// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html #include "precomp.hpp" #include "opencl_kernels_core.hpp" #include "convert.hpp" /****************************************************************************************\ * convertScale[Abs] * \****************************************************************************************/ namespace cv { template inline void cvtabs_32f( const _Ts* src, size_t sstep, _Td* dst, size_t dstep, Size size, float a, float b ) { #if CV_SIMD v_float32 va = vx_setall_f32(a), vb = vx_setall_f32(b); const int VECSZ = v_float32::nlanes*2; #endif sstep /= sizeof(src[0]); dstep /= sizeof(dst[0]); for( int i = 0; i < size.height; i++, src += sstep, dst += dstep ) { int j = 0; #if CV_SIMD for( ; j < size.width; j += VECSZ ) { if( j > size.width - VECSZ ) { if( j == 0 || src == (_Ts*)dst ) break; j = size.width - VECSZ; } v_float32 v0, v1; vx_load_pair_as(src + j, v0, v1); v0 = v_fma(v0, va, vb); v1 = v_fma(v1, va, vb); v_store_pair_as(dst + j, v_abs(v0), v_abs(v1)); } #endif for( ; j < size.width; j++ ) dst[j] = saturate_cast<_Td>(std::abs(src[j]*a + b)); } } // variant for convrsions 16f <-> ... w/o unrolling template inline void cvtabs1_32f( const _Ts* src, size_t sstep, _Td* dst, size_t dstep, Size size, float a, float b ) { #if CV_SIMD v_float32 va = vx_setall_f32(a), vb = vx_setall_f32(b); const int VECSZ = v_float32::nlanes*2; #endif sstep /= sizeof(src[0]); dstep /= sizeof(dst[0]); for( int i = 0; i < size.height; i++, src += sstep, dst += dstep ) { int j = 0; #if CV_SIMD for( ; j < size.width; j += VECSZ ) { if( j > size.width - VECSZ ) { if( j == 0 || src == (_Ts*)dst ) break; j = size.width - VECSZ; } v_float32 v0; vx_load_as(src + j, v0); v0 = v_fma(v0, va, vb); v_store_as(dst + j, v_abs(v0)); } #endif for( ; j < size.width; j++ ) dst[j] = saturate_cast<_Td>(src[j]*a + b); } } template inline void cvt_32f( const _Ts* src, size_t sstep, _Td* dst, size_t dstep, Size size, float a, float b ) { #if CV_SIMD v_float32 va = vx_setall_f32(a), vb = vx_setall_f32(b); const int VECSZ = v_float32::nlanes*2; #endif sstep /= sizeof(src[0]); dstep /= sizeof(dst[0]); for( int i = 0; i < size.height; i++, src += sstep, dst += dstep ) { int j = 0; #if CV_SIMD for( ; j < size.width; j += VECSZ ) { if( j > size.width - VECSZ ) { if( j == 0 || src == (_Ts*)dst ) break; j = size.width - VECSZ; } v_float32 v0, v1; vx_load_pair_as(src + j, v0, v1); v0 = v_fma(v0, va, vb); v1 = v_fma(v1, va, vb); v_store_pair_as(dst + j, v0, v1); } #endif for( ; j < size.width; j++ ) dst[j] = saturate_cast<_Td>(src[j]*a + b); } } // variant for convrsions 16f <-> ... w/o unrolling template inline void cvt1_32f( const _Ts* src, size_t sstep, _Td* dst, size_t dstep, Size size, float a, float b ) { #if CV_SIMD v_float32 va = vx_setall_f32(a), vb = vx_setall_f32(b); const int VECSZ = v_float32::nlanes; #endif sstep /= sizeof(src[0]); dstep /= sizeof(dst[0]); for( int i = 0; i < size.height; i++, src += sstep, dst += dstep ) { int j = 0; #if CV_SIMD for( ; j < size.width; j += VECSZ ) { if( j > size.width - VECSZ ) { if( j == 0 || src == (_Ts*)dst ) break; j = size.width - VECSZ; } v_float32 v0; vx_load_as(src + j, v0); v0 = v_fma(v0, va, vb); v_store_as(dst + j, v0); } #endif for( ; j < size.width; j++ ) dst[j] = saturate_cast<_Td>(src[j]*a + b); } } template inline void cvt_64f( const _Ts* src, size_t sstep, _Td* dst, size_t dstep, Size size, double a, double b ) { #if CV_SIMD_64F v_float64 va = vx_setall_f64(a), vb = vx_setall_f64(b); const int VECSZ = v_float64::nlanes*2; #endif sstep /= sizeof(src[0]); dstep /= sizeof(dst[0]); for( int i = 0; i < size.height; i++, src += sstep, dst += dstep ) { int j = 0; #if CV_SIMD_64F for( ; j < size.width; j += VECSZ ) { if( j > size.width - VECSZ ) { if( j == 0 || src == (_Ts*)dst ) break; j = size.width - VECSZ; } v_float64 v0, v1; vx_load_pair_as(src + j, v0, v1); v0 = v_fma(v0, va, vb); v1 = v_fma(v1, va, vb); v_store_pair_as(dst + j, v0, v1); } #endif for( ; j < size.width; j++ ) dst[j] = saturate_cast<_Td>(src[j]*a + b); } } //================================================================================================== #define DEF_CVT_SCALE_ABS_FUNC(suffix, cvt, stype, dtype, wtype) \ static void cvtScaleAbs##suffix( const stype* src, size_t sstep, const uchar*, size_t, \ dtype* dst, size_t dstep, Size size, double* scale) \ { \ cvt(src, sstep, dst, dstep, size, (wtype)scale[0], (wtype)scale[1]); \ } #define DEF_CVT_SCALE_FUNC(suffix, cvt, stype, dtype, wtype) \ static void cvtScale##suffix( const stype* src, size_t sstep, const uchar*, size_t, \ dtype* dst, size_t dstep, Size size, double* scale) \ { \ cvt(src, sstep, dst, dstep, size, (wtype)scale[0], (wtype)scale[1]); \ } DEF_CVT_SCALE_ABS_FUNC(8u, cvtabs_32f, uchar, uchar, float) DEF_CVT_SCALE_ABS_FUNC(8s8u, cvtabs_32f, schar, uchar, float) DEF_CVT_SCALE_ABS_FUNC(16u8u, cvtabs_32f, ushort, uchar, float) DEF_CVT_SCALE_ABS_FUNC(16s8u, cvtabs_32f, short, uchar, float) DEF_CVT_SCALE_ABS_FUNC(32s8u, cvtabs_32f, int, uchar, float) DEF_CVT_SCALE_ABS_FUNC(32f8u, cvtabs_32f, float, uchar, float) DEF_CVT_SCALE_ABS_FUNC(64f8u, cvtabs_32f, double, uchar, float) DEF_CVT_SCALE_FUNC(8u, cvt_32f, uchar, uchar, float) DEF_CVT_SCALE_FUNC(8s8u, cvt_32f, schar, uchar, float) DEF_CVT_SCALE_FUNC(16u8u, cvt_32f, ushort, uchar, float) DEF_CVT_SCALE_FUNC(16s8u, cvt_32f, short, uchar, float) DEF_CVT_SCALE_FUNC(32s8u, cvt_32f, int, uchar, float) DEF_CVT_SCALE_FUNC(32f8u, cvt_32f, float, uchar, float) DEF_CVT_SCALE_FUNC(64f8u, cvt_32f, double, uchar, float) //DEF_CVT_SCALE_FUNC(16f8u, cvt_32f, float16_t, uchar, float) DEF_CVT_SCALE_FUNC(8u8s, cvt_32f, uchar, schar, float) DEF_CVT_SCALE_FUNC(8s, cvt_32f, schar, schar, float) DEF_CVT_SCALE_FUNC(16u8s, cvt_32f, ushort, schar, float) DEF_CVT_SCALE_FUNC(16s8s, cvt_32f, short, schar, float) DEF_CVT_SCALE_FUNC(32s8s, cvt_32f, int, schar, float) DEF_CVT_SCALE_FUNC(32f8s, cvt_32f, float, schar, float) DEF_CVT_SCALE_FUNC(64f8s, cvt_32f, double