/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Copyright (C) 2014, Itseez Inc., all rights reserved. // Third party copyrights are property of their respective owners. / // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencl_kernels_imgproc.hpp" #include "opencv2/core/hal/intrin.hpp" #define CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY #include "accum.simd.hpp" #include "accum.simd_declarations.hpp" #include "opencv2/core/openvx/ovx_defs.hpp" namespace cv { typedef void(*AccFunc)(const uchar*, uchar*, const uchar*, int, int); typedef void(*AccProdFunc)(const uchar*, const uchar*, uchar*, const uchar*, int, int); typedef void(*AccWFunc)(const uchar*, uchar*, const uchar*, int, int, double); static AccFunc accTab[] = { (AccFunc)acc_8u32f, (AccFunc)acc_8u64f, (AccFunc)acc_16u32f, (AccFunc)acc_16u64f, (AccFunc)acc_32f, (AccFunc)acc_32f64f, (AccFunc)acc_64f }; static AccFunc accSqrTab[] = { (AccFunc)accSqr_8u32f, (AccFunc)accSqr_8u64f, (AccFunc)accSqr_16u32f, (AccFunc)accSqr_16u64f, (AccFunc)accSqr_32f, (AccFunc)accSqr_32f64f, (AccFunc)accSqr_64f }; static AccProdFunc accProdTab[] = { (AccProdFunc)accProd_8u32f, (AccProdFunc)accProd_8u64f, (AccProdFunc)accProd_16u32f, (AccProdFunc)accProd_16u64f, (AccProdFunc)accProd_32f, (AccProdFunc)accProd_32f64f, (AccProdFunc)accProd_64f }; static AccWFunc accWTab[] = { (AccWFunc)accW_8u32f, (AccWFunc)accW_8u64f, (AccWFunc)accW_16u32f, (AccWFunc)accW_16u64f, (AccWFunc)accW_32f, (AccWFunc)accW_32f64f, (AccWFunc)accW_64f }; inline int getAccTabIdx(int sdepth, int ddepth) { return sdepth == CV_8U && ddepth == CV_32F ? 0 : sdepth == CV_8U && ddepth == CV_64F ? 1 : sdepth == CV_16U && ddepth == CV_32F ? 2 : sdepth == CV_16U && ddepth == CV_64F ? 3 : sdepth == CV_32F && ddepth == CV_32F ? 4 : sdepth == CV_32F && ddepth == CV_64F ? 5 : sdepth == CV_64F && ddepth == CV_64F ? 6 : -1; } #ifdef HAVE_OPENCL enum { ACCUMULATE = 0, ACCUMULATE_SQUARE = 1, ACCUMULATE_PRODUCT = 2, ACCUMULATE_WEIGHTED = 3 }; static bool ocl_accumulate( InputArray _src, InputArray _src2, InputOutputArray _dst, double alpha, InputArray _mask, int op_type ) { CV_Assert(op_type == ACCUMULATE || op_type == ACCUMULATE_SQUARE || op_type == ACCUMULATE_PRODUCT || op_type == ACCUMULATE_WEIGHTED); const ocl::Device & dev = ocl::Device::getDefault(); bool haveMask = !_mask.empty(), doubleSupport = dev.doubleFPConfig() > 0; int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype), ddepth = _dst.depth(); int kercn = haveMask ? cn : ocl::predictOptimalVectorWidthMax(_src, _src2, _dst), rowsPerWI = dev.isIntel() ? 4 : 1; if (!doubleSupport && (sdepth == CV_64F || ddepth == CV_64F)) return false; const char * const opMap[4] = { "ACCUMULATE", "ACCUMULATE_SQUARE", "ACCUMULATE_PRODUCT", "ACCUMULATE_WEIGHTED" }; char cvt[50]; ocl::Kernel k("accumulate", ocl::imgproc::accumulate_oclsrc, format("-D %s%s -D srcT1=%s -D cn=%d -D dstT1=%s%s -D rowsPerWI=%d -D convertToDT=%s", opMap[op_type], haveMask ? " -D HAVE_MASK" : "", ocl::typeToStr(sdepth), kercn, ocl::typeToStr(ddepth), doubleSupport ? " -D DOUBLE_SUPPORT" : "", rowsPerWI, ocl::convertTypeStr(sdepth, ddepth, 1, cvt, sizeof(cvt)))); if (k.empty()) return false; UMat src = _src.getUMat(), src2 = _src2.getUMat(), dst = _dst.getUMat(), mask = _mask.getUMat(); ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src), src2arg = ocl::KernelArg::ReadOnlyNoSize(src2), dstarg = ocl::KernelArg::ReadWrite(dst, cn, kercn), maskarg = ocl::KernelArg::ReadOnlyNoSize(mask); int argidx = k.set(0, srcarg); if (op_type == ACCUMULATE_PRODUCT) argidx = k.set(argidx, src2arg); argidx = k.set(argidx, dstarg); if (op_type == ACCUMULATE_WEIGHTED) { if (ddepth == CV_32F) argidx = k.set(argidx, (float)alpha); else argidx = k.set(argidx, alpha); } if (haveMask) k.set(argidx, maskarg); size_t globalsize[2] = { (size_t)src.cols * cn / kercn, ((size_t)src.rows + rowsPerWI - 1) / rowsPerWI }; return k.run(2, globalsize, NULL, false); } #endif } #if defined(HAVE_IPP) namespace cv { static bool ipp_accumulate(InputArray _src, InputOutputArray _dst, InputArray _mask) { CV_INSTRUMENT_REGION_IPP(); int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), scn = CV_MAT_CN(stype); int dtype = _dst.type(), ddepth = CV_MAT_DEPTH(dtype); Mat src = _src.getMat(), dst = _dst.getMat(), mask = _mask.getMat(); if (src.dims <= 2 || (src.isContinuous() && dst.isContinuous() && (mask.empty() || mask.isContinuous()))) { typedef IppStatus (CV_STDCALL * IppiAdd)(const void * pSrc, int srcStep, Ipp32f * pSrcDst, int srcdstStep, IppiSize roiSize); typedef IppStatus (CV_STDCALL * IppiAddMask)(const void * pSrc, int srcStep, const Ipp8u * pMask, int maskStep, Ipp32f * pSrcDst, int srcDstStep, IppiSize roiSize); IppiAdd ippiAdd_I = 0; IppiAddMask ippiAdd_IM = 0; if (mask.empty()) { CV_SUPPRESS_DEPRECATED_START ippiAdd_I = sdepth == CV_8U && ddepth == CV_32F ? (IppiAdd)ippiAdd_8u32f_C1IR : sdepth == CV_16U && ddepth == CV_32F ? (IppiAdd)ippiAdd_16u32f_C1IR : sdepth == CV_32F && ddepth == CV_32F ? (IppiAdd)ippiAdd_32f_C1IR : 0; CV_SUPPRESS_DEPRECATED_END } else if (scn == 1) { ippiAdd_IM = sdepth == CV_8U && ddepth == CV_32F ? (IppiAddMask)ippiAdd_8u32f_C1IMR : sdepth == CV_16U && ddepth == CV_32F ? (IppiAddMask)ippiAdd_16u32f_C1IMR : sdepth == CV_32F && ddepth == CV_32F ? (IppiAddMask)ippiAdd_32f_C1IMR : 0; } if (ippiAdd_I || ippiAdd_IM) { IppStatus status = ippStsErr; Size size = src.size(); int srcstep = (int)src.step, dststep = (int)dst.step, maskstep = (int)mask.step; if (src.isContinuous() && dst.isContinuous() && mask.isContinuous()) { srcstep = static_cast(src.total() * src.elemSize()); dststep = static_cast(dst.total() * dst.elemSize()); maskstep = static_cast(mask.total() * mask.elemSize()); size.width = static_cast(src.total()); size.height = 1; } size.width *= scn; if (ippiAdd_I) status = CV_INSTRUMENT_FUN_IPP(ippiAdd_I, src.ptr(), srcstep, dst.ptr(), dststep, ippiSize(size.width, size.height)); else if (ippiAdd_IM) status = CV_INSTRUMENT_FUN_IPP(ippiAdd_IM, src.ptr(), srcstep, mask.ptr(), maskstep, dst.ptr(), dststep, ippiSize(size.width, size.height)); if (status >= 