/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other GpuMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or bpied warranties, including, but not limited to, the bpied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include #include //#define SHOW_TIME #ifdef SHOW_TIME #include #define F(x) x #else #define F(x) #endif using namespace cv; using namespace std; struct CV_GpuMatchTemplateTest: cvtest::BaseTest { CV_GpuMatchTemplateTest() {} void run(int) { bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) && gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE); if (!double_ok) { // For sqrIntegral ts->printf(cvtest::TS::CONSOLE, "\nCode and device double support is required (CC >= 1.3)"); ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC); return; } Mat image, templ; Mat dst_gold; gpu::GpuMat dst; int n, m, h, w; F(clock_t t;) RNG& rng = ts->get_rng(); for (int cn = 1; cn <= 4; ++cn) { F(ts->printf(cvtest::TS::CONSOLE, "cn: %d\n", cn);) for (int i = 0; i <= 0; ++i) { n = rng.uniform(30, 100); m = rng.uniform(30, 100); h = rng.uniform(5, n - 1); w = rng.uniform(5, m - 1); gen(image, n, m, CV_8U, cn); gen(templ, h, w, CV_8U, cn); F(t = clock();) matchTemplate(image, templ, dst_gold, CV_TM_SQDIFF); F(cout << "depth: 8U cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;) F(cout << "cpu:" << clock() - t << endl;) F(t = clock();) gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_SQDIFF); F(cout << "gpu_block: " << clock() - t << endl;) if (!check(dst_gold, Mat(dst), 5 * h * w * 1e-4f, "SQDIFF 8U")) return; gen(image, n, m, CV_8U, cn); gen(templ, h, w, CV_8U, cn); F(t = clock();) matchTemplate(image, templ, dst_gold, CV_TM_SQDIFF_NORMED); F(cout << "depth: 8U cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;) F(cout << "cpu:" << clock() - t << endl;) F(t = clock();) gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_SQDIFF_NORMED); F(cout << "gpu_block: " << clock() - t << endl;) if (!check(dst_gold, Mat(dst), h * w * 1e-5f, "SQDIFF_NOREMD 8U")) return; gen(image, n, m, CV_8U, cn); gen(templ, h, w, CV_8U, cn); F(t = clock();) matchTemplate(image, templ, dst_gold, CV_TM_CCORR); F(cout << "depth: 8U cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;) F(cout << "cpu:" << clock() - t << endl;) F(t = clock();) gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_CCORR); F(cout << "gpu_block: " << clock() - t << endl;) if (!check(dst_gold, Mat(dst), 5 * h * w * cn * cn * 1e-5f, "CCORR 8U")) return; gen(image, n, m, CV_8U, cn); gen(templ, h, w, CV_8U, cn); F(t = clock();) matchTemplate(image, templ, dst_gold, CV_TM_CCORR_NORMED); F(cout << "depth: 8U cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;) F(cout << "cpu:" << clock() - t << endl;) F(t = clock();) gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_CCORR_NORMED); F(cout << "gpu_block: " << clock() - t << endl;) if (!check(dst_gold, Mat(dst), h * w * 1e-6f, "CCORR_NORMED 8U")) return; gen(image, n, m, CV_8U, cn); gen(templ, h, w, CV_8U, cn); F(t = clock();) matchTemplate(image, templ, dst_gold, CV_TM_CCOEFF); F(cout << "depth: 8U cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;) F(cout << "cpu:" << clock() - t << endl;) F(t = clock();) gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_CCOEFF); F(cout << "gpu_block: " << clock() - t << endl;) if (!check(dst_gold, Mat(dst), 5 * h * w * cn * cn * 1e-5f, "CCOEFF 8U")) return; gen(image, n, m, CV_8U, cn); gen(templ, h, w, CV_8U, cn); F(t = clock();) matchTemplate(image, templ, dst_gold, CV_TM_CCOEFF_NORMED); F(cout << "depth: 8U cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;) F(cout << "cpu:" << clock() - t << endl;) F(t = clock();) gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_CCOEFF_NORMED); F(cout << "gpu_block: " << clock() - t << endl;) if (!check(dst_gold, Mat(dst), h * w * 1e-6f, "CCOEFF_NORMED 8U")) return; gen(image, n, m, CV_32F, cn); gen(templ, h, w, CV_32F, cn); F(t = clock();) matchTemplate(image, templ, dst_gold, CV_TM_SQDIFF); F(cout << "depth: 32F cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;) F(cout << "cpu:" << clock() - t << endl;) F(t = clock();) gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_SQDIFF); F(cout << "gpu_block: " << clock() - t << endl;) if (!check(dst_gold, Mat(dst), 0.25f * h * w * 1e-5f, "SQDIFF 32F")) return; gen(image, n, m, CV_32F, cn); gen(templ, h, w, CV_32F, cn); F(t = clock();) matchTemplate(image, templ, dst_gold, CV_TM_CCORR); F(cout << "depth: 32F cn: " << cn << " n: " << n << " m: " << m << " w: " << w << " h: " << h << endl;) F(cout << "cpu:" << clock() - t << endl;) F(t = clock();) gpu::matchTemplate(gpu::GpuMat(image), gpu::GpuMat(templ), dst, CV_TM_CCORR); F(cout << "gpu_block: " << clock() - t << endl;) if (!check(dst_gold, Mat(dst), 0.25f * h * w * 1e-5f, "CCORR 32F")) return; } } } void gen(Mat& a, int rows, int cols, int depth, int cn) { RNG rng; a.create(rows, cols, CV_MAKETYPE(depth, cn)); if (depth == CV_8U) rng.fill(a, RNG::UNIFORM, Scalar::all(1), Scalar::all(10)); else if (depth == CV_32F) rng.fill(a, RNG::UNIFORM, Scalar::all(0.001f), Scalar::all(1.f)); } bool check(const Mat& a, const Mat& b, float max_err, const string& method="") { if (a.size() != b.size()) { ts->printf(cvtest::TS::CONSOLE, "bad size, method=%s\n", method.c_str()); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); return false; } //for (int i = 0; i < a.rows; ++i) //{ // for (int j = 0; j < a.cols; ++j) // { // float a_ = a.at(i, j); // float b_ = b.at(i, j); // if (fabs(a_ - b_) > max_err) // { // ts->printf(cvtest::TS::CONSOLE, "a=%f, b=%f, i=%d, j=%d\n", a_, b_, i, j); // cin.get(); // } // } //} float err = (float)norm(a, b, NORM_INF); if (err > max_err) { ts->printf(cvtest::TS::CONSOLE, "bad accuracy: %f, method=%s\n", err, method.c_str()); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); return false; } return true; } }; TEST(matchTemplate, accuracy) { CV_GpuMatchTemplateTest test; test.safe_run(); } struct CV_GpuMatchTemplateFindPatternInBlackTest: cvtest::BaseTest { CV_GpuMatchTemplateFindPatternInBlackTest() {} void run(int) { bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) && gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE); if (!double_ok) { // For sqrIntegral ts->printf(cvtest::TS::CONSOLE, "\nCode and device double support is required (CC >= 1.3)"); ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC); return; } Mat image = imread(std::string(ts->get_data_path()) + "matchtemplate/black.png"); if (image.empty()) { ts->printf(cvtest::TS::CONSOLE, "can't open file '%s'", (std::string(ts->get_data_path()) + "matchtemplate/black.png").c_str()); ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); return; } Mat pattern = imread(std::string(ts->get_data_path()) + "matchtemplate/cat.png"); if (pattern.empty()) { ts->printf(cvtest::TS::CONSOLE, "can't open file '%s'", (std::string(ts->get_data_path()) + "matchtemplate/cat.png").c_str()); ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA); return; } gpu::GpuMat d_image(image); gpu::GpuMat d_pattern(pattern); gpu::GpuMat d_result; double maxValue; Point maxLoc; Point maxLocGold(284, 12); gpu::matchTemplate(d_image, d_pattern, d_result, CV_TM_CCOEFF_NORMED); gpu::minMaxLoc(d_result, NULL, &maxValue, NULL, &maxLoc ); if (maxLoc != maxLocGold) { ts->printf(cvtest::TS::CONSOLE, "bad match (CV_TM_CCOEFF_NORMED): %d %d, must be at: %d %d", maxLoc.x, maxLoc.y, maxLocGold.x, maxLocGold.y); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); return; } gpu::matchTemplate(d_image, d_pattern, d_result, CV_TM_CCORR_NORMED); gpu::minMaxLoc(d_result, NULL, &maxValue, NULL, &maxLoc ); if (maxLoc != maxLocGold) { ts->printf(cvtest::TS::CONSOLE, "bad match (CV_TM_CCORR_NORMED): %d %d, must be at: %d %d", maxLoc.x, maxLoc.y, maxLocGold.x, maxLocGold.y); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); return; } } }; TEST(matchTemplate, find_pattern_in_black) { CV_GpuMatchTemplateFindPatternInBlackTest test; test.safe_run(); }