, schar, float) //DEF_CVT_SCALE_FUNC(16f8s, cvt_32f, float16_t, schar, float) DEF_CVT_SCALE_FUNC(8u16u, cvt_32f, uchar, ushort, float) DEF_CVT_SCALE_FUNC(8s16u, cvt_32f, schar, ushort, float) DEF_CVT_SCALE_FUNC(16u, cvt_32f, ushort, ushort, float) DEF_CVT_SCALE_FUNC(16s16u, cvt_32f, short, ushort, float) DEF_CVT_SCALE_FUNC(32s16u, cvt_32f, int, ushort, float) DEF_CVT_SCALE_FUNC(32f16u, cvt_32f, float, ushort, float) DEF_CVT_SCALE_FUNC(64f16u, cvt_32f, double, ushort, float) //DEF_CVT_SCALE_FUNC(16f16u, cvt1_32f, float16_t, ushort, float) DEF_CVT_SCALE_FUNC(8u16s, cvt_32f, uchar, short, float) DEF_CVT_SCALE_FUNC(8s16s, cvt_32f, schar, short, float) DEF_CVT_SCALE_FUNC(16u16s, cvt_32f, ushort, short, float) DEF_CVT_SCALE_FUNC(16s, cvt_32f, short, short, float) DEF_CVT_SCALE_FUNC(32s16s, cvt_32f, int, short, float) DEF_CVT_SCALE_FUNC(32f16s, cvt_32f, float, short, float) DEF_CVT_SCALE_FUNC(64f16s, cvt_32f, double, short, float) //DEF_CVT_SCALE_FUNC(16f16s, cvt1_32f, float16_t, short, float) DEF_CVT_SCALE_FUNC(8u32s, cvt_32f, uchar, int, float) DEF_CVT_SCALE_FUNC(8s32s, cvt_32f, schar, int, float) DEF_CVT_SCALE_FUNC(16u32s, cvt_32f, ushort, int, float) DEF_CVT_SCALE_FUNC(16s32s, cvt_32f, short, int, float) DEF_CVT_SCALE_FUNC(32s, cvt_64f, int, int, double) DEF_CVT_SCALE_FUNC(32f32s, cvt_32f, float, int, float) DEF_CVT_SCALE_FUNC(64f32s, cvt_64f, double, int, double) //DEF_CVT_SCALE_FUNC(16f32s, cvt1_32f, float16_t, int, float) DEF_CVT_SCALE_FUNC(8u32f, cvt_32f, uchar, float, float) DEF_CVT_SCALE_FUNC(8s32f, cvt_32f, schar, float, float) DEF_CVT_SCALE_FUNC(16u32f, cvt_32f, ushort, float, float) DEF_CVT_SCALE_FUNC(16s32f, cvt_32f, short, float, float) DEF_CVT_SCALE_FUNC(32s32f, cvt_32f, int, float, float) DEF_CVT_SCALE_FUNC(32f, cvt_32f, float, float, float) DEF_CVT_SCALE_FUNC(64f32f, cvt_64f, double, float, double) //DEF_CVT_SCALE_FUNC(16f32f, cvt1_32f, float16_t, float, float) DEF_CVT_SCALE_FUNC(8u64f, cvt_64f, uchar, double, double) DEF_CVT_SCALE_FUNC(8s64f, cvt_64f, schar, double, double) DEF_CVT_SCALE_FUNC(16u64f, cvt_64f, ushort, double, double) DEF_CVT_SCALE_FUNC(16s64f, cvt_64f, short, double, double) DEF_CVT_SCALE_FUNC(32s64f, cvt_64f, int, double, double) DEF_CVT_SCALE_FUNC(32f64f, cvt_64f, float, double, double) DEF_CVT_SCALE_FUNC(64f, cvt_64f, double, double, double) //DEF_CVT_SCALE_FUNC(16f64f, cvt_64f, float16_t, double, double) /*DEF_CVT_SCALE_FUNC(8u16f, cvt1_32f, uchar, float16_t, float) DEF_CVT_SCALE_FUNC(8s16f, cvt1_32f, schar, float16_t, float) DEF_CVT_SCALE_FUNC(16u16f, cvt1_32f, ushort, float16_t, float) DEF_CVT_SCALE_FUNC(16s16f, cvt1_32f, short, float16_t, float) DEF_CVT_SCALE_FUNC(32s16f, cvt1_32f, int, float16_t, float) DEF_CVT_SCALE_FUNC(32f16f, cvt1_32f, float, float16_t, float) DEF_CVT_SCALE_FUNC(64f16f, cvt_64f, double, float16_t, double) DEF_CVT_SCALE_FUNC(16f, cvt1_32f, float16_t, float16_t, float)*/ static BinaryFunc getCvtScaleAbsFunc(int depth) { static BinaryFunc