0) return true; } } return false; } } #endif #ifdef HAVE_OPENVX namespace cv { enum { VX_ACCUMULATE_OP = 0, VX_ACCUMULATE_SQUARE_OP = 1, VX_ACCUMULATE_WEIGHTED_OP = 2 }; namespace ovx { template <> inline bool skipSmallImages(int w, int h) { return w*h < 120 * 60; } } static bool openvx_accumulate(InputArray _src, InputOutputArray _dst, InputArray _mask, double _weight, int opType) { Mat srcMat = _src.getMat(), dstMat = _dst.getMat(); if (ovx::skipSmallImages(srcMat.cols, srcMat.rows)) return false; if(!_mask.empty() || (opType == VX_ACCUMULATE_WEIGHTED_OP && dstMat.type() != CV_8UC1 ) || (opType != VX_ACCUMULATE_WEIGHTED_OP && dstMat.type() != CV_16SC1 ) || srcMat.type() != CV_8UC1) { return false; } //TODO: handle different number of channels (channel extract && channel combine) //TODO: handle mask (threshold mask to 0xff && bitwise AND with src) //(both things can be done by creating a graph) try { ivx::Context context = ovx::getOpenVXContext(); ivx::Image srcImage = ivx::Image::createFromHandle(context, ivx::Image::matTypeToFormat(srcMat.type()), ivx::Image::createAddressing(srcMat), srcMat.data); ivx::Image dstImage = ivx::Image::createFromHandle(context, ivx::Image::matTypeToFormat(dstMat.type()), ivx::Image::createAddressing(dstMat), dstMat.data); ivx::Scalar shift = ivx::Scalar::create(context, 0); ivx::Scalar alpha = ivx::Scalar::create(context, _weight); switch (opType) { case VX_ACCUMULATE_OP: ivx::IVX_CHECK_STATUS(vxuAccumulateImage(context, srcImage, dstImage)); break; case VX_ACCUMULATE_SQUARE_OP: ivx::IVX_CHECK_STATUS(vxuAccumulateSquareImage(context, srcImage, shift, dstImage)); break; case VX_ACCUMULATE_WEIGHTED_OP: ivx::IVX_CHECK_STATUS(vxuAccumulateWeightedImage(context, srcImage, alpha, dstImage)); break; default: break; } #ifdef VX_VERSION_1_1 //we should take user memory back before release //(it's not done automatically according to standard) srcImage.swapHandle(); dstImage.swapHandle(); #endif } catch (const ivx::RuntimeError & e) { VX_DbgThrow(e.what()); } catch (const ivx::WrapperError & e) { VX_DbgThrow(e.what()); } return true; } } #endif void cv::accumulate( InputArray _src, InputOutputArray _dst, InputArray _mask ) { CV_INSTRUMENT_REGION(); int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), scn = CV_MAT_CN(stype); int dtype = _dst.type(), ddepth = CV_MAT_DEPTH(dtype), dcn = CV_MAT_CN(dtype); CV_Assert( _src.sameSize(_dst) && dcn == scn ); CV_Assert( _mask.empty() || (_src.sameSize(_mask) && _mask.type() == CV_8U) ); CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(), ocl_accumulate(_src, noArray(), _dst, 0.0, _mask, ACCUMULATE)) CV_IPP_RUN((_src.dims() <= 2 || (_src.isContinuous() && _dst.isContinuous() && (_mask.empty() || _mask.isContinuous()))), ipp_accumulate(_src, _dst, _mask)); CV_OVX_RUN(_src.dims() <= 2, openvx_accumulate(_src, _dst, _mask, 0.0, VX_ACCUMULATE_OP)) Mat src = _src.getMat(), dst = _dst.getMat(), mask = _mask.getMat(); int fidx = getAccTabIdx(sdepth, ddepth); AccFunc func = fidx >= 0 ? accTab[fidx] : 0; CV_Assert( func != 0 ); const