/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Niko Li, newlife20080214@gmail.com // Wang Weiyan, wangweiyanster@gmail.com // Jia Haipeng, jiahaipeng95@gmail.com // Wu Xinglong, wxl370@126.com // Wang Yao, bitwangyaoyao@gmail.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other oclMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ /* Haar features calculation */ //#define EMU #include "precomp.hpp" #include #ifdef EMU #include "runCL.h" #endif using namespace cv; using namespace cv::ocl; using namespace std; namespace cv { namespace ocl { ///////////////////////////OpenCL kernel strings/////////////////////////// extern const char *haarobjectdetect; extern const char *haarobjectdetectbackup; extern const char *haarobjectdetect_scaled2; } } /* these settings affect the quality of detection: change with care */ #define CV_ADJUST_FEATURES 1 #define CV_ADJUST_WEIGHTS 0 typedef int sumtype; typedef double sqsumtype; typedef struct CvHidHaarFeature { struct { sumtype *p0, *p1, *p2, *p3; float weight; } rect[CV_HAAR_FEATURE_MAX]; } CvHidHaarFeature; typedef struct CvHidHaarTreeNode { CvHidHaarFeature feature; float threshold; int left; int right; } CvHidHaarTreeNode; typedef struct CvHidHaarClassifier { int count; //CvHaarFeature* orig_feature; CvHidHaarTreeNode *node; float *alpha; } CvHidHaarClassifier; typedef struct CvHidHaarStageClassifier { int count; float threshold; CvHidHaarClassifier *classifier; int two_rects; struct CvHidHaarStageClassifier *next; struct CvHidHaarStageClassifier *child; struct CvHidHaarStageClassifier *parent; } CvHidHaarStageClassifier; struct CvHidHaarClassifierCascade { int count; int is_stump_based; int has_tilted_features; int is_tree; double inv_window_area; CvMat sum, sqsum, tilted; CvHidHaarStageClassifier *stage_classifier; sqsumtype *pq0, *pq1, *pq2, *pq3; sumtype *p0, *p1, *p2, *p3; void **ipp_stages; }; typedef struct { //int rows; //int ystep; int width_height; //int height; int grpnumperline_totalgrp; //int totalgrp; int imgoff; float factor; } detect_piramid_info; #if WIN32 #define _ALIGNED_ON(_ALIGNMENT) __declspec(align(_ALIGNMENT)) typedef _ALIGNED_ON(128) struct GpuHidHaarFeature { _ALIGNED_ON(32) struct { _ALIGNED_ON(4) int p0 ; _ALIGNED_ON(4) int p1 ; _ALIGNED_ON(4) int p2 ; _ALIGNED_ON(4) int p3 ; _ALIGNED_ON(4) float weight ; } _ALIGNED_ON(32) rect[CV_HAAR_FEATURE_MAX] ; } GpuHidHaarFeature; typedef _ALIGNED_ON(128) struct GpuHidHaarTreeNode { _ALIGNED_ON(64) int p[CV_HAAR_FEATURE_MAX][4]; //_ALIGNED_ON(16) int p1[CV_HAAR_FEATURE_MAX] ; //_ALIGNED_ON(16) int p2[CV_HAAR_FEATURE_MAX] ; //_ALIGNED_ON(16) int p3[CV_HAAR_FEATURE_MAX] ; /*_ALIGNED_ON(16)*/ float weight[CV_HAAR_FEATURE_MAX] ; /*_ALIGNED_ON(4)*/ float threshold ; _ALIGNED_ON(8) float alpha[2] ; _ALIGNED_ON(4) int left ; _ALIGNED_ON(4) int right ; // GpuHidHaarFeature feature __attribute__((aligned (128))); } GpuHidHaarTreeNode; typedef _ALIGNED_ON(32) struct GpuHidHaarClassifier { _ALIGNED_ON(4) int count; //CvHaarFeature* orig_feature; _ALIGNED_ON(8) GpuHidHaarTreeNode *node ; _ALIGNED_ON(8) float *alpha ; } GpuHidHaarClassifier; typedef _ALIGNED_ON(64) struct GpuHidHaarStageClassifier { _ALIGNED_ON(4) int count ; _ALIGNED_ON(4) float threshold ; _ALIGNED_ON(4) int two_rects ; _ALIGNED_ON(8) GpuHidHaarClassifier *classifier ; _ALIGNED_ON(8) struct GpuHidHaarStageClassifier *next; _ALIGNED_ON(8) struct GpuHidHaarStageClassifier *child ; _ALIGNED_ON(8) struct GpuHidHaarStageClassifier *parent ; } GpuHidHaarStageClassifier; typedef _ALIGNED_ON(64) struct GpuHidHaarClassifierCascade { _ALIGNED_ON(4) int count ; _ALIGNED_ON(4) int is_stump_based ; _ALIGNED_ON(4) int has_tilted_features ; _ALIGNED_ON(4) int is_tree ; _ALIGNED_ON(4) int pq0 ; _ALIGNED_ON(4) int pq1 ; _ALIGNED_ON(4) int pq2 ; _ALIGNED_ON(4) int pq3 ; _ALIGNED_ON(4) int p0 ; _ALIGNED_ON(4) int p1 ; _ALIGNED_ON(4) int p2 ; _ALIGNED_ON(4) int p3 ; _ALIGNED_ON(4) float inv_window_area ; // GpuHidHaarStageClassifier* stage_classifier __attribute__((aligned (8))); } GpuHidHaarClassifierCascade; #else #define _ALIGNED_ON(_ALIGNMENT) __attribute__((aligned(_ALIGNMENT) )) typedef struct _ALIGNED_ON(128) GpuHidHaarFeature { struct _ALIGNED_ON(32) { int p0 _ALIGNED_ON(4); int p1 _ALIGNED_ON(4); int p2 _ALIGNED_ON(4); int p3 _ALIGNED_ON(4); float weight _ALIGNED_ON(4); } rect[CV_HAAR_FEATURE_MAX] _ALIGNED_ON(32); } GpuHidHaarFeature; typedef struct _ALIGNED_ON(128) GpuHidHaarTreeNode { int p[CV_HAAR_FEATURE_MAX][4] _ALIGNED_ON(64); float weight[CV_HAAR_FEATURE_MAX];// _ALIGNED_ON(16); float threshold;// _ALIGNED_ON(4); float alpha[2] _ALIGNED_ON(8); int left _ALIGNED_ON(4); int right _ALIGNED_ON(4); } GpuHidHaarTreeNode; typedef struct _ALIGNED_ON(32) GpuHidHaarClassifier { int count _ALIGNED_ON(4); GpuHidHaarTreeNode *node _ALIGNED_ON(8); float *alpha _ALIGNED_ON(8); } GpuHidHaarClassifier; typedef struct _ALIGNED_ON(64) GpuHidHaarStageClassifier { int count _ALIGNED_ON(4); float threshold _ALIGNED_ON(4); int two_rects _ALIGNED_ON(4); GpuHidHaarClassifier *classifier _ALIGNED_ON(8); struct GpuHidHaarStageClassifier *next _ALIGNED_ON(8); struct GpuHidHaarStageClassifier *child _ALIGNED_ON(8); struct GpuHidHaarStageClassifier *parent _ALIGNED_ON(8); } GpuHidHaarStageClassifier; typedef struct _ALIGNED_ON(64) GpuHidHaarClassifierCascade { int count _ALIGNED_ON(4); int is_stump_based _ALIGNED_ON(4); int has_tilted_features _ALIGNED_ON(4); int is_tree _ALIGNED_ON(4); int pq0 _ALIGNED_ON(4); int pq1 _ALIGNED_ON(4); int pq2 _ALIGNED_ON(4); int pq3 _ALIGNED_ON(4); int p0 _ALIGNED_ON(4); int p1 _ALIGNED_ON(4); int p2 _ALIGNED_ON(4); int p3 _ALIGNED_ON(4); float inv_window_area _ALIGNED_ON(4); // GpuHidHaarStageClassifier* stage_classifier __attribute__((aligned (8))); } GpuHidHaarClassifierCascade; #endif const int icv_object_win_border = 1; const float icv_stage_threshold_bias = 0.0001f; double globaltime = 0; CvHaarClassifierCascade* gpuCreateHaarClassifierCascade( int stage_count ) { CvHaarClassifierCascade *cascade = 0; int block_size = sizeof(*cascade) + stage_count * sizeof(*cascade->stage_classifier); if( stage_count <= 0 ) CV_Error( CV_StsOutOfRange, "Number of stages should be positive" ); cascade = (CvHaarClassifierCascade *)cvAlloc( block_size ); memset( cascade, 0, block_size ); cascade->stage_classifier = (CvHaarStageClassifier *)(cascade + 1); cascade->flags = CV_HAAR_MAGIC_VAL; cascade->count = stage_count; return cascade; } //static int globalcounter = 0; void gpuReleaseHidHaarClassifierCascade( GpuHidHaarClassifierCascade **_cascade ) { if( _cascade && *_cascade ) { cvFree( _cascade ); } } /* create more efficient internal representation of haar classifier cascade */ GpuHidHaarClassifierCascade* gpuCreateHidHaarClassifierCascade( CvHaarClassifierCascade *cascade, int *size, int *totalclassifier) { GpuHidHaarClassifierCascade *out = 0; int i, j, k, l; int datasize; int total_classifiers = 0; int total_nodes = 0; char errorstr[100]; GpuHidHaarStageClassifier *stage_classifier_ptr; GpuHidHaarClassifier *haar_classifier_ptr; GpuHidHaarTreeNode *haar_node_ptr; CvSize orig_window_size; int has_tilted_features = 0; if( !CV_IS_HAAR_CLASSIFIER(cascade) ) CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" ); if( cascade->hid_cascade ) CV_Error( CV_StsError, "hid_cascade has been already created" ); if( !cascade->stage_classifier ) CV_Error( CV_StsNullPtr, "" ); if( cascade->count <= 0 ) CV_Error( CV_StsOutOfRange, "Negative number of cascade stages" ); orig_window_size = cascade->orig_window_size; /* check input structure correctness and calculate total memory size needed for internal representation of the classifier cascade */ for( i = 0; i < cascade->count; i++ ) { CvHaarStageClassifier *stage_classifier = cascade->stage_classifier + i; if( !stage_classifier->classifier || stage_classifier->count <= 0 ) { sprintf( errorstr, "header of the stage classifier #%d is invalid " "(has null pointers or non-positive classfier count)", i ); CV_Error( CV_StsError, errorstr ); } total_classifiers += stage_classifier->count; for( j = 0; j < stage_classifier->count; j++ ) { CvHaarClassifier *classifier = stage_classifier->classifier + j; total_nodes += classifier->count; for( l = 0; l < classifier->count; l++ ) { for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ ) { if( classifier->haar_feature[l].rect[k].r.width ) { CvRect r = classifier->haar_feature[l].rect[k].r; int tilted = classifier->haar_feature[l].tilted; has_tilted_features |= tilted != 0; if( r.width < 0 || r.height < 0 || r.y < 0 || r.x + r.width > orig_window_size.width || (!tilted && (r.x < 0 || r.y + r.height > orig_window_size.height)) || (tilted && (r.x - r.height < 0 || r.y + r.width + r.height > orig_window_size.height))) { sprintf( errorstr, "rectangle #%d of the classifier #%d of " "the stage classifier #%d is not inside " "the reference (original) cascade window", k, j, i ); CV_Error( CV_StsNullPtr, errorstr ); } } } } } } // this is an upper boundary for the whole hidden cascade size datasize = sizeof(GpuHidHaarClassifierCascade) + sizeof(GpuHidHaarStageClassifier) * cascade->count + sizeof(GpuHidHaarClassifier) * total_classifiers + sizeof(GpuHidHaarTreeNode) * total_nodes; *totalclassifier = total_classifiers; *size = datasize; out = (GpuHidHaarClassifierCascade *)cvAlloc( datasize ); memset( out, 0, sizeof(*out) ); /* init header */ out->count = cascade->count; stage_classifier_ptr = (GpuHidHaarStageClassifier *)(out + 1); haar_classifier_ptr = (GpuHidHaarClassifier *)(stage_classifier_ptr + cascade->count); haar_node_ptr = (GpuHidHaarTreeNode *)(haar_classifier_ptr + total_classifiers); out->is_stump_based = 1; out->has_tilted_features = has_tilted_features; out->is_tree = 0; /* initialize internal representation */ for( i = 0; i < cascade->count; i++ ) { CvHaarStageClassifier *stage_classifier = cascade->stage_classifier + i; GpuHidHaarStageClassifier *hid_stage_classifier = stage_classifier_ptr + i; hid_stage_classifier->count = stage_classifier->count; hid_stage_classifier->threshold = stage_classifier->threshold - icv_stage_threshold_bias; hid_stage_classifier->classifier = haar_classifier_ptr; hid_stage_classifier->two_rects = 1; haar_classifier_ptr += stage_classifier->count; /* hid_stage_classifier->parent = (stage_classifier->parent == -1) ? NULL : stage_classifier_ptr + stage_classifier->parent; hid_stage_classifier->next = (stage_classifier->next == -1) ? NULL : stage_classifier_ptr + stage_classifier->next; hid_stage_classifier->child = (stage_classifier->child == -1) ? NULL : stage_classifier_ptr + stage_classifier->child; out->is_tree |= hid_stage_classifier->next != NULL; */ for( j = 0; j < stage_classifier->count; j++ ) { CvHaarClassifier *classifier = stage_classifier->classifier + j; GpuHidHaarClassifier *hid_classifier = hid_stage_classifier->classifier + j; int node_count = classifier->count; // float* alpha_ptr = (float*)(haar_node_ptr + node_count); float *alpha_ptr = &haar_node_ptr->alpha[0]; hid_classifier->count = node_count; hid_classifier->node = haar_node_ptr; hid_classifier->alpha = alpha_ptr; for( l = 0; l < node_count; l++ ) { GpuHidHaarTreeNode *node = hid_classifier->node + l; CvHaarFeature *feature = classifier->haar_feature + l; memset( node, -1, sizeof(*node) ); node->threshold = classifier->threshold[l]; node->left = classifier->left[l]; node->right = classifier->right[l]; if( fabs(feature->rect[2].weight) < DBL_EPSILON || feature->rect[2].r.width == 0 || feature->rect[2].r.height == 0 ) { node->p[2][0] = 0; node->p[2][1] = 0; node->p[2][2] = 0; node->p[2][3] = 0; node->weight[2] = 0; } // memset( &(node->feature.rect[2]), 0, sizeof(node->feature.rect[2]) ); else hid_stage_classifier->two_rects = 0; } memcpy( alpha_ptr, classifier->alpha, (node_count + 1)*sizeof(alpha_ptr[0])); haar_node_ptr = haar_node_ptr + 1; // (GpuHidHaarTreeNode*)cvAlignPtr(alpha_ptr+node_count+1, sizeof(void*)); // (GpuHidHaarTreeNode*)(alpha_ptr+node_count+1); out->is_stump_based &= node_count == 1; } } cascade->hid_cascade = (CvHidHaarClassifierCascade *)out; assert( (char *)haar_node_ptr - (char *)out <= datasize ); return out; } #define sum_elem_ptr(sum,row,col) \ ((sumtype*)CV_MAT_ELEM_PTR_FAST((sum),(row),(col),sizeof(sumtype))) #define sqsum_elem_ptr(sqsum,row,col) \ ((sqsumtype*)CV_MAT_ELEM_PTR_FAST((sqsum),(row),(col),sizeof(sqsumtype))) #define calc_sum(rect,offset) \ ((rect).p0[offset] - (rect).p1[offset] - (rect).p2[offset] + (rect).p3[offset]) CV_IMPL void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_cascade, /* const CvArr* _sum, const CvArr* _sqsum, const CvArr* _tilted_sum,*/ double scale, int step) { // CvMat sum_stub, *sum = (CvMat*)_sum; // CvMat sqsum_stub, *sqsum = (CvMat*)_sqsum; // CvMat tilted_stub, *tilted = (CvMat*)_tilted_sum; GpuHidHaarClassifierCascade *cascade; int coi0 = 0, coi1 = 0; int i; int datasize; int total; CvRect equRect; double weight_scale; GpuHidHaarStageClassifier *stage_classifier; if( !CV_IS_HAAR_CLASSIFIER(_cascade) ) CV_Error( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" ); if( scale <= 0 ) CV_Error( CV_StsOutOfRange, "Scale must be positive" ); // sum = cvGetMat( sum, &sum_stub, &coi0 ); // sqsum = cvGetMat( sqsum, &sqsum_stub, &coi1 ); if( coi0 || coi1 ) CV_Error( CV_BadCOI, "COI is not supported" ); // if( !CV_ARE_SIZES_EQ( sum, sqsum )) // CV_Error( CV_StsUnmatchedSizes, "All integral images must have the same size" ); // if( CV_MAT_TYPE(sqsum->type) != CV_64FC1 || // CV_MAT_TYPE(sum->type) != CV_32SC1 ) // CV_Error( CV_StsUnsupportedFormat, // "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" ); if( !_cascade->hid_cascade ) gpuCreateHidHaarClassifierCascade(_cascade, &datasize, &total); cascade = (GpuHidHaarClassifierCascade *) _cascade->hid_cascade; stage_classifier = (GpuHidHaarStageClassifier *) (cascade + 1); if( cascade->has_tilted_features ) { // tilted = cvGetMat( tilted, &tilted_stub, &coi1 ); // if( CV_MAT_TYPE(tilted->type) != CV_32SC1 ) // CV_Error( CV_StsUnsupportedFormat, // "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" ); // if( sum->step != tilted->step ) // CV_Error( CV_StsUnmatchedSizes, // "Sum and tilted_sum must have the same stride (step, widthStep)" ); // if( !CV_ARE_SIZES_EQ( sum, tilted )) // CV_Error( CV_StsUnmatchedSizes, "All integral images must have the same size" ); // cascade->tilted = *tilted; } _cascade->scale = scale; _cascade->real_window_size.width = cvRound( _cascade->orig_window_size.width * scale ); _cascade->real_window_size.height = cvRound( _cascade->orig_window_size.height * scale ); //cascade->sum = *sum; //cascade->sqsum = *sqsum; equRect.x = equRect.y = cvRound(scale); equRect.width = cvRound((_cascade->orig_window_size.width - 2) * scale); equRect.height = cvRound((_cascade->orig_window_size.height - 2) * scale); weight_scale = 1. / (equRect.width * equRect.height); cascade->inv_window_area = weight_scale; // cascade->pq0 = equRect.y * step + equRect.x; // cascade->pq1 = equRect.y * step + equRect.x + equRect.width ; // cascade->pq2 = (equRect.y + equRect.height)*step + equRect.x; // cascade->pq3 = (equRect.y + equRect.height)*step + equRect.x + equRect.width ; cascade->pq0 = equRect.x; cascade->pq1 = equRect.y; cascade->pq2 = equRect.x + equRect.width; cascade->pq3 = equRect.y + equRect.height; cascade->p0 = equRect.x; cascade->p1 = equRect.y; cascade->p2 = equRect.x + equRect.width; cascade->p3 = equRect.y + equRect.height; /* init pointers in haar features according to real window size and given image pointers */ for( i = 0; i < _cascade->count; i++ ) { int j, k, l; for( j = 0; j < stage_classifier[i].count; j++ ) { for( l = 0; l < stage_classifier[i].classifier[j].count; l++ ) { CvHaarFeature *feature = &_cascade->stage_classifier[i].classifier[j].haar_feature[l]; /* GpuHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j; */ //GpuHidHaarFeature* hidfeature = // &cascade->stage_classifier[i].classifier[j].node[l].feature; GpuHidHaarTreeNode *hidnode = &stage_classifier[i].classifier[j].node[l]; double sum0 = 0, area0 = 0; CvRect r[3]; int base_w = -1, base_h = -1; int new_base_w = 0, new_base_h = 0; int kx, ky; int flagx = 0, flagy = 0; int x0 = 0, y0 = 0; int nr; /* align blocks */ for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ ) { //if( !hidfeature->rect[k].p0 ) // break; if(!hidnode->p[k][0]) break; r[k] = feature->rect[k].r; base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].width - 1) ); base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].x - r[0].x - 1) ); base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].height - 1) ); base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].y - r[0].y - 1) ); } nr = k; base_w += 1; base_h += 1; if(base_w == 0) base_w = 1; kx = r[0].width / base_w; if(base_h == 0) base_h = 1; ky = r[0].height / base_h; if( kx <= 0 ) { flagx = 1; new_base_w = cvRound( r[0].width * scale ) / kx; x0 = cvRound( r[0].x * scale ); } if( ky <= 0 ) { flagy = 1; new_base_h = cvRound( r[0].height * scale ) / ky; y0 = cvRound( r[0].y * scale ); } for( k = 0; k < nr; k++ ) { CvRect tr; double correction_ratio; if( flagx ) { tr.x = (r[k].x - r[0].x) * new_base_w / base_w + x0; tr.width = r[k].width * new_base_w / base_w; } else { tr.x = cvRound( r[k].x * scale ); tr.width = cvRound( r[k].width * scale ); } if( flagy ) { tr.y = (r[k].y - r[0].y) * new_base_h / base_h + y0; tr.height = r[k].height * new_base_h / base_h; } else { tr.y = cvRound( r[k].y * scale ); tr.height = cvRound( r[k].height * scale ); } #if CV_ADJUST_WEIGHTS { // RAINER START const float orig_feature_size = (float)(feature->rect[k].r.width) * feature->rect[k].r.height; const float orig_norm_size = (float)(_cascade->orig_window_size.width) * (_cascade->orig_window_size.height); const float feature_size = float(tr.width * tr.height); //const float normSize = float(equRect.width*equRect.height); float target_ratio = orig_feature_size / orig_norm_size; //float isRatio = featureSize / normSize; //correctionRatio = targetRatio / isRatio / normSize; correction_ratio = target_ratio / feature_size; // RAINER END } #else correction_ratio = weight_scale * (!feature->tilted ? 1 : 0.5); #endif if( !feature->tilted ) { /* hidfeature->rect[k].p0 = tr.y * sum->cols + tr.x; hidfeature->rect[k].p1 = tr.y * sum->cols + tr.x + tr.width; hidfeature->rect[k].p2 = (tr.y + tr.height) * sum->cols + tr.x; hidfeature->rect[k].p3 = (tr.y + tr.height) * sum->cols + tr.x + tr.width; */ /*hidnode->p0[k] = tr.y * step + tr.x; hidnode->p1[k] = tr.y * step + tr.x + tr.width; hidnode->p2[k] = (tr.y + tr.height) * step + tr.x; hidnode->p3[k] = (tr.y + tr.height) * step + tr.x + tr.width;*/ hidnode->p[k][0] = tr.x; hidnode->p[k][1] = tr.y; hidnode->p[k][2] = tr.x + tr.width; hidnode->p[k][3] = tr.y + tr.height; } else { /* hidfeature->rect[k].p2 = (tr.y + tr.width) * tilted->cols + tr.x + tr.width; hidfeature->rect[k].p3 = (tr.y + tr.width + tr.height) * tilted->cols + tr.x + tr.width - tr.height; hidfeature->rect[k].p0 = tr.y * tilted->cols + tr.x; hidfeature->rect[k].p1 = (tr.y + tr.height) * tilted->cols + tr.x - tr.height; */ hidnode->p[k][2] = (tr.y + tr.width) * step + tr.x + tr.width; hidnode->p[k][3] = (tr.y + tr.width + tr.height) * step + tr.x + tr.width - tr.height; hidnode->p[k][0] = tr.y * step + tr.x; hidnode->p[k][1] = (tr.y + tr.height) * step + tr.x - tr.height; } //hidfeature->rect[k].weight = (float)(feature->rect[k].weight * correction_ratio); hidnode->weight[k] = (float)(feature->rect[k].weight * correction_ratio); if( k == 0 ) area0 = tr.width * tr.height; else //sum0 += hidfeature->rect[k].weight * tr.width * tr.height; sum0 += hidnode->weight[k] * tr.width * tr.height; } // hidfeature->rect[0].weight = (float)(-sum0/area0); hidnode->weight[0] = (float)(-sum0 / area0); } /* l */ } /* j */ } } CV_IMPL void gpuSetHaarClassifierCascade( CvHaarClassifierCascade *_cascade /*double scale=0.0,*/ /*int step*/) { GpuHidHaarClassifierCascade *cascade; int i; int datasize; int total; CvRect equRect; double weight_scale; GpuHidHaarStageClassifier *stage_classifier; if( !CV_IS_HAAR_CLASSIFIER(_cascade) ) CV_Error( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" ); if( !