=0.01, atol=0.01) # Use reference colors for model computation model = cv.ccm.ColorCorrectionModel(ref_src, cv.ccm.COLORCHECKER_MACBETH) _ = model.compute() calibratedImage = np.zeros_like(img) model.correctImage(img, calibratedImage) np.testing.assert_allclose(gold_img, calibratedImage, rtol=0.1, atol=0.1) def test_serialization(self): path1 = self.find_file("cv/mcc/mcc_ccm_test.yml") fs = cv.FileStorage(path1, cv.FileStorage_READ) chartsRGB = fs.getNode("chartsRGB").mat() fs.release() model = cv.ccm.ColorCorrectionModel(chartsRGB[:, 1].reshape(-1, 1, 3) / 255., cv.ccm.COLORCHECKER_MACBETH) _ = model.compute() path1 = tempfile.mktemp(suffix='.yaml') fs1 = cv.FileStorage(path1, cv.FileStorage_WRITE) model.write(fs1) fs1.release() model1 = cv.ccm.ColorCorrectionModel() fs2 = cv.FileStorage(path1, cv.FileStorage_READ) modelNode = fs2.getNode("ColorCorrectionModel") model1.read(modelNode) fs2.release() path2 = tempfile.mktemp(suffix='.yaml') fs3 = cv.FileStorage(path2, cv.FileStorage_WRITE) model1.write(fs3) fs3.release() with open(path1, 'r') as file1: str1 = file1.read() with open(path2, 'r') as file2: str2 = file2.read() self.assertEqual(str1, str2) if __name__ == '__main__': NewOpenCVTests.bootstrap()