Mat* arrays[] = {&src, &dst, &mask, 0}; uchar* ptrs[3] = {}; NAryMatIterator it(arrays, ptrs); int len = (int)it.size; for( size_t i = 0; i < it.nplanes; i++, ++it ) func(ptrs[0], ptrs[1], ptrs[2], len, scn); } #if defined(HAVE_IPP) namespace cv { static bool ipp_accumulate_square(InputArray _src, InputOutputArray _dst, InputArray _mask) { CV_INSTRUMENT_REGION_IPP(); int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), scn = CV_MAT_CN(stype); int dtype = _dst.type(), ddepth = CV_MAT_DEPTH(dtype); Mat src = _src.getMat(), dst = _dst.getMat(), mask = _mask.getMat(); if (src.dims <= 2 || (src.isContinuous() && dst.isContinuous() && (mask.empty() || mask.isContinuous()))) { typedef IppStatus (CV_STDCALL * ippiAddSquare)(const void * pSrc, int srcStep, Ipp32f * pSrcDst, int srcdstStep, IppiSize roiSize); typedef IppStatus (CV_STDCALL * ippiAddSquareMask)(const void * pSrc, int srcStep, const Ipp8u * pMask, int maskStep, Ipp32f * pSrcDst, int srcDstStep, IppiSize roiSize); ippiAddSquare ippiAddSquare_I = 0; ippiAddSquareMask ippiAddSquare_IM = 0; if (mask.empty()) { ippiAddSquare_I = sdepth == CV_8U && ddepth == CV_32F ? (ippiAddSquare)ippiAddSquare_8u32f_C1IR : sdepth == CV_16U && ddepth == CV_32F ? (ippiAddSquare)ippiAddSquare_16u32f_C1IR : sdepth == CV_32F && ddepth == CV_32F ? (ippiAddSquare)ippiAddSquare_32f_C1IR : 0; } else if (scn == 1) { ippiAddSquare_IM = sdepth == CV_8U && ddepth == CV_32F ? (ippiAddSquareMask)ippiAddSquare_8u32f_C1IMR : sdepth == CV_16U && ddepth == CV_32F ? (ippiAddSquareMask)ippiAddSquare_16u32f_C1IMR : sdepth == CV_32F && ddepth == CV_32F ? (ippiAddSquareMask)ippiAddSquare_32f_C1IMR : 0; } if (ippiAddSquare_I || ippiAddSquare_IM) { IppStatus status = ippStsErr; Size size = src.size(); int srcstep = (int)src.step, dststep = (int)dst.step, maskstep = (int)mask.step; if (src.isContinuous() && dst.isContinuous() && mask.isContinuous()) { srcstep = static_cast(src.total() * src.elemSize()); dststep = static_cast(dst.total() * dst.elemSize()); maskstep = static_cast(mask.total() * mask.elemSize()); size.width = static_cast(src.total()); size.height = 1; } size.width *= scn; if (ippiAddSquare_I) status = CV_INSTRUMENT_FUN_IPP(ippiAddSquare_I, src.ptr(), srcstep, dst.ptr(), dststep, ippiSize(size.width, size.height)); else if (ippiAddSquare_IM) status = CV_INSTRUMENT_FUN_IPP(ippiAddSquare_IM, src.ptr(), srcstep, mask.ptr(), maskstep, dst.ptr(), dststep, ippiSize(size.width, size.height)); if (status >= 0) return true; } } return false; } } #endif void cv::accumulateSquare( InputArray _src, InputOutputArray _dst, InputArray _mask ) { CV_INSTRUMENT_REGION(); int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), scn = CV_MAT_CN(stype); int dtype = _dst.type(), ddepth = CV_MAT_DEPTH(dtype), dcn = CV_MAT_CN(dtype); CV_Assert( _src.sameSize(_dst) && dcn == scn ); CV_Assert( _mask.empty() || (_src.sameSize(_mask) && _mask.type() == CV_8U) ); CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(), ocl_accumulate(_src, noArray(), _dst, 0.0, _mask, ACCUMULATE_SQUARE)) CV_IPP_RUN((_src.dims() <= 