_cascade->hid_cascade ) gpuCreateHidHaarClassifierCascade(_cascade, &datasize, &total); cascade = (GpuHidHaarClassifierCascade *) _cascade->hid_cascade; stage_classifier = (GpuHidHaarStageClassifier *) cascade + 1; _cascade->scale = 1.0; _cascade->real_window_size.width = _cascade->orig_window_size.width ; _cascade->real_window_size.height = _cascade->orig_window_size.height; equRect.x = equRect.y = 1; equRect.width = _cascade->orig_window_size.width - 2; equRect.height = _cascade->orig_window_size.height - 2; weight_scale = 1; cascade->inv_window_area = weight_scale; cascade->p0 = equRect.x; cascade->p1 = equRect.y; cascade->p2 = equRect.height; cascade->p3 = equRect.width ; for( i = 0; i < _cascade->count; i++ ) { int j, k, l; for( j = 0; j < stage_classifier[i].count; j++ ) { for( l = 0; l < stage_classifier[i].classifier[j].count; l++ ) { CvHaarFeature *feature = &_cascade->stage_classifier[i].classifier[j].haar_feature[l]; GpuHidHaarTreeNode *hidnode = &stage_classifier[i].classifier[j].node[l]; double sum0 = 0, area0 = 0; CvRect r[3]; int base_w = -1, base_h = -1; int new_base_w = 0, new_base_h = 0; int kx, ky; int flagx = 0, flagy = 0; int x0 = 0, y0 = 0; int nr; /* align blocks */ for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ ) { if(!hidnode->p[k][0]) break; r[k] = feature->rect[k].r; // base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].width-1) ); // base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].x - r[0].x-1) ); // base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].height-1) ); // base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].y - r[0].y-1) ); } nr = k; for( k = 0; k < nr; k++ ) { CvRect tr; double correction_ratio; tr.x = r[k].x; tr.width = r[k].width; tr.y = r[k].y ; tr.height = r[k].height; correction_ratio = weight_scale * (!feature->tilted ? 1 : 0.5); hidnode->p[k][0] = tr.x; hidnode->p[k][1] = tr.y; hidnode->p[k][2] = tr.width; hidnode->p[k][3] = tr.height; hidnode->weight[k] = (float)(feature->rect[k].weight * correction_ratio); } //hidnode->weight[0]=(float)(-sum0/area0); } /* l */ } /* j */ } } CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemStorage *storage, double scaleFactor, int minNeighbors, int flags, CvSize minSize, CvSize maxSize) { CvHaarClassifierCascade *cascade = oldCascade; //double alltime = (double)cvGetTickCount(); //double t = (double)cvGetTickCount(); const double GROUP_EPS = 0.2; oclMat gtemp, gsum1, gtilted1, gsqsum1, gnormImg, gsumcanny; CvSeq *result_seq = 0; cv::Ptr temp_storage; cv::ConcurrentRectVector allCandidates; std::vector rectList; std::vector rweights; double factor; int coi; int datasize; int totalclassifier; void *out; GpuHidHaarClassifierCascade *gcascade; GpuHidHaarStageClassifier *stage; GpuHidHaarClassifier *classifier; GpuHidHaarTreeNode *node; int *candidate; cl_int status; bool doCannyPruning = (flags & CV_HAAR_DO_CANNY_PRUNING) != 0; bool findBiggestObject = (flags & CV_HAAR_FIND_BIGGEST_OBJECT) != 0; bool roughSearch = (flags & CV_HAAR_DO_ROUGH_SEARCH) != 0; //double t = 0; if( maxSize.height == 0 || maxSize.width == 0 ) { maxSize.height = gimg.rows; maxSize.width = gimg.cols; } if( !CV_IS_HAAR_CLASSIFIER(cascade) ) CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier cascade" ); if( !storage ) CV_Error( CV_StsNullPtr, "Null storage pointer" ); if( CV_MAT_DEPTH(gimg.type()) != CV_8U ) CV_Error( CV_StsUnsupportedFormat, "Only 8-bit images are supported" ); if( scaleFactor <= 1 ) CV_Error( CV_StsOutOfRange, "scale factor must be > 1" ); if( findBiggestObject ) flags &= ~CV_HAAR_SCALE_IMAGE; //gtemp = oclMat( gimg.rows, gimg.cols, CV_8UC1); //gsum1 = oclMat( gimg.rows + 1, gimg.cols + 1, CV_32SC1 ); //gsqsum1 = oclMat( gimg.rows + 1, gimg.cols + 1, CV_32FC1 ); if( !cascade->hid_cascade ) out = (void *)gpuCreateHidHaarClassifierCascade(cascade, &datasize, &totalclassifier); if( cascade->hid_cascade->has_tilted_features ) gtilted1 = oclMat( gimg.rows + 1, gimg.cols + 1, CV_32SC1 ); result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), storage ); if( CV_MAT_CN(gimg.type()) > 1 ) { cvtColor( gimg, gtemp, CV_BGR2GRAY ); gimg = gtemp; } if( findBiggestObject ) flags &= ~(CV_HAAR_SCALE_IMAGE | CV_HAAR_DO_CANNY_PRUNING); //t = (double)cvGetTickCount() - t; //printf( "before if time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) ); if( gimg.cols < minSize.width || gimg.rows < minSize.height ) CV_Error(CV_StsError, "Image too small"); if( flags & CV_HAAR_SCALE_IMAGE ) { CvSize winSize0 = cascade->orig_window_size; //float scalefactor = 1.1f; //float factor = 1.f; int totalheight = 0; int indexy = 0; CvSize sz; //t = (double)cvGetTickCount(); vector sizev; vector scalev; for(factor = 1.f;; factor *= scaleFactor) { CvSize winSize = { cvRound(winSize0.width *factor), cvRound(winSize0.height *factor) }; sz.width = cvRound( gimg.cols / factor ) + 1; sz.height = cvRound( gimg.rows / factor ) + 1; CvSize sz1 = { sz.width - winSize0.width - 1, sz.height - winSize0.height - 1 }; if( sz1.width <= 0 || sz1.height <= 0 ) break; if( winSize.width > maxSize.width || winSize.height > maxSize.height ) break; if( winSize.width < minSize.width || winSize.height < minSize.height ) continue; totalheight += sz.height; sizev.push_back(sz); scalev.push_back(factor); } //int flag = 0; oclMat gimg1(gimg.rows, gimg.cols, CV_8UC1); oclMat gsum(totalheight, gimg.cols + 1, CV_32SC1); oclMat gsqsum(totalheight, gimg.cols + 1, CV_32FC1); //cl_mem cascadebuffer; cl_mem stagebuffer; //cl_mem classifierbuffer; cl_mem nodebuffer; cl_mem candidatebuffer; cl_mem scaleinfobuffer; cl_kernel kernel; kernel = openCLGetKernelFromSource(gimg.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade"); cv::Rect roi, roi2; cv::Mat imgroi, imgroisq; cv::ocl::oclMat resizeroi, gimgroi, gimgroisq; int grp_per_CU = 12; size_t blocksize = 8; size_t localThreads[3] = { blocksize, blocksize , 1 }; size_t globalThreads[3] = { grp_per_CU * ((gsum.clCxt)->impl->maxComputeUnits) *localThreads[0], localThreads[1], 1 }; int outputsz = 256 * globalThreads[0] / localThreads[0]; int loopcount = sizev.size(); detect_piramid_info *scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount); //t = (double)cvGetTickCount() - t; // printf( "pre time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) ); //int *it =scaleinfo; // t = (double)cvGetTickCount(); for( int i = 0; i < loopcount; i++ ) { sz = sizev[i]; factor = scalev[i]; roi = Rect(0, indexy, sz.width, sz.height); roi2 = Rect(0, 0, sz.width - 1, sz.height - 1); resizeroi = gimg1(roi2); gimgroi = gsum(roi); gimgroisq = gsqsum(roi); //scaleinfo[i].rows = gimgroi.rows; int ystep = 1; // factor > 2 ? 1 : 2; int width = gimgroi.cols - 1 - cascade->orig_window_size.width; int height = gimgroi.rows - 1 - cascade->orig_window_size.height; scaleinfo[i].width_height = (width << 16) | height; int grpnumperline = (width + localThreads[0] - 1) / localThreads[0]; int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline; //outputsz +=width*height; scaleinfo[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp; scaleinfo[i].imgoff = gimgroi.offset >> 2; scaleinfo[i].factor = factor; //printf("rows = %d,ystep = %d,width = %d,height = %d,grpnumperline = %d,totalgrp = %d,imgoff = %d,factor = %f\n", // scaleinfo[i].rows,scaleinfo[i].ystep,scaleinfo[i].width,scaleinfo[i].height,scaleinfo[i].grpnumperline, // scaleinfo[i].totalgrp,scaleinfo[i].imgoff,scaleinfo[i].factor); cv::ocl::resize(gimg, resizeroi, Size(sz.width - 1, sz.height - 1), 0, 0, INTER_LINEAR); //cv::imwrite("D:\\1.jpg",gimg1); cv::ocl::integral(resizeroi, gimgroi, gimgroisq); //cv::ocl::oclMat chk(sz.height,sz.width,CV_32SC1),chksq(sz.height,sz.width,CV_32FC1); //cv::ocl::integral(gimg1, chk, chksq); //double r = cv::norm(chk,gimgroi,NORM_INF); //if(r > std::numeric_limits::epsilon()) //{ // printf("failed"); //} indexy += sz.height; } //int ystep = factor > 2 ? 1 : 2; // t = (double)cvGetTickCount() - t; //printf( "resize integral time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) ); //t = (double)cvGetTickCount(); gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade; stage = (GpuHidHaarStageClassifier *)(gcascade + 1); classifier = (GpuHidHaarClassifier *)(stage + gcascade->count); node = (GpuHidHaarTreeNode *)(classifier->node); //int m,n; //m = (gsum.cols - 1 - cascade->orig_window_size.width + ystep - 1)/ystep; //n = (gsum.rows - 1 - cascade->orig_window_size.height + ystep - 1)/ystep; //int counter = m*n; int nodenum = (datasize - sizeof(GpuHidHaarClassifierCascade) - sizeof(GpuHidHaarStageClassifier) * gcascade->count - sizeof(GpuHidHaarClassifier) * totalclassifier) / sizeof(GpuHidHaarTreeNode); //if(flag == 0){ candidate = (int *)malloc(4 * sizeof(int) * outputsz); //memset((char*)candidate,0,4*sizeof(int)*outputsz); gpuSetImagesForHaarClassifierCascade( cascade,/* &sum1, &sqsum1, _tilted,*/ 1., gsum.step / 4 ); //cascadebuffer = clCreateBuffer(gsum.clCxt->clContext,CL_MEM_READ_ONLY,sizeof(GpuHidHaarClassifierCascade),NULL,&status); //openCLVerifyCall(status); //openCLSafeCall(clEnqueueWriteBuffer(gsum.clCxt->clCmdQueue,cascadebuffer,1,0,sizeof(GpuHidHaarClassifierCascade),gcascade,0,NULL,NULL)); stagebuffer = clCreateBuffer(gsum.clCxt->impl->clContext, CL_MEM_READ_ONLY, sizeof(GpuHidHaarStageClassifier) * gcascade->count, NULL, &status); openCLVerifyCall(status); openCLSafeCall(clEnqueueWriteBuffer(gsum.clCxt->impl->clCmdQueue, stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL)); //classifierbuffer = clCreateBuffer(gsum.clCxt->clContext,CL_MEM_READ_ONLY,sizeof(GpuHidHaarClassifier)*totalclassifier,NULL,&status); //status = clEnqueueWriteBuffer(gsum.clCxt->clCmdQueue,classifierbuffer,1,0,sizeof(GpuHidHaarClassifier)*totalclassifier,classifier,0,NULL,NULL); nodebuffer = clCreateBuffer(gsum.clCxt->impl->clContext, CL_MEM_READ_ONLY, nodenum * sizeof(GpuHidHaarTreeNode), NULL, &status); openCLVerifyCall(status); openCLSafeCall(clEnqueueWriteBuffer(gsum.clCxt->impl->clCmdQueue, nodebuffer, 1, 0, nodenum * sizeof(GpuHidHaarTreeNode), node, 0, NULL, NULL)); candidatebuffer = clCreateBuffer(gsum.clCxt->impl->clContext, CL_MEM_WRITE_ONLY, 4 * sizeof(int) * outputsz, NULL, &status); openCLVerifyCall(status); scaleinfobuffer = clCreateBuffer(gsum.clCxt->impl->clContext, CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount, NULL, &status); openCLVerifyCall(status); openCLSafeCall(clEnqueueWriteBuffer(gsum.clCxt->impl->clCmdQueue, scaleinfobuffer, 1, 0, sizeof(detect_piramid_info)*loopcount, scaleinfo, 0, NULL, NULL)); //flag = 1; //} //t = (double)cvGetTickCount() - t; //printf( "update time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) ); //size_t globalThreads[3] = { counter+blocksize*blocksize-counter%(blocksize*blocksize),1,1}; //t = (double)cvGetTickCount(); int startstage = 0; int endstage = gcascade->count; int startnode = 0; int pixelstep = gsum.step / 4; int splitstage = 3; int splitnode = stage[0].count + stage[1].count + stage[2].count; cl_int4 p, pq; p.s[0] = gcascade->p0; p.s[1] = gcascade->p1; p.s[2] = gcascade->p2; p.s[3] = gcascade->p3; pq.s[0] = gcascade->pq0; pq.s[1] = gcascade->pq1; pq.s[2] = gcascade->pq2; pq.s[3] = gcascade->pq3; float correction = gcascade->inv_window_area; int argcount = 0; //int grpnumperline = ((m + localThreads[0] - 1) / localThreads[0]); //int totalgrp = ((n + localThreads[1] - 1) / localThreads[1])*grpnumperline; openCLVerifyKernel(gsum.clCxt, kernel, &blocksize, globalThreads, localThreads); //openCLSafeCall(clSetKernelArg(kernel,argcount++,sizeof(cl_mem),(void*)&cascadebuffer)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&stagebuffer)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&scaleinfobuffer)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&nodebuffer)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&gsum.data)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&gsqsum.data)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&candidatebuffer)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&pixelstep)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&loopcount)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&startstage)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&splitstage)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&endstage)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&startnode)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&splitnode)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int4), (void *)&p)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int4), (void *)&pq)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_float), (void *)&correction)); //openCLSafeCall(clSetKernelArg(kernel,argcount++,sizeof(cl_int),(void*)&n)); //openCLSafeCall(clSetKernelArg(kernel,argcount++,sizeof(cl_int),(void*)&grpnumperline)); //openCLSafeCall(clSetKernelArg(kernel,argcount++,sizeof(cl_int),(void*)&totalgrp)); openCLSafeCall(clEnqueueNDRangeKernel(gsum.clCxt->impl->clCmdQueue, kernel, 2, NULL, globalThreads, localThreads, 0, NULL, NULL)); openCLSafeCall(clFinish(gsum.clCxt->impl->clCmdQueue)); //t = (double)cvGetTickCount() - t; //printf( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) ); //t = (double)cvGetTickCount(); openCLSafeCall(clEnqueueReadBuffer(gsum.clCxt->impl->clCmdQueue, candidatebuffer, 1, 0, 4 * sizeof(int)*outputsz, candidate, 0, NULL, NULL)); for(int i = 0; i < outputsz; i++) if(candidate[4*i+2] != 0) allCandidates.push_back(Rect(candidate[4*i], candidate[4*i+1], candidate[4*i+2], candidate[4*i+3])); // t = (double)cvGetTickCount() - t; //printf( "post time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) ); //t = (double)cvGetTickCount(); free(scaleinfo); free(candidate); //openCLSafeCall(clReleaseMemObject(cascadebuffer)); openCLSafeCall(clReleaseMemObject(stagebuffer)); openCLSafeCall(clReleaseMemObject(scaleinfobuffer)); openCLSafeCall(clReleaseMemObject(nodebuffer)); openCLSafeCall(clReleaseMemObject(candidatebuffer)); openCLSafeCall(clReleaseKernel(kernel)); //t = (double)cvGetTickCount() - t; //printf( "release time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) ); } else { CvSize winsize0 = cascade->orig_window_size; int n_factors = 0; int flag = 0; oclMat gsum; oclMat gsqsum; cv::ocl::integral(gimg, gsum, gsqsum); CvSize sz; vector sizev; vector scalev; gpuSetHaarClassifierCascade(cascade); gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade; stage = (GpuHidHaarStageClassifier *)(gcascade + 1); classifier = (GpuHidHaarClassifier *)(stage + gcascade->count); node = (GpuHidHaarTreeNode *)(classifier->node); cl_mem stagebuffer; //cl_mem classifierbuffer; cl_mem nodebuffer; cl_mem candidatebuffer; cl_mem scaleinfobuffer; cl_mem pbuffer; cl_mem correctionbuffer; for( n_factors = 0, factor = 1; cvRound(factor * winsize0.width) < gimg.cols - 10 && cvRound(factor * winsize0.height) < gimg.rows - 10; n_factors++, factor *= scaleFactor ) { CvSize winSize = { cvRound( winsize0.width *factor ), cvRound( winsize0.height *factor ) }; if( winSize.width < minSize.width || winSize.height < minSize.height ) { continue; } sizev.push_back(winSize); scalev.push_back(factor); } int loopcount = scalev.size(); if(loopcount == 0) { loopcount = 1; n_factors = 1; sizev.push_back(minSize); scalev.push_back( min(cvRound(minSize.width / winsize0.width), cvRound(minSize.height / winsize0.height)) ); } detect_piramid_info *scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount); cl_int4 *p = (cl_int4 *)malloc(sizeof(cl_int4) * loopcount); float *correction = (float *)malloc(sizeof(float) * loopcount); int grp_per_CU = 12; size_t blocksize = 8; size_t localThreads[3] = { blocksize, blocksize , 1 }; size_t globalThreads[3] = { grp_per_CU *gsum.clCxt->impl->maxComputeUnits *localThreads[0], localThreads[1], 1 }; int outputsz = 256 * globalThreads[0] / localThreads[0]; int nodenum = (datasize - sizeof(GpuHidHaarClassifierCascade) - sizeof(GpuHidHaarStageClassifier) * gcascade->count - sizeof(GpuHidHaarClassifier) * totalclassifier) / sizeof(GpuHidHaarTreeNode); nodebuffer = clCreateBuffer(gsum.clCxt->impl->clContext, CL_MEM_READ_ONLY, nodenum * sizeof(GpuHidHaarTreeNode), NULL, &status); openCLVerifyCall(status); openCLSafeCall(clEnqueueWriteBuffer(gsum.clCxt->impl->clCmdQueue, nodebuffer, 1, 0, nodenum * sizeof(GpuHidHaarTreeNode), node, 0, NULL, NULL)); cl_mem newnodebuffer = clCreateBuffer(gsum.clCxt->impl->clContext, CL_MEM_READ_WRITE, loopcount * nodenum * sizeof(GpuHidHaarTreeNode), NULL, &status); int startstage = 0; int endstage = gcascade->count; cl_kernel kernel; kernel = openCLGetKernelFromSource(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2"); cl_kernel kernel2 = openCLGetKernelFromSource(gimg.clCxt, &haarobjectdetect_scaled2, "gpuscaleclassifier"); for(int i = 0; i < loopcount; i++) { sz = sizev[i]; factor = scalev[i]; int ystep = cvRound(std::max(2., factor)); int equRect_x = (int)(factor * gcascade->p0 + 0.5); int equRect_y = (int)(factor * gcascade->p1 + 0.5); int equRect_w = (int)(factor * gcascade->p3 + 0.5); int equRect_h = (int)(factor * gcascade->p2 + 0.5); p[i].s[0] = equRect_x; p[i].s[1] = equRect_y; p[i].s[2] = equRect_x + equRect_w; p[i].s[3] = equRect_y + equRect_h; correction[i] = 1. / (equRect_w * equRect_h); int width = (gsum.cols - 1 - sz.width + ystep - 1) / ystep; int height = (gsum.rows - 1 - sz.height + ystep - 1) / ystep; int grpnumperline = (width + localThreads[0] - 1) / localThreads[0]; int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline; //outputsz +=width*height; scaleinfo[i].width_height = (width << 16) | height; scaleinfo[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp; scaleinfo[i].imgoff = 0; scaleinfo[i].factor = factor; int startnodenum = nodenum * i; int argcounts = 0; float factor2 = (float)factor; openCLSafeCall(clSetKernelArg(kernel2, argcounts++, sizeof(cl_mem), (void *)&nodebuffer)); openCLSafeCall(clSetKernelArg(kernel2, argcounts++, sizeof(cl_mem), (void *)&newnodebuffer)); openCLSafeCall(clSetKernelArg(kernel2, argcounts++, sizeof(cl_float), (void *)&factor2)); openCLSafeCall(clSetKernelArg(kernel2, argcounts++, sizeof(cl_float), (void *)&correction[i])); openCLSafeCall(clSetKernelArg(kernel2, argcounts++, sizeof(cl_int), (void *)&startnodenum)); size_t globalThreads2[1] = {nodenum}; clEnqueueNDRangeKernel(gsum.clCxt->impl->clCmdQueue, kernel2, 1, NULL, globalThreads2, 0, 0, NULL, NULL); clFinish(gsum.clCxt->impl->clCmdQueue); } clReleaseKernel(kernel2); int step = gsum.step / 4; int startnode = 0; int splitstage = 3; int splitnode = stage[0].count + stage[1].count + stage[2].count; stagebuffer = clCreateBuffer(gsum.clCxt->impl->clContext, CL_MEM_READ_ONLY, sizeof(GpuHidHaarStageClassifier) * gcascade->count, NULL, &status); openCLVerifyCall(status); openCLSafeCall(clEnqueueWriteBuffer(gsum.clCxt->impl->clCmdQueue, stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL)); candidatebuffer = clCreateBuffer(gsum.clCxt->impl->clContext, CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR, 4 * sizeof(int) * outputsz, NULL, &status); openCLVerifyCall(status); scaleinfobuffer = clCreateBuffer(gsum.clCxt->impl->clContext, CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount, NULL, &status); openCLVerifyCall(status); openCLSafeCall(clEnqueueWriteBuffer(gsum.clCxt->impl->clCmdQueue, scaleinfobuffer, 1, 0, sizeof(detect_piramid_info)*loopcount, scaleinfo, 0, NULL, NULL)); pbuffer = clCreateBuffer(gsum.clCxt->impl->clContext, CL_MEM_READ_ONLY, sizeof(cl_int4) * loopcount, NULL, &status); openCLSafeCall(clEnqueueWriteBuffer(gsum.clCxt->impl->clCmdQueue, pbuffer, 1, 0, sizeof(cl_int4)*loopcount, p, 0, NULL, NULL)); correctionbuffer = clCreateBuffer(gsum.clCxt->impl->clContext, CL_MEM_READ_ONLY, sizeof(cl_float) * loopcount, NULL, &status); openCLSafeCall(clEnqueueWriteBuffer(gsum.clCxt->impl->clCmdQueue, correctionbuffer, 1, 0, sizeof(cl_float)*loopcount, correction, 0, NULL, NULL)); int argcount = 0; openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&stagebuffer)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&scaleinfobuffer)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&newnodebuffer)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&gsum.data)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&gsqsum.data)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&candidatebuffer)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&step)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&loopcount)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&startstage)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&splitstage)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&endstage)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&startnode)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&splitnode)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&pbuffer)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&correctionbuffer)); openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&nodenum)); openCLSafeCall(clEnqueueNDRangeKernel(gsum.clCxt->impl->clCmdQueue, kernel, 2, NULL, globalThreads, localThreads, 0, NULL, NULL)); openCLSafeCall(clFinish(gsum.clCxt->impl->clCmdQueue)); //openCLSafeCall(clEnqueueReadBuffer(gsum.clCxt->clCmdQueue,candidatebuffer,1,0,4*sizeof(int)*outputsz,candidate,0,NULL,NULL)); candidate = (int *)clEnqueueMapBuffer(gsum.clCxt->impl->clCmdQueue, candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int), 0, 0, 0, &status); for(int i = 0; i < outputsz; i++) { if(candidate[4*i+2] != 0) allCandidates.push_back(Rect(candidate[4*i], candidate[4*i+1], candidate[4*i+2], candidate[4*i+3])); } free(scaleinfo); free(p); free(correction); clEnqueueUnmapMemObject(gsum.clCxt->impl->clCmdQueue, candidatebuffer, candidate, 0, 0, 0); openCLSafeCall(clReleaseMemObject(stagebuffer)); openCLSafeCall(clReleaseMemObject(scaleinfobuffer)); openCLSafeCall(clReleaseMemObject(nodebuffer)); openCLSafeCall(clReleaseMemObject(newnodebuffer)); openCLSafeCall(clReleaseMemObject(candidatebuffer)); openCLSafeCall(clReleaseMemObject(pbuffer)); openCLSafeCall(clReleaseMemObject(correctionbuffer)); } //t = (double)cvGetTickCount() ; cvFree(&cascade->hid_cascade); // printf("%d\n",globalcounter); rectList.resize(allCandidates.size()); if(!allCandidates.empty()) std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin()); //cout << "count = " << rectList.size()<< endl; if( minNeighbors != 0 || findBiggestObject ) groupRectangles(rectList, rweights, std::max(minNeighbors, 1), GROUP_EPS); else rweights.resize(rectList.size(), 0); if( findBiggestObject && rectList.size() ) { CvAvgComp result_comp = {{0, 0, 0, 0}, 0}; for( size_t i = 0; i < rectList.size(); i++ ) { cv::Rect r = rectList[i]; if( r.area() > cv::Rect(result_comp.rect).area() ) { result_comp.rect = r; result_comp.neighbors = rweights[i]; } } cvSeqPush( result_seq, &result_comp ); } else { for( size_t i = 0; i < rectList.size(); i++ ) { CvAvgComp c; c.rect = rectList[i]; c.neighbors = rweights[i]; cvSeqPush( result_seq, &c ); } } //t = (double)cvGetTickCount() - t; //printf( "get face time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) ); //alltime = (double)cvGetTickCount() - alltime; //printf( "all time = %g ms\n", alltime/((double)cvGetTickFrequency()*1000.) ); return result_seq; } CvHaarClassifierCascade* gpuLoadCascadeCART( const char **input_cascade, int n, CvSize orig_window_size ) { int i; CvHaarClassifierCascade *cascade = gpuCreateHaarClassifierCascade(n); cascade->orig_window_size = orig_window_size; for( i = 0; i < n; i++ ) { int j, count, l; float threshold = 0; const char *stage = input_cascade[i]; int dl = 0; /* tree links */ int parent = -1; int next = -1; sscanf( stage, "%d%n", &count, &dl ); stage += dl; assert( count > 0 ); cascade->stage_classifier[i].count = count; cascade->stage_classifier[i].classifier = (CvHaarClassifier *)cvAlloc( count * sizeof(cascade->stage_classifier[i].classifier[0])); for( j = 0; j < count; j++ ) { CvHaarClassifier *classifier = cascade->stage_classifier[i].classifier + j; int k, rects = 0; char str[100]; sscanf( stage, "%d%n", &classifier->count, &dl ); stage += dl; classifier->haar_feature = (CvHaarFeature *) cvAlloc( classifier->count * ( sizeof( *classifier->haar_feature ) + sizeof( *classifier->threshold ) + sizeof( *classifier->left ) + sizeof( *classifier->right ) ) + (classifier->count + 1) * sizeof( *classifier->alpha ) ); classifier->threshold = (float *) (classifier->haar_feature + classifier->count); classifier->left = (int *) (classifier->threshold + classifier->count); classifier->right = (int *) (classifier->left + classifier->count); classifier->alpha = (float *) (classifier->right + classifier->count); for( l = 0; l < classifier->count; l++ ) { sscanf( stage, "%d%n", &rects, &dl ); stage += dl; assert( rects >= 2 && rects <= CV_HAAR_FEATURE_MAX ); for( k = 0; k < rects; k++ ) { CvRect r; int band = 0; sscanf( stage, "%d%d%d%d%d%f%n", &r.x, &r.y, &r.width, &r.height, &band, &(classifier->haar_feature[l].rect[k].weight), &dl ); stage += dl; classifier->haar_feature[l].rect[k].r = r; } sscanf( stage, "%s%n", str, &dl ); stage += dl; classifier->haar_feature[l].tilted = strncmp( str, "tilted", 6 ) == 0; for( k = rects; k < CV_HAAR_FEATURE_MAX; k++ ) { memset( classifier->haar_feature[l].rect + k, 0, sizeof(classifier->haar_feature[l].rect[k]) ); } sscanf( stage, "%f%d%d%n", &(classifier->threshold[l]), &(classifier->left[l]), &(classifier->right[l]), &dl ); stage += dl; } for( l = 0; l <= classifier->count; l++ ) { sscanf( stage, "%f%n", &(classifier->alpha[l]), &dl ); stage += dl; } } sscanf( stage, "%f%n", &threshold, &dl ); stage += dl; cascade->stage_classifier[i].threshold = threshold; /* load tree links */ if( sscanf( stage, "%d%d%n", &parent, &next, &dl ) != 2 ) { parent = i - 1; next = -1; } stage += dl; cascade->stage_classifier[i].parent = parent; cascade->stage_classifier[i].next = next; cascade->stage_classifier[i].child = -1; if( parent != -1 && cascade->stage_classifier[parent].child == -1 ) { cascade->stage_classifier[parent].child = i; } } return cascade; } #ifndef _MAX_PATH #define _MAX_PATH 1024 #endif CV_IMPL CvHaarClassifierCascade* gpuLoadHaarClassifierCascade( const char *directory, CvSize orig_window_size ) { const char **input_cascade = 0; CvHaarClassifierCascade *cascade = 0; int i, n; const char *slash; char name[_MAX_PATH]; int size = 0; char *ptr = 0; if( !directory ) CV_Error( CV_StsNullPtr, "Null path is passed" ); n = (int)strlen(directory) - 1; slash = directory[n] == '\\' || directory[n] == '/' ? "" : "/"; /* try to read the classifier from directory */ for( n = 0; ; n++ ) { sprintf( name, "%s%s%d/AdaBoostCARTHaarClassifier.txt", directory, slash, n ); FILE *f = fopen( name, "rb" ); if( !f ) break; fseek( f, 0, SEEK_END ); size += ftell( f ) + 1; fclose(f); } if( n == 0 && slash[0] ) return (CvHaarClassifierCascade *)cvLoad( directory ); if( n == 0 ) CV_Error( CV_StsBadArg, "Invalid path" ); size += (n + 1) * sizeof(char *); input_cascade = (const char **)cvAlloc( size ); ptr = (char *)(input_cascade + n + 1); for( i = 0; i < n; i++ ) { sprintf( name, "%s/%d/AdaBoostCARTHaarClassifier.txt", directory, i ); FILE *f = fopen( name, "rb" ); if( !f ) CV_Error( CV_StsError, "" ); fseek( f, 0, SEEK_END ); size = ftell( f ); fseek( f, 0, SEEK_SET ); fread( ptr, 1, size, f ); fclose(f); input_cascade[i] = ptr; ptr += size; *ptr++ = '\0'; } input_cascade[n] = 0; cascade = gpuLoadCascadeCART( input_cascade, n, orig_window_size ); if( input_cascade ) cvFree( &input_cascade ); return cascade; } CV_IMPL void gpuReleaseHaarClassifierCascade( CvHaarClassifierCascade **_cascade ) { if( _cascade && *_cascade ) { int i, j; CvHaarClassifierCascade *cascade = *_cascade; for( i = 0; i < cascade->count; i++ ) { for( j = 0; j < cascade->stage_classifier[i].count; j++ ) cvFree( &cascade->stage_classifier[i].classifier[j].haar_feature ); cvFree( &cascade->stage_classifier[i].classifier ); } gpuReleaseHidHaarClassifierCascade( (GpuHidHaarClassifierCascade **)&cascade->hid_cascade ); cvFree( _cascade ); } } /****************************************************************************************\ * Persistence functions * \****************************************************************************************/ /* field names */ #define ICV_HAAR_SIZE_NAME "size" #define ICV_HAAR_STAGES_NAME "stages" #define ICV_HAAR_TREES_NAME "trees" #define ICV_HAAR_FEATURE_NAME "feature" #define ICV_HAAR_RECTS_NAME "rects" #define ICV_HAAR_TILTED_NAME "tilted" #define ICV_HAAR_THRESHOLD_NAME "threshold" #define ICV_HAAR_LEFT_NODE_NAME "left_node" #define ICV_HAAR_LEFT_VAL_NAME "left_val" #define ICV_HAAR_RIGHT_NODE_NAME "right_node" #define ICV_HAAR_RIGHT_VAL_NAME "right_val" #define ICV_HAAR_STAGE_THRESHOLD_NAME "stage_threshold" #define ICV_HAAR_PARENT_NAME "parent" #define ICV_HAAR_NEXT_NAME "next" int gpuIsHaarClassifier( const void *struct_ptr ) { return CV_IS_HAAR_CLASSIFIER( struct_ptr ); } void* gpuReadHaarClassifier( CvFileStorage *fs, CvFileNode *node ) { CvHaarClassifierCascade *cascade = NULL; char buf[256]; CvFileNode *seq_fn = NULL; /* sequence */ CvFileNode *fn = NULL; CvFileNode *stages_fn = NULL; CvSeqReader stages_reader; int n; int i, j, k, l; int parent, next; stages_fn = cvGetFileNodeByName( fs, node, ICV_HAAR_STAGES_NAME ); if( !stages_fn || !CV_NODE_IS_SEQ( stages_fn->tag) ) CV_Error( CV_StsError, "Invalid stages node" ); n = stages_fn->data.seq->total; cascade = gpuCreateHaarClassifierCascade(n); /* read size */ seq_fn = cvGetFileNodeByName( fs, node, ICV_HAAR_SIZE_NAME ); if( !seq_fn || !CV_NODE_IS_SEQ( seq_fn->tag ) || seq_fn->data.seq->total != 2 ) CV_Error( CV_StsError, "size node is not a valid sequence." ); fn = (CvFileNode *) cvGetSeqElem( seq_fn->data.seq, 0 ); if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0 ) CV_Error( CV_StsError, "Invalid size node: width must be positive integer" ); cascade->orig_window_size.width = fn->data.i; fn = (CvFileNode *) cvGetSeqElem( seq_fn->data.seq, 1 ); if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0 ) CV_Error( CV_StsError, "Invalid size node: height must be positive integer" ); cascade->orig_window_size.height = fn->data.i; cvStartReadSeq( stages_fn->data.seq, &stages_reader ); for( i = 0; i < n; ++i ) { CvFileNode *stage_fn; CvFileNode *trees_fn; CvSeqReader trees_reader; stage_fn = (CvFileNode *) stages_reader.ptr; if( !CV_NODE_IS_MAP( stage_fn->tag ) ) { sprintf( buf, "Invalid stage %d", i ); CV_Error( CV_StsError, buf ); } trees_fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_TREES_NAME ); if( !trees_fn || !CV_NODE_IS_SEQ( trees_fn->tag ) || trees_fn->data.seq->total <= 0 ) { sprintf( buf, "Trees node is not a valid sequence. (stage %d)", i ); CV_Error( CV_StsError, buf ); } cascade->stage_classifier[i].classifier = (CvHaarClassifier *) cvAlloc( trees_fn->data.seq->total * sizeof( cascade->stage_classifier[i].classifier[0] ) ); for( j = 0; j < trees_fn->data.seq->total; ++j ) { cascade->stage_classifier[i].classifier[j].haar_feature = NULL; } cascade->stage_classifier[i].count = trees_fn->data.seq->total; cvStartReadSeq( trees_fn->data.seq, &trees_reader ); for( j = 0; j < trees_fn->data.seq->total; ++j ) { CvFileNode *tree_fn; CvSeqReader tree_reader; CvHaarClassifier *classifier; int last_idx; classifier = &cascade->stage_classifier[i].classifier[j]; tree_fn = (CvFileNode *) trees_reader.ptr; if( !CV_NODE_IS_SEQ( tree_fn->tag ) || tree_fn->data.seq->total <= 0 ) { sprintf( buf, "Tree node is not a valid sequence." " (stage %d, tree %d)", i, j ); CV_Error( CV_StsError, buf ); } classifier->count = tree_fn->data.seq->total; classifier->haar_feature = (CvHaarFeature *) cvAlloc( classifier->count * ( sizeof( *classifier->haar_feature ) + sizeof( *classifier->threshold ) + sizeof( *classifier->left ) + sizeof( *classifier->right ) ) + (classifier->count + 1) * sizeof( *classifier->alpha ) ); classifier->threshold = (float *) (classifier->haar_feature + classifier->count); classifier->left = (int *) (classifier->threshold + classifier->count); classifier->right = (int *) (classifier->left + classifier->count); classifier->alpha = (float *) (classifier->right + classifier->count); cvStartReadSeq( tree_fn->data.seq, &tree_reader ); for( k = 0, last_idx = 0; k < tree_fn->data.seq->total; ++k ) { CvFileNode *node_fn; CvFileNode *feature_fn; CvFileNode *rects_fn; CvSeqReader rects_reader; node_fn = (CvFileNode *) tree_reader.ptr; if( !CV_NODE_IS_MAP( node_fn->tag ) ) { sprintf( buf, "Tree node %d is not a valid map. (stage %d, tree %d)", k, i, j ); CV_Error( CV_StsError, buf ); } feature_fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_FEATURE_NAME ); if( !feature_fn || !CV_NODE_IS_MAP( feature_fn->tag ) ) { sprintf( buf, "Feature node is not a valid map. " "(stage %d, tree %d, node %d)", i, j, k ); CV_Error( CV_StsError, buf ); } rects_fn = cvGetFileNodeByName( fs, feature_fn, ICV_HAAR_RECTS_NAME ); if( !rects_fn || !CV_NODE_IS_SEQ( rects_fn->tag ) || rects_fn->data.seq->total < 1 || rects_fn->data.seq->total > CV_HAAR_FEATURE_MAX ) { sprintf( buf, "Rects node is not a valid sequence. " "(stage %d, tree %d, node %d)", i, j, k ); CV_Error( CV_StsError, buf ); } cvStartReadSeq( rects_fn->data.seq, &rects_reader ); for( l = 0; l < rects_fn->data.seq->total; ++l ) { CvFileNode *rect_fn; CvRect r; rect_fn = (CvFileNode *) rects_reader.ptr; if( !CV_NODE_IS_SEQ( rect_fn->tag ) || rect_fn->data.seq->total != 5 ) { sprintf( buf, "Rect %d is not a valid sequence. " "(stage %d, tree %d, node %d)", l, i, j, k ); CV_Error( CV_StsError, buf ); } fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 0 ); if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i < 0 ) { sprintf( buf, "x coordinate must be non-negative integer. " "(stage %d, tree %d, node %d, rect %d)", i, j, k, l ); CV_Error( CV_StsError, buf ); } r.x = fn->data.i; fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 1 ); if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i < 0 ) { sprintf( buf, "y coordinate must be non-negative integer. " "(stage %d, tree %d, node %d, rect %d)", i, j, k, l ); CV_Error( CV_StsError, buf ); } r.y = fn->data.i; fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 2 ); if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0 || r.x + fn->data.i > cascade->orig_window_size.width ) { sprintf( buf, "width must be positive integer and " "(x + width) must not exceed window width. " "(stage %d, tree %d, node %d, rect %d)", i, j, k, l ); CV_Error( CV_StsError, buf ); } r.width = fn->data.i; fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 3 ); if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0 || r.y + fn->data.i > cascade->orig_window_size.height ) { sprintf( buf, "height must be positive integer and " "(y + height) must not exceed window height. " "(stage %d, tree %d, node %d, rect %d)", i, j, k, l ); CV_Error( CV_StsError, buf ); } r.height = fn->data.i; fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 4 ); if( !CV_NODE_IS_REAL( fn->tag ) ) { sprintf( buf, "weight must be real number. " "(stage %d, tree %d, node %d, rect %d)", i, j, k, l ); CV_Error( CV_StsError, buf ); } classifier->haar_feature[k].rect[l].weight = (float) fn->data.f; classifier->haar_feature[k].rect[l].r = r; CV_NEXT_SEQ_ELEM( sizeof( *rect_fn ), rects_reader ); } /* for each rect */ for( l = rects_fn->data.seq->total; l < CV_HAAR_FEATURE_MAX; ++l ) { classifier->haar_feature[k].rect[l].weight = 0; classifier->haar_feature[k].rect[l].r = cvRect( 0, 0, 0, 0 ); } fn = cvGetFileNodeByName( fs, feature_fn, ICV_HAAR_TILTED_NAME); if( !fn || !CV_NODE_IS_INT( fn->tag ) ) { sprintf( buf, "tilted must be 0 or 1. " "(stage %d, tree %d, node %d)", i, j, k ); CV_Error( CV_StsError, buf ); } classifier->haar_feature[k].tilted = ( fn->data.i != 0 ); fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_THRESHOLD_NAME); if( !fn || !CV_NODE_IS_REAL( fn->tag ) ) { sprintf( buf, "threshold must be real number. " "(stage %d, tree %d, node %d)", i, j, k ); CV_Error( CV_StsError, buf ); } classifier->threshold[k] = (float) fn->data.f; fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_LEFT_NODE_NAME); if( fn ) { if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= k || fn->data.i >= tree_fn->data.seq->total ) { sprintf( buf, "left node must be valid node number. " "(stage %d, tree %d, node %d)", i, j, k ); CV_Error( CV_StsError, buf ); } /* left node */ classifier->left[k] = fn->data.i; } else { fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_LEFT_VAL_NAME ); if( !fn ) { sprintf( buf, "left node or left value must be specified. " "(stage %d, tree %d, node %d)", i, j, k ); CV_Error( CV_StsError, buf ); } if( !CV_NODE_IS_REAL( fn->tag ) ) { sprintf( buf, "left value must be real number. " "(stage %d, tree %d, node %d)", i, j, k ); CV_Error( CV_StsError, buf ); } /* left value */ if( last_idx >= classifier->count + 1 ) { sprintf( buf, "Tree structure is broken: too many values. " "(stage %d, tree %d, node %d)", i, j, k ); CV_Error( CV_StsError, buf ); } classifier->left[k] = -last_idx; classifier->alpha[last_idx++] = (float) fn->data.f; } fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_RIGHT_NODE_NAME); if( fn ) { if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= k || fn->data.i >= tree_fn->data.seq->total ) { sprintf( buf, "right node must be valid node number. " "(stage %d, tree %d, node %d)", i, j, k ); CV_Error( CV_StsError, buf ); } /* right node */ classifier->right[k] = fn->data.i; } else { fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_RIGHT_VAL_NAME ); if( !fn ) { sprintf( buf, "right node or right value must be specified. " "(stage %d, tree %d, node %d)", i, j, k ); CV_Error( CV_StsError, buf ); } if( !CV_NODE_IS_REAL( fn->tag ) ) { sprintf( buf, "right value must be real number. " "(stage %d, tree %d, node %d)", i, j, k ); CV_Error( CV_StsError, buf ); } /* right value */ if( last_idx >= classifier->count + 1 ) { sprintf( buf, "Tree structure is broken: too many values. " "(stage %d, tree %d, node %d)", i, j, k ); CV_Error( CV_StsError, buf ); } classifier->right[k] = -last_idx; classifier->alpha[last_idx++] = (float) fn->data.f; } CV_NEXT_SEQ_ELEM( sizeof( *node_fn ), tree_reader ); } /* for each node */ if( last_idx != classifier->count + 1 ) { sprintf( buf, "Tree structure is broken: too few values. " "(stage %d, tree %d)", i, j ); CV_Error( CV_StsError, buf ); } CV_NEXT_SEQ_ELEM( sizeof( *tree_fn ), trees_reader ); } /* for each tree */ fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_STAGE_THRESHOLD_NAME); if( !fn || !CV_NODE_IS_REAL( fn->tag ) ) { sprintf( buf, "stage threshold must be real number. (stage %d)", i ); CV_Error( CV_StsError, buf ); } cascade->stage_classifier[i].threshold = (float) fn->data.f; parent = i - 1; next = -1; fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_PARENT_NAME ); if( !fn || !CV_NODE_IS_INT( fn->tag ) || fn->data.i < -1 || fn->data.i >= cascade->count ) { sprintf( buf, "parent must be integer number. (stage %d)", i ); CV_Error( CV_StsError, buf ); } parent = fn->data.i; fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_NEXT_NAME ); if( !fn || !CV_NODE_IS_INT( fn->tag ) || fn->data.i < -1 || fn->data.i >= cascade->count ) { sprintf( buf, "next must be integer number. (stage %d)", i ); CV_Error( CV_StsError, buf ); } next = fn->data.i; cascade->stage_classifier[i].parent = parent; cascade->stage_classifier[i].next = next; cascade->stage_classifier[i].child = -1; if( parent != -1 && cascade->stage_classifier[parent].child == -1 ) { cascade->stage_classifier[parent].child = i; } CV_NEXT_SEQ_ELEM( sizeof( *stage_fn ), stages_reader ); } /* for each stage */ return cascade; } void gpuWriteHaarClassifier( CvFileStorage *fs, const char *name, const void *struct_ptr, CvAttrList attributes ) { int i, j, k, l; char buf[256]; const CvHaarClassifierCascade *cascade = (const CvHaarClassifierCascade *) struct_ptr; /* TODO: parameters check */ cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_HAAR, attributes ); cvStartWriteStruct( fs, ICV_HAAR_SIZE_NAME, CV_NODE_SEQ | CV_NODE_FLOW ); cvWriteInt( fs, NULL, cascade->orig_window_size.width ); cvWriteInt( fs, NULL, cascade->orig_window_size.height ); cvEndWriteStruct( fs ); /* size */ cvStartWriteStruct( fs, ICV_HAAR_STAGES_NAME, CV_NODE_SEQ ); for( i = 0; i < cascade->count; ++i ) { cvStartWriteStruct( fs, NULL, CV_NODE_MAP ); sprintf( buf, "stage %d", i ); cvWriteComment( fs, buf, 1 ); cvStartWriteStruct( fs, ICV_HAAR_TREES_NAME, CV_NODE_SEQ ); for( j = 0; j < cascade->stage_classifier[i].count; ++j ) { CvHaarClassifier *tree = &cascade->stage_classifier[i].classifier[j]; cvStartWriteStruct( fs, NULL, CV_NODE_SEQ ); sprintf( buf, "tree %d", j ); cvWriteComment( fs, buf, 1 ); for( k = 0; k < tree->count; ++k ) { CvHaarFeature *feature = &tree->haar_feature[k]; cvStartWriteStruct( fs, NULL, CV_NODE_MAP ); if( k ) { sprintf( buf, "node %d", k ); } else { sprintf( buf, "root node" ); } cvWriteComment( fs, buf, 1 ); cvStartWriteStruct( fs, ICV_HAAR_FEATURE_NAME, CV_NODE_MAP ); cvStartWriteStruct( fs, ICV_HAAR_RECTS_NAME, CV_NODE_SEQ ); for( l = 0; l < CV_HAAR_FEATURE_MAX && feature->rect[l].r.width != 0; ++l ) { cvStartWriteStruct( fs, NULL, CV_NODE_SEQ | CV_NODE_FLOW ); cvWriteInt( fs, NULL, feature->rect[l].r.x ); cvWriteInt( fs, NULL, feature->rect[l].r.y ); cvWriteInt( fs, NULL, feature->rect[l].r.width ); cvWriteInt( fs, NULL, feature->rect[l].r.height ); cvWriteReal( fs, NULL, feature->rect[l].weight ); cvEndWriteStruct( fs ); /* rect */ } cvEndWriteStruct( fs ); /* rects */ cvWriteInt( fs, ICV_HAAR_TILTED_NAME, feature->tilted ); cvEndWriteStruct( fs ); /* feature */ cvWriteReal( fs, ICV_HAAR_THRESHOLD_NAME, tree->threshold[k]); if( tree->left[k] > 0 ) { cvWriteInt( fs, ICV_HAAR_LEFT_NODE_NAME, tree->left[k] ); } else { cvWriteReal( fs, ICV_HAAR_LEFT_VAL_NAME, tree->alpha[-tree->left[k]] ); } if( tree->right[k] > 0 ) { cvWriteInt( fs, ICV_HAAR_RIGHT_NODE_NAME, tree->right[k] ); } else { cvWriteReal( fs, ICV_HAAR_RIGHT_VAL_NAME, tree->alpha[-tree->right[k]] ); } cvEndWriteStruct( fs ); /* split */ } cvEndWriteStruct( fs ); /* tree */ } cvEndWriteStruct( fs ); /* trees */ cvWriteReal( fs, ICV_HAAR_STAGE_THRESHOLD_NAME, cascade->stage_classifier[i].threshold); cvWriteInt( fs, ICV_HAAR_PARENT_NAME, cascade->stage_classifier[i].parent ); cvWriteInt( fs, ICV_HAAR_NEXT_NAME, cascade->stage_classifier[i].next ); cvEndWriteStruct( fs ); /* stage */ } /* for each stage */ cvEndWriteStruct( fs ); /* stages */ cvEndWriteStruct( fs ); /* root */ } void* gpuCloneHaarClassifier( const void *struct_ptr ) { CvHaarClassifierCascade *cascade = NULL; int i, j, k, n; const CvHaarClassifierCascade *cascade_src = (const CvHaarClassifierCascade *) struct_ptr; n = cascade_src->count; cascade = gpuCreateHaarClassifierCascade(n); cascade->orig_window_size = cascade_src->orig_window_size; for( i = 0; i < n; ++i ) { cascade->stage_classifier[i].parent = cascade_src->stage_classifier[i].parent; cascade->stage_classifier[i].next = cascade_src->stage_classifier[i].next; cascade->stage_classifier[i].child = cascade_src->stage_classifier[i].child; cascade->stage_classifier[i].threshold = cascade_src->stage_classifier[i].threshold; cascade->stage_classifier[i].count = 0; cascade->stage_classifier[i].classifier = (CvHaarClassifier *) cvAlloc( cascade_src->stage_classifier[i].count * sizeof( cascade->stage_classifier[i].classifier[0] ) ); cascade->stage_classifier[i].count = cascade_src->stage_classifier[i].count; for( j = 0; j < cascade->stage_classifier[i].count; ++j ) cascade->stage_classifier[i].classifier[j].haar_feature = NULL; for( j = 0; j < cascade->stage_classifier[i].count; ++j ) { const CvHaarClassifier *classifier_src = &cascade_src->stage_classifier[i].classifier[j]; CvHaarClassifier *classifier = &cascade->stage_classifier[i].classifier[j]; classifier->count = classifier_src->count; classifier->haar_feature = (CvHaarFeature *) cvAlloc( classifier->count * ( sizeof( *classifier->haar_feature ) + sizeof( *classifier->threshold ) + sizeof( *classifier->left ) + sizeof( *classifier->right ) ) + (classifier->count + 1) * sizeof( *classifier->alpha ) ); classifier->threshold = (float *) (classifier->haar_feature + classifier->count); classifier->left = (int *) (classifier->threshold + classifier->count); classifier->right = (int *) (classifier->left + classifier->count); classifier->alpha = (float *) (classifier->right + classifier->count); for( k = 0; k < classifier->count; ++k ) { classifier->haar_feature[k] = classifier_src->haar_feature[k]; classifier->threshold[k] = classifier_src->threshold[k]; classifier->left[k] = classifier_src->left[k]; classifier->right[k] = classifier_src->right[k]; classifier->alpha[k] = classifier_src->alpha[k]; } classifier->alpha[classifier->count] = classifier_src->alpha[classifier->count]; } } return cascade; } #if 0 CvType haar_type( CV_TYPE_NAME_HAAR, gpuIsHaarClassifier, (CvReleaseFunc)gpuReleaseHaarClassifierCascade, gpuReadHaarClassifier, gpuWriteHaarClassifier, gpuCloneHaarClassifier ); namespace cv { HaarClassifierCascade::HaarClassifierCascade() {} HaarClassifierCascade::HaarClassifierCascade(const String &filename) { load(filename); } bool HaarClassifierCascade::load(const String &filename) { cascade = Ptr((CvHaarClassifierCascade *)cvLoad(filename.c_str(), 0, 0, 0)); return (CvHaarClassifierCascade *)cascade != 0; } void HaarClassifierCascade::detectMultiScale( const Mat &image, Vector& objects, double scaleFactor, int minNeighbors, int flags, Size minSize ) { MemStorage storage(cvCreateMemStorage(0)); CvMat _image = image; CvSeq *_objects = gpuHaarDetectObjects( &_image, cascade, storage, scaleFactor, minNeighbors, flags, minSize ); Seq(_objects).copyTo(objects); } int HaarClassifierCascade::runAt(Point pt, int startStage, int) const { return gpuRunHaarClassifierCascade(cascade, pt, startStage); } void HaarClassifierCascade::setImages( const Mat &sum, const Mat &sqsum, const Mat &tilted, double scale ) { CvMat _sum = sum, _sqsum = sqsum, _tilted = tilted; gpuSetImagesForHaarClassifierCascade( cascade, &_sum, &_sqsum, &_tilted, scale ); } } #endif /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////reserved functios////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /*#if CV_SSE2 # if CV_SSE4 || defined __SSE4__ # include # else # define _mm_blendv_pd(a, b, m) _mm_xor_pd(a, _mm_and_pd(_mm_xor_pd(b, a), m)) # define _mm_blendv_ps(a, b, m) _mm_xor_ps(a, _mm_and_ps(_mm_xor_ps(b, a), m)) # endif #if defined CV_ICC # define CV_HAAR_USE_SSE 1 #endif #endif*/ /* CV_IMPL void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* _cascade, const CvArr* _sum, const CvArr* _sqsum, const CvArr* _tilted_sum, double scale ) { CvMat sum_stub, *sum = (CvMat*)_sum; CvMat sqsum_stub, *sqsum = (CvMat*)_sqsum; CvMat tilted_stub, *tilted = (CvMat*)_tilted_sum; GpuHidHaarClassifierCascade* cascade; int coi0 = 0, coi1 = 0; int i; int datasize; int totalclassifier; CvRect equRect; double weight_scale; int rows,cols; if( !CV_IS_HAAR_CLASSIFIER(_cascade) ) CV_Error( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" ); if( scale <= 0 ) CV_Error( CV_StsOutOfRange, "Scale must be positive" ); sum = cvGetMat( sum, &sum_stub, &coi0 ); sqsum = cvGetMat( sqsum, &sqsum_stub, &coi1 ); if( coi0 || coi1 ) CV_Error( CV_BadCOI, "COI is not supported" ); if( !CV_ARE_SIZES_EQ( sum, sqsum )) CV_Error( CV_StsUnmatchedSizes, "All integral images must have the same size" ); if( CV_MAT_TYPE(sqsum->type) != CV_64FC1 || CV_MAT_TYPE(sum->type) != CV_32SC1 ) CV_Error( CV_StsUnsupportedFormat, "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" ); if( !_cascade->hid_cascade ) gpuCreateHidHaarClassifierCascade(_cascade,&datasize,&totalclassifier); cascade =(GpuHidHaarClassifierCascade *)_cascade->hid_cascade; if( cascade->has_tilted_features ) { tilted = cvGetMat( tilted, &tilted_stub, &coi1 ); if( CV_MAT_TYPE(tilted->type) != CV_32SC1 ) CV_Error( CV_StsUnsupportedFormat, "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" ); if( sum->step != tilted->step ) CV_Error( CV_StsUnmatchedSizes, "Sum and tilted_sum must have the same stride (step, widthStep)" ); if( !CV_ARE_SIZES_EQ( sum, tilted )) CV_Error( CV_StsUnmatchedSizes, "All integral images must have the same size" ); //cascade->tilted = *tilted; } _cascade->scale = scale; _cascade->real_window_size.width = cvRound( _cascade->orig_window_size.width * scale ); _cascade->real_window_size.height = cvRound( _cascade->orig_window_size.height * scale ); //cascade->sum = *sum; //cascade->sqsum = *sqsum; equRect.x = equRect.y = cvRound(scale); equRect.width = cvRound((_cascade->orig_window_size.width-2)*scale); equRect.height = cvRound((_cascade->orig_window_size.height-2)*scale); weight_scale = 1./(equRect.width*equRect.height); cascade->inv_window_area = weight_scale; cascade->p0 = sum_elem_ptr(*sum, equRect.y, equRect.x); cascade->p1 = sum_elem_ptr(*sum, equRect.y, equRect.x + equRect.width ); cascade->p2 = sum_elem_ptr(*sum, equRect.y + equRect.height, equRect.x ); cascade->p3 = sum_elem_ptr(*sum, equRect.y + equRect.height, equRect.x + equRect.width ); */ /* rows=sum->rows; cols=sum->cols; cascade->p0 = equRect.y*cols + equRect.x; cascade->p1 = equRect.y*cols + equRect.x + equRect.width; cascade->p2 = (equRect.y + equRect.height) * cols + equRect.x; cascade->p3 = (equRect.y + equRect.height) * cols + equRect.x + equRect.width ; */ /* cascade->pq0 = sqsum_elem_ptr(*sqsum, equRect.y, equRect.x); cascade->pq1 = sqsum_elem_ptr(*sqsum, equRect.y, equRect.x + equRect.width ); cascade->pq2 = sqsum_elem_ptr(*sqsum, equRect.y + equRect.height, equRect.x ); cascade->pq3 = sqsum_elem_ptr(*sqsum, equRect.y + equRect.height, equRect.x + equRect.width ); */ /* init pointers in haar features according to real window size and given image pointers */ /* for( i = 0; i < _cascade->count; i++ ) { int j, k, l; for( j = 0; j < cascade->stage_classifier[i].count; j++ ) { for( l = 0; l < cascade->stage_classifier[i].classifier[j].count; l++ ) { CvHaarFeature* feature = &_cascade->stage_classifier[i].classifier[j].haar_feature[l]; */ /* GpuHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j; */ //GpuHidHaarFeature* hidfeature = // &cascade->stage_classifier[i].classifier[j].node[l].feature; /* double sum0 = 0, area0 = 0; CvRect r[3]; int base_w = -1, base_h = -1; int new_base_w = 0, new_base_h = 0; int kx, ky; int flagx = 0, flagy = 0; int x0 = 0, y0 = 0; int nr; */ /* align blocks */ /* for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ ) { //if( !hidfeature->rect[k].p0 ) // break; r[k] = feature->rect[k].r; base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].width-1) ); base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].x - r[0].x-1) ); base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].height-1) ); base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].y - r[0].y-1) ); } nr = k; base_w += 1; base_h += 1; kx = r[0].width / base_w; ky = r[0].height / base_h; if( kx <= 0 ) { flagx = 1; new_base_w = cvRound( r[0].width * scale ) / kx; x0 = cvRound( r[0].x * scale ); } if( ky <= 0 ) { flagy = 1; new_base_h = cvRound( r[0].height * scale ) / ky; y0 = cvRound( r[0].y * scale ); } for( k = 0; k < nr; k++ ) { CvRect tr; double correction_ratio; if( flagx ) { tr.x = (r[k].x - r[0].x) * new_base_w / base_w + x0; tr.width = r[k].width * new_base_w / base_w; } else { tr.x = cvRound( r[k].x * scale ); tr.width = cvRound( r[k].width * scale ); } if( flagy ) { tr.y = (r[k].y - r[0].y) * new_base_h / base_h + y0; tr.height = r[k].height * new_base_h / base_h; } else { tr.y = cvRound( r[k].y * scale ); tr.height = cvRound( r[k].height * scale ); } #if CV_ADJUST_WEIGHTS { // RAINER START const float orig_feature_size = (float)(feature->rect[k].r.width)*feature->rect[k].r.height; const float orig_norm_size = (float)(_cascade->orig_window_size.width)*(_cascade->orig_window_size.height); const float feature_size = float(tr.width*tr.height); //const float normSize = float(equRect.width*equRect.height); float target_ratio = orig_feature_size / orig_norm_size; //float isRatio = featureSize / normSize; //correctionRatio = targetRatio / isRatio / normSize; correction_ratio = target_ratio / feature_size; // RAINER END } #else correction_ratio = weight_scale * (!feature->tilted ? 1 : 0.5); #endif if( !feature->tilted ) { hidfeature->rect[k].p0 = tr.y * rows + tr.x; hidfeature->rect[k].p1 = tr.y * rows + tr.x + tr.width; hidfeature->rect[k].p2 = (tr.y + tr.height) * rows + tr.x; hidfeature->rect[k].p3 = (tr.y + tr.height) * rows + tr.x + tr.width; } else { hidfeature->rect[k].p2 = (tr.y + tr.width) * rows + tr.x + tr.width; hidfeature->rect[k].p3 = (tr.y + tr.width + tr.height) * rows + tr.x + tr.width - tr.height; hidfeature->rect[k].p0 = tr.y*rows + tr.x; hidfeature->rect[k].p1 = (tr.y + tr.height) * rows + tr.x - tr.height; } //hidfeature->rect[k].weight = (float)(feature->rect[k].weight * correction_ratio); if( k == 0 ) area0 = tr.width * tr.height; else ;// sum0 += hidfeature->rect[k].weight * tr.width * tr.height; } //hidfeature->rect[0].weight = (float)(-sum0/area0);*/ // } /* l */ // } /* j */ // } //} CV_INLINE double gpuEvalHidHaarClassifier( GpuHidHaarClassifier *classifier, double variance_norm_factor, size_t p_offset ) { /* int idx = 0; do { GpuHidHaarTreeNode* node = classifier->node + idx; double t = node->threshold * variance_norm_factor; double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight; sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight; if( node->feature.rect[2].p0 ) sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight; idx = sum < t ? node->left : node->right; } while( idx > 0 ); return classifier->alpha[-idx]; */ return 0.; } CV_IMPL int gpuRunHaarClassifierCascade( const CvHaarClassifierCascade *_cascade, CvPoint pt, int start_stage ) { /* int result = -1; int p_offset, pq_offset; int i, j; double mean, variance_norm_factor; GpuHidHaarClassifierCascade* cascade; if( !CV_IS_HAAR_CLASSIFIER(_cascade) ) CV_Error( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid cascade pointer" ); cascade = (GpuHidHaarClassifierCascade*) _cascade->hid_cascade; if( !cascade ) CV_Error( CV_StsNullPtr, "Hidden cascade has not been created.\n" "Use gpuSetImagesForHaarClassifierCascade" ); if( pt.x < 0 || pt.y < 0 || pt.x + _cascade->real_window_size.width >= cascade->sum.width-2 || pt.y + _cascade->real_window_size.height >= cascade->sum.height-2 ) return -1; p_offset = pt.y * (cascade->sum.step/sizeof(sumtype)) + pt.x; pq_offset = pt.y * (cascade->sqsum.step/sizeof(sqsumtype)) + pt.x; mean = calc_sum(*cascade,p_offset)*cascade->inv_window_area; variance_norm_factor = cascade->pq0[pq_offset] - cascade->pq1[pq_offset] - cascade->pq2[pq_offset] + cascade->pq3[pq_offset]; variance_norm_factor = variance_norm_factor*cascade->inv_window_area - mean*mean; if( variance_norm_factor >= 0. ) variance_norm_factor = sqrt(variance_norm_factor); else variance_norm_factor = 1.; if( cascade->is_stump_based ) { for( i = start_stage; i < cascade->count; i++ ) { double stage_sum = 0; if( cascade->stage_classifier[i].two_rects ) { for( j = 0; j < cascade->stage_classifier[i].count; j++ ) { GpuHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j; GpuHidHaarTreeNode* node = classifier->node; double t = node->threshold*variance_norm_factor; double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight; sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight; stage_sum += classifier->alpha[sum >= t]; } } else { for( j = 0; j < cascade->stage_classifier[i].count; j++ ) { GpuHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j; GpuHidHaarTreeNode* node = classifier->node; double t = node->threshold*variance_norm_factor; double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight; sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight; if( node->feature.rect[2].p0 ) sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight; stage_sum += classifier->alpha[sum >= t]; } } if( stage_sum < cascade->stage_classifier[i].threshold ) return -i; } } */ return 1; } namespace cv { namespace ocl { struct gpuHaarDetectObjects_ScaleImage_Invoker { gpuHaarDetectObjects_ScaleImage_Invoker( const CvHaarClassifierCascade *_cascade, int _stripSize, double _factor, const Mat &_sum1, const Mat &_sqsum1, Mat *_norm1, Mat *_mask1, Rect _equRect, ConcurrentRectVector &_vec ) { cascade = _cascade; stripSize = _stripSize; factor = _factor; sum1 = _sum1; sqsum1 = _sqsum1; norm1 = _norm1; mask1 = _mask1; equRect = _equRect; vec = &_vec; } void operator()( const BlockedRange &range ) const { Size winSize0 = cascade->orig_window_size; Size winSize(cvRound(winSize0.width * factor), cvRound(winSize0.height * factor)); int y1 = range.begin() * stripSize, y2 = min(range.end() * stripSize, sum1.rows - 1 - winSize0.height); Size ssz(sum1.cols - 1 - winSize0.width, y2 - y1); int x, y, ystep = factor > 2 ? 1 : 2; for( y = y1; y < y2; y += ystep ) for( x = 0; x < ssz.width; x += ystep ) { if( gpuRunHaarClassifierCascade( cascade, cvPoint(x, y), 0 ) > 0 ) vec->push_back(Rect(cvRound(x * factor), cvRound(y * factor), winSize.width, winSize.height)); } } const CvHaarClassifierCascade *cascade; int stripSize; double factor; Mat sum1, sqsum1, *norm1, *mask1; Rect equRect; ConcurrentRectVector *vec; }; struct gpuHaarDetectObjects_ScaleCascade_Invoker { gpuHaarDetectObjects_ScaleCascade_Invoker( const CvHaarClassifierCascade *_cascade, Size _winsize, const Range &_xrange, double _ystep, size_t _sumstep, const int **_p, const int **_pq, ConcurrentRectVector &_vec ) { cascade = _cascade; winsize = _winsize; xrange = _xrange; ystep = _ystep; sumstep = _sumstep; p = _p; pq = _pq; vec = &_vec; } void operator()( const BlockedRange &range ) const { int iy, startY = range.begin(), endY = range.end(); const int *p0 = p[0], *p1 = p[1], *p2 = p[2], *p3 = p[3]; const int *pq0 = pq[0], *pq1 = pq[1], *pq2 = pq[2], *pq3 = pq[3]; bool doCannyPruning = p0 != 0; int sstep = (int)(sumstep / sizeof(p0[0])); for( iy = startY; iy < endY; iy++ ) { int ix, y = cvRound(iy * ystep), ixstep = 1; for( ix = xrange.start; ix < xrange.end; ix += ixstep ) { int x = cvRound(ix * ystep); // it should really be ystep, not ixstep if( doCannyPruning ) { int offset = y * sstep + x; int s = p0[offset] - p1[offset] - p2[offset] + p3[offset]; int sq = pq0[offset] - pq1[offset] - pq2[offset] + pq3[offset]; if( s < 100 || sq < 20 ) { ixstep = 2; continue; } } int result = gpuRunHaarClassifierCascade( cascade, cvPoint(x, y), 0 ); if( result > 0 ) vec->push_back(Rect(x, y, winsize.width, winsize.height)); ixstep = result != 0 ? 1 : 2; } } } const CvHaarClassifierCascade *cascade; double ystep; size_t sumstep; Size winsize; Range xrange; const int **p; const int **pq; ConcurrentRectVector *vec; }; } } /* typedef struct _ALIGNED_ON(128) GpuHidHaarFeature { struct _ALIGNED_ON(32) { int p0 _ALIGNED_ON(4); int p1 _ALIGNED_ON(4); int p2 _ALIGNED_ON(4); int p3 _ALIGNED_ON(4); float weight _ALIGNED_ON(4); } rect[CV_HAAR_FEATURE_MAX] _ALIGNED_ON(32); } GpuHidHaarFeature; typedef struct _ALIGNED_ON(128) GpuHidHaarTreeNode { int left _ALIGNED_ON(4); int right _ALIGNED_ON(4); float threshold _ALIGNED_ON(4); int p0[CV_HAAR_FEATURE_MAX] _ALIGNED_ON(16); int p1[CV_HAAR_FEATURE_MAX] _ALIGNED_ON(16); int p2[CV_HAAR_FEATURE_MAX] _ALIGNED_ON(16); int p3[CV_HAAR_FEATURE_MAX] _ALIGNED_ON(16); float weight[CV_HAAR_FEATURE_MAX] _ALIGNED_ON(16); float alpha[2] _ALIGNED_ON(8); // GpuHidHaarFeature feature __attribute__((aligned (128))); } GpuHidHaarTreeNode; typedef struct _ALIGNED_ON(32) GpuHidHaarClassifier { int count _ALIGNED_ON(4); //CvHaarFeature* orig_feature; GpuHidHaarTreeNode* node _ALIGNED_ON(8); float* alpha _ALIGNED_ON(8); } GpuHidHaarClassifier; typedef struct _ALIGNED_ON(64) __attribute__((aligned (64))) GpuHidHaarStageClassifier { int count _ALIGNED_ON(4); float threshold _ALIGNED_ON(4); int two_rects _ALIGNED_ON(4); GpuHidHaarClassifier* classifier _ALIGNED_ON(8); struct GpuHidHaarStageClassifier* next _ALIGNED_ON(8); struct GpuHidHaarStageClassifier* child _ALIGNED_ON(8); struct GpuHidHaarStageClassifier* parent _ALIGNED_ON(8); } GpuHidHaarStageClassifier; typedef struct _ALIGNED_ON(64) GpuHidHaarClassifierCascade { int count _ALIGNED_ON(4); int is_stump_based _ALIGNED_ON(4); int has_tilted_features _ALIGNED_ON(4); int is_tree _ALIGNED_ON(4); int pq0 _ALIGNED_ON(4); int pq1 _ALIGNED_ON(4); int pq2 _ALIGNED_ON(4); int pq3 _ALIGNED_ON(4); int p0 _ALIGNED_ON(4); int p1 _ALIGNED_ON(4); int p2 _ALIGNED_ON(4); int p3 _ALIGNED_ON(4); float inv_window_area _ALIGNED_ON(4); // GpuHidHaarStageClassifier* stage_classifier __attribute__((aligned (8))); }GpuHidHaarClassifierCascade; */ /* End of file. */