cvtScaleAbsTab[] = { (BinaryFunc)cvtScaleAbs8u, (BinaryFunc)cvtScaleAbs8s8u, (BinaryFunc)cvtScaleAbs16u8u, (BinaryFunc)cvtScaleAbs16s8u, (BinaryFunc)cvtScaleAbs32s8u, (BinaryFunc)cvtScaleAbs32f8u, (BinaryFunc)cvtScaleAbs64f8u, 0 }; return cvtScaleAbsTab[depth]; } BinaryFunc getConvertScaleFunc(int sdepth, int ddepth) { static BinaryFunc cvtScaleTab[][8] = { { (BinaryFunc)GET_OPTIMIZED(cvtScale8u), (BinaryFunc)GET_OPTIMIZED(cvtScale8s8u), (BinaryFunc)GET_OPTIMIZED(cvtScale16u8u), (BinaryFunc)GET_OPTIMIZED(cvtScale16s8u), (BinaryFunc)GET_OPTIMIZED(cvtScale32s8u), (BinaryFunc)GET_OPTIMIZED(cvtScale32f8u), (BinaryFunc)cvtScale64f8u, 0 //(BinaryFunc)cvtScale16f8u }, { (BinaryFunc)GET_OPTIMIZED(cvtScale8u8s), (BinaryFunc)GET_OPTIMIZED(cvtScale8s), (BinaryFunc)GET_OPTIMIZED(cvtScale16u8s), (BinaryFunc)GET_OPTIMIZED(cvtScale16s8s), (BinaryFunc)GET_OPTIMIZED(cvtScale32s8s), (BinaryFunc)GET_OPTIMIZED(cvtScale32f8s), (BinaryFunc)cvtScale64f8s, 0 //(BinaryFunc)cvtScale16f8s }, { (BinaryFunc)GET_OPTIMIZED(cvtScale8u16u), (BinaryFunc)GET_OPTIMIZED(cvtScale8s16u), (BinaryFunc)GET_OPTIMIZED(cvtScale16u), (BinaryFunc)GET_OPTIMIZED(cvtScale16s16u), (BinaryFunc)GET_OPTIMIZED(cvtScale32s16u), (BinaryFunc)GET_OPTIMIZED(cvtScale32f16u), (BinaryFunc)cvtScale64f16u, 0 //(BinaryFunc)cvtScale16f16u }, { (BinaryFunc)GET_OPTIMIZED(cvtScale8u16s), (BinaryFunc)GET_OPTIMIZED(cvtScale8s16s), (BinaryFunc)GET_OPTIMIZED(cvtScale16u16s), (BinaryFunc)GET_OPTIMIZED(cvtScale16s), (BinaryFunc)GET_OPTIMIZED(cvtScale32s16s), (BinaryFunc)GET_OPTIMIZED(cvtScale32f16s), (BinaryFunc)cvtScale64f16s, 0 //(BinaryFunc)cvtScale16f16s }, { (BinaryFunc)GET_OPTIMIZED(cvtScale8u32s), (BinaryFunc)GET_OPTIMIZED(cvtScale8s32s), (BinaryFunc)GET_OPTIMIZED(cvtScale16u32s), (BinaryFunc)GET_OPTIMIZED(cvtScale16s32s), (BinaryFunc)GET_OPTIMIZED(cvtScale32s), (BinaryFunc)GET_OPTIMIZED(cvtScale32f32s), (BinaryFunc)cvtScale64f32s, 0 //(BinaryFunc)cvtScale16f32s }, { (BinaryFunc)GET_OPTIMIZED(cvtScale8u32f), (BinaryFunc)GET_OPTIMIZED(cvtScale8s32f), (BinaryFunc)GET_OPTIMIZED(cvtScale16u32f), (BinaryFunc)GET_OPTIMIZED(cvtScale16s32f), (BinaryFunc)GET_OPTIMIZED(cvtScale32s32f), (BinaryFunc)GET_OPTIMIZED(cvtScale32f), (BinaryFunc)cvtScale64f32f, 0 //(BinaryFunc)cvtScale16f32f }, { (BinaryFunc)cvtScale8u64f, (BinaryFunc)cvtScale8s64f, (BinaryFunc)cvtScale16u64f, (BinaryFunc)cvtScale16s64f, (BinaryFunc)cvtScale32s64f, (BinaryFunc)cvtScale32f64f, (BinaryFunc)cvtScale64f, 0 //(BinaryFunc)cvtScale16f64f }, { 0, 0, 0, 0, 0, 0, 0, 0 /*(BinaryFunc)cvtScale8u16f, (BinaryFunc)cvtScale8s16f, (BinaryFunc)cvtScale16u16f, (BinaryFunc)cvtScale16s16f, (BinaryFunc)cvtScale32s16f, (BinaryFunc)cvtScale32f16f, (BinaryFunc)cvtScale64f16f, (BinaryFunc)cvtScale16f*/ }, }; return cvtScaleTab[CV_MAT_DEPTH(ddepth)][CV_MAT_DEPTH(sdepth)]; } #ifdef HAVE_OPENCL static bool ocl_convertScaleAbs( InputArray _src, OutputArray _dst, double alpha, double beta ) { const ocl::Device & d = ocl::Device::getDefault(); int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); bool doubleSupport = d.doubleFPConfig() > 0; if (!doubleSupport && depth == CV_64F) return false; _dst.create(_src.size(), CV_8UC(cn)); int kercn = 1; if (d.isIntel()) { static const int vectorWidths[] = {4, 4, 4, 4, 4, 4, 4, -1}; kercn = ocl::checkOptimalVectorWidth( vectorWidths, _src, _dst, noArray(), noArray(), noArray(), noArray(), noArray(), noArray(), noArray(), ocl::OCL_VECTOR_MAX); } else kercn = ocl::predictOptimalVectorWidthMax(_src, _dst); int rowsPerWI = d.isIntel() ? 4 : 1; char cvt[2][50]; int wdepth = std::max(depth, CV_32F); String build_opt = format("-D OP_CONVERT_SCALE_ABS -D UNARY_OP -D dstT=%s -D srcT1=%s" " -D workT=%s -D wdepth=%d -D convertToWT1=%s -D convertToDT=%s" " -D workT1=%s -D rowsPerWI=%d%s", ocl::typeToStr(CV_8UC(kercn)), ocl::typeToStr(CV_MAKE_TYPE(depth, kercn)), ocl::typeToStr(CV_MAKE_TYPE(wdepth, kercn)), wdepth, ocl::convertTypeStr(depth, wdepth, kercn, cvt[0]), ocl::convertTypeStr(wdepth, CV_8U, kercn, cvt[1]), ocl::typeToStr(wdepth), rowsPerWI, doubleSupport ? " -D DOUBLE_SUPPORT" : ""); ocl::Kernel k("KF", ocl::core::arithm_oclsrc, build_opt); if (k.empty()) return false; UMat src = _src.getUMat(); UMat dst = _dst.getUMat(); ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src), dstarg = ocl::KernelArg::WriteOnly(dst, cn, kercn); if (wdepth == CV_32F) k.args(srcarg, dstarg, (float)alpha, (float)beta); else if (wdepth == CV_64F) k.args(srcarg, dstarg, alpha, beta); size_t globalsize[2] = { (size_t)src.cols * cn / kercn, ((size_t)src.rows + rowsPerWI - 1) / rowsPerWI }; return k.run(2, globalsize, NULL, false); } #endif } //cv:: void cv::convertScaleAbs( InputArray _src, OutputArray _dst, double alpha, double beta ) { CV_INSTRUMENT_REGION(); CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(), ocl_convertScaleAbs(_src, _dst, alpha, beta)) Mat src = _src.getMat(); int cn = src.channels(); double scale[] = {alpha, beta}; _dst.create( src.dims, src.size, CV_8UC(cn) ); Mat dst = _dst.getMat(); BinaryFunc func = getCvtScaleAbsFunc(src.depth()); CV_Assert( func != 0 ); if( src.dims <= 2 ) { Size sz = getContinuousSize(src, dst, cn); func( src.ptr(), src.step, 0, 0, dst.ptr(), dst.step, sz, scale ); } else { const Mat* arrays[] = {&src, &dst, 0}; uchar* ptrs[2] = {}; NAryMatIterator it(arrays, ptrs); Size sz((int)it.size*cn, 1); for( size_t i = 0; i < it.nplanes; i++, ++it ) func( ptrs[0], 0, 0, 0, ptrs[1], 0, sz, scale ); } } //================================================================================================== namespace cv { #ifdef HAVE_OPENCL static bool ocl_normalize( InputArray _src, InputOutputArray _dst, InputArray _mask, int dtype, double scale, double delta ) { UMat src = _src.getUMat(); if( _mask.empty() ) src.convertTo( _dst, dtype, scale, delta ); else if (src.channels() <= 4) { const ocl::Device & dev = ocl::Device::getDefault(); int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype), ddepth = CV_MAT_DEPTH(dtype), wdepth = std::max(CV_32F, std::max(sdepth, ddepth)), rowsPerWI = dev.isIntel() ? 