2 || (_src.isContinuous() && _dst.isContinuous() && (_mask.empty() || _mask.isContinuous()))), ipp_accumulate_square(_src, _dst, _mask)); CV_OVX_RUN(_src.dims() <= 2, openvx_accumulate(_src, _dst, _mask, 0.0, VX_ACCUMULATE_SQUARE_OP)) Mat src = _src.getMat(), dst = _dst.getMat(), mask = _mask.getMat(); int fidx = getAccTabIdx(sdepth, ddepth); AccFunc func = fidx >= 0 ? accSqrTab[fidx] : 0; CV_Assert( func != 0 ); const Mat* arrays[] = {&src, &dst, &mask, 0}; uchar* ptrs[3] = {}; NAryMatIterator it(arrays, ptrs); int len = (int)it.size; for( size_t i = 0; i < it.nplanes; i++, ++it ) func(ptrs[0], ptrs[1], ptrs[2], len, scn); } #if defined(HAVE_IPP) namespace cv { static bool ipp_accumulate_product(InputArray _src1, InputArray _src2, InputOutputArray _dst, InputArray _mask) { CV_INSTRUMENT_REGION_IPP(); int stype = _src1.type(), sdepth = CV_MAT_DEPTH(stype), scn = CV_MAT_CN(stype); int dtype = _dst.type(), ddepth = CV_MAT_DEPTH(dtype); Mat src1 = _src1.getMat(), src2 = _src2.getMat(), dst = _dst.getMat(), mask = _mask.getMat(); if (src1.dims <= 2 || (src1.isContinuous() && src2.isContinuous() && dst.isContinuous())) { typedef IppStatus (CV_STDCALL * ippiAddProduct)(const void * pSrc1, int src1Step, const void * pSrc2, int src2Step, Ipp32f * pSrcDst, int srcDstStep, IppiSize roiSize); typedef IppStatus (CV_STDCALL * ippiAddProductMask)(const void * pSrc1, int src1Step, const void * pSrc2, int src2Step, const Ipp8u * pMask, int maskStep, Ipp32f * pSrcDst, int srcDstStep, IppiSize roiSize); ippiAddProduct ippiAddProduct_I = 0; ippiAddProductMask ippiAddProduct_IM = 0; if (mask.empty()) { ippiAddProduct_I = sdepth == CV_8U && ddepth == CV_32F ? (ippiAddProduct)ippiAddProduct_8u32f_C1IR : sdepth == CV_16U && ddepth == CV_32F ? (ippiAddProduct)ippiAddProduct_16u32f_C1IR : sdepth == CV_32F && ddepth == CV_32F ? (ippiAddProduct)ippiAddProduct_32f_C1IR : 0; } else if (scn == 1) { ippiAddProduct_IM = sdepth == CV_8U && ddepth == CV_32F ? (ippiAddProductMask)ippiAddProduct_8u32f_C1IMR : sdepth == CV_16U && ddepth == CV_32F ? (ippiAddProductMask)ippiAddProduct_16u32f_C1IMR : sdepth == CV_32F && ddepth == CV_32F ? (ippiAddProductMask)ippiAddProduct_32f_C1IMR : 0; } if (ippiAddProduct_I || ippiAddProduct_IM) { IppStatus status = ippStsErr; Size size = src1.size(); int src1step = (int)src1.step, src2step = (int)src2.step, dststep = (int)dst.step, maskstep = (int)mask.step; if (src1.isContinuous() && src2.isContinuous() && dst.isContinuous() && mask.isContinuous()) { src1step = static_cast(src1.total() * src1.elemSize()); src2step = static_cast(src2.total() * src2.elemSize()); dststep = static_cast(dst.total() * dst.elemSize()); maskstep = static_cast(mask.total() * mask.elemSize()); size.width = static_cast(src1.total()); size.height = 1; } size.width *= scn; if (ippiAddProduct_I) status = CV_INSTRUMENT_FUN_IPP(ippiAddProduct_I, src1.ptr(), src1step, src2.ptr(), src2step, dst.ptr(), dststep, ippiSize(size.width, size.height)); else if (ippiAddProduct_IM) status = CV_INSTRUMENT_FUN_IPP(ippiAddProduct_IM, src1.ptr(), src1step, src2.ptr(), src2step, mask.ptr(), maskstep, dst.ptr(), dststep, ippiSize(size.width, size.height)); if (status >= 0) return true; } } return false; } } #endif void cv::accumulateProduct( InputArray _src1, InputArray _src2, InputOutputArray _dst, InputArray _mask ) { CV_INSTRUMENT_REGION(); int stype = _src1.type(), sdepth = CV_MAT_DEPTH(stype), scn = CV_MAT_CN(stype); int dtype = _dst.type(), ddepth = CV_MAT_DEPTH(dtype), dcn = CV_MAT_CN(dtype); CV_Assert( _src1.sameSize(_src2) && stype == _src2.type() ); CV_Assert( _src1.sameSize(_dst) && dcn == scn ); CV_Assert( _mask.empty() || (_src1.sameSize(_mask) && _mask.type() == CV_8U) ); CV_OCL_RUN(_src1.dims() <= 2 && _dst.isUMat(), ocl_accumulate(_src1, _src2, _dst, 0.0, _mask, ACCUMULATE_PRODUCT)) CV_IPP_RUN( (_src1.dims() <= 2 || (_src1.isContinuous() && _src2.isContinuous() && _dst.isContinuous())), ipp_accumulate_product(_src1, _src2, _dst, _mask)); Mat src1 = _src1.getMat(), src2 = _src2.getMat(), dst = _dst.getMat(), mask = _mask.getMat(); int fidx = getAccTabIdx(sdepth, ddepth); AccProdFunc func = fidx >= 0 ? accProdTab[fidx] : 0; CV_Assert( func != 0 ); const Mat* arrays[] = {&src1, &src2, &dst, &mask, 0}; uchar* ptrs[4] = {}; NAryMatIterator it(arrays, ptrs); int len = (int)it.size; for( size_t i = 0; i < it.nplanes; i++, ++it ) func(ptrs[0], ptrs[1], ptrs[2], ptrs[3], len, scn); } #if defined(HAVE_IPP) namespace cv { static bool ipp_accumulate_weighted( InputArray _src, InputOutputArray _dst, double alpha, InputArray _mask ) { CV_INSTRUMENT_REGION_IPP(); int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), scn = CV_MAT_CN(stype); int dtype = _dst.type(), ddepth = CV_MAT_DEPTH(dtype); Mat src = _src.getMat(), dst = _dst.getMat(), mask = _mask.getMat(); if (src.dims <= 2 || (src.isContinuous() && dst.isContinuous() && mask.isContinuous())) { typedef IppStatus (CV_STDCALL * ippiAddWeighted)(const void * pSrc, int srcStep, Ipp32f * pSrcDst, int srcdstStep, IppiSize roiSize, Ipp32f alpha); typedef IppStatus (CV_STDCALL * ippiAddWeightedMask)(const void * pSrc, int srcStep, const Ipp8u * pMask, int maskStep, Ipp32f * pSrcDst, int srcDstStep, IppiSize roiSize, Ipp32f alpha); ippiAddWeighted ippiAddWeighted_I = 0; ippiAddWeightedMask ippiAddWeighted_IM = 0; if (mask.empty()) { ippiAddWeighted_I = sdepth == CV_8U && ddepth == CV_32F ? (ippiAddWeighted)ippiAddWeighted_8u32f_C1IR : sdepth == CV_16U && ddepth == CV_32F ? (ippiAddWeighted)ippiAddWeighted_16u32f_C1IR : sdepth == CV_32F && ddepth == CV_32F ? (ippiAddWeighted)ippiAddWeighted_32f_C1IR : 0; } else if (scn == 1) { ippiAddWeighted_IM = sdepth == CV_8U && ddepth == CV_32F ? (ippiAddWeightedMask)ippiAddWeighted_8u32f_C1IMR : sdepth == CV_16U && ddepth == CV_32F ? (ippiAddWeightedMask)ippiAddWeighted_16u32f_C1IMR : sdepth == CV_32F && ddepth == CV_32F ? (ippiAddWeightedMask)ippiAddWeighted_32f_C1IMR : 0; } if (ippiAddWeighted_I || ippiAddWeighted_IM) { IppStatus status = ippStsErr; Size size = src.size(); int srcstep = (int)src.step, dststep = (int)dst.step, maskstep = (int)mask.step; if (src.isContinuous() && dst.isContinuous() && mask.isContinuous()) { srcstep = static_cast(src.total() * src.elemSize()); dststep = static_cast(dst.total() * dst.elemSize()); maskstep = static_cast(mask.total() * mask.elemSize()); size.width = static_cast((int)src.total()); size.height = 1; } size.width *= scn; if (ippiAddWeighted_I) status = CV_INSTRUMENT_FUN_IPP(ippiAddWeighted_I, src.ptr(), srcstep, dst.ptr(), dststep, ippiSize(size.width, size.height), (Ipp32f)alpha); else if (ippiAddWeighted_IM) status = CV_INSTRUMENT_FUN_IPP(ippiAddWeighted_IM, src.ptr(), srcstep, mask.ptr(), maskstep, dst.ptr(), dststep, ippiSize(size.width, size.height), (Ipp32f)alpha); if (status >= 0) return true; } } return false; } } #endif void cv::accumulateWeighted( InputArray _src, InputOutputArray _dst, double alpha, InputArray _mask ) { CV_INSTRUMENT_REGION(); int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), scn = CV_MAT_CN(stype); int dtype = _dst.type(), ddepth = CV_MAT_DEPTH(dtype), dcn = CV_MAT_CN(dtype); CV_Assert( _src.sameSize(_dst) && dcn == scn ); CV_Assert( _mask.empty() || (_src.sameSize(_mask) && _mask.type() == CV_8U) ); CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(), ocl_accumulate(_src, noArray(), _dst, alpha, _mask, ACCUMULATE_WEIGHTED)) CV_IPP_RUN((_src.dims() <= 2 || (_src.isContinuous() && _dst.isContinuous() && _mask.isContinuous())), ipp_accumulate_weighted(_src, _dst, alpha, _mask)); CV_OVX_RUN(_src.dims() <= 2, openvx_accumulate(_src, _dst, _mask, alpha, VX_ACCUMULATE_WEIGHTED_OP)) Mat src = _src.getMat(), dst = _dst.getMat(), mask = _mask.getMat(); int fidx = getAccTabIdx(sdepth, ddepth); AccWFunc func = fidx >= 0 ? accWTab[fidx] : 0; CV_Assert( func != 0 ); const Mat* arrays[] = {&src, &dst, &mask, 0}; uchar* ptrs[3] = {}; NAryMatIterator it(arrays, ptrs); int len = (int)it.size; for( size_t i = 0; i < it.nplanes; i++, ++it ) func(ptrs[0], ptrs[1], ptrs[2], len, scn, alpha); } CV_IMPL void cvAcc( const void* arr, void* sumarr, const void* maskarr ) { cv::Mat src = cv::cvarrToMat(arr), dst = cv::cvarrToMat(sumarr), mask; if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::accumulate( src, dst, mask ); } CV_IMPL void cvSquareAcc( const void* arr, void* sumarr, const void* maskarr ) { cv::Mat src = cv::cvarrToMat(arr), dst = cv::cvarrToMat(sumarr), mask; if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::accumulateSquare( src, dst, mask ); } CV_IMPL void cvMultiplyAcc( const void* arr1, const void* arr2, void* sumarr, const void* maskarr ) { cv::Mat src1 = cv::cvarrToMat(arr1), src2 = cv::cvarrToMat(arr2); cv::Mat dst = cv::cvarrToMat(sumarr), mask; if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::accumulateProduct( src1, src2, dst, mask ); } CV_IMPL void cvRunningAvg( const void* arr, void* sumarr, double alpha, const void* maskarr ) { cv::Mat src = cv::cvarrToMat(arr), dst = cv::cvarrToMat(sumarr), mask; if( maskarr ) mask = cv::cvarrToMat(maskarr); cv::accumulateWeighted( src, dst, alpha, mask ); } /* End of file. */