4 : 1; float fscale = static_cast(scale), fdelta = static_cast(delta); bool haveScale = std::fabs(scale - 1) > DBL_EPSILON, haveZeroScale = !(std::fabs(scale) > DBL_EPSILON), haveDelta = std::fabs(delta) > DBL_EPSILON, doubleSupport = dev.doubleFPConfig() > 0; if (!haveScale && !haveDelta && stype == dtype) { _src.copyTo(_dst, _mask); return true; } if (haveZeroScale) { _dst.setTo(Scalar(delta), _mask); return true; } if ((sdepth == CV_64F || ddepth == CV_64F) && !doubleSupport) return false; char cvt[2][40]; String opts = format("-D srcT=%s -D dstT=%s -D convertToWT=%s -D cn=%d -D rowsPerWI=%d" " -D convertToDT=%s -D workT=%s%s%s%s -D srcT1=%s -D dstT1=%s", ocl::typeToStr(stype), ocl::typeToStr(dtype), ocl::convertTypeStr(sdepth, wdepth, cn, cvt[0]), cn, rowsPerWI, ocl::convertTypeStr(wdepth, ddepth, cn, cvt[1]), ocl::typeToStr(CV_MAKE_TYPE(wdepth, cn)), doubleSupport ? " -D DOUBLE_SUPPORT" : "", haveScale ? " -D HAVE_SCALE" : "", haveDelta ? " -D HAVE_DELTA" : "", ocl::typeToStr(sdepth), ocl::typeToStr(ddepth)); ocl::Kernel k("normalizek", ocl::core::normalize_oclsrc, opts); if (k.empty()) return false; UMat mask = _mask.getUMat(), dst = _dst.getUMat(); ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src), maskarg = ocl::KernelArg::ReadOnlyNoSize(mask), dstarg = ocl::KernelArg::ReadWrite(dst); if (haveScale) { if (haveDelta) k.args(srcarg, maskarg, dstarg, fscale, fdelta); else k.args(srcarg, maskarg, dstarg, fscale); } else { if (haveDelta) k.args(srcarg, maskarg, dstarg, fdelta); else k.args(srcarg, maskarg, dstarg); } size_t globalsize[2] = { (size_t)src.cols, ((size_t)src.rows + rowsPerWI - 1) / rowsPerWI }; return k.run(2, globalsize, NULL, false); } else { UMat temp; src.convertTo( temp, dtype, scale, delta ); temp.copyTo( _dst, _mask ); } return true; } #endif } // cv:: void cv::normalize( InputArray _src, InputOutputArray _dst, double a, double b, int norm_type, int rtype, InputArray _mask ) { CV_INSTRUMENT_REGION(); double scale = 1, shift = 0; int type = _src.type(), depth = CV_MAT_DEPTH(type); if( rtype < 0 ) rtype = _dst.fixedType() ? _dst.depth() : depth; if( norm_type == CV_MINMAX ) { double smin = 0, smax = 0; double dmin = MIN( a, b ), dmax = MAX( a, b ); minMaxIdx( _src, &smin, &smax, 0, 0, _mask ); scale = (dmax - dmin)*(smax - smin > DBL_EPSILON ? 1./(smax - smin) : 0); if( rtype == CV_32F ) { scale = (float)scale; shift = (float)dmin - (float)(smin*scale); } else shift = dmin - smin*scale; } else if( norm_type == CV_L2 || norm_type == CV_L1 || norm_type == CV_C ) { scale = norm( _src, norm_type, _mask ); scale = scale > DBL_EPSILON ? a/scale : 0.; shift = 0; } else CV_Error( CV_StsBadArg, "Unknown/unsupported norm type" ); CV_OCL_RUN(_dst.isUMat(), ocl_normalize(_src, _dst, _mask, rtype, scale, shift)) Mat src = _src.getMat(); if( _mask.empty() ) src.convertTo( _dst, rtype, scale, shift ); else { Mat temp; src.convertTo( temp, rtype, scale, shift ); temp.copyTo( _dst, _mask ); } }