#include #include #include #include #include #include #include "common.hpp" using namespace cv; using namespace std; using namespace dnn; const string about = "Use this script to run semantic segmentation deep learning networks using OpenCV.\n\n" "Firstly, download required models using `download_models.py` (if not already done). Set environment variable OPENCV_DOWNLOAD_CACHE_DIR to specify where models should be downloaded. Also, point OPENCV_SAMPLES_DATA_PATH to opencv/samples/data.\n" "To run:\n" "\t ./example_dnn_classification modelName(e.g. u2netp) --input=$OPENCV_SAMPLES_DATA_PATH/butterfly.jpg (or ignore this argument to use device camera)\n" "Model path can also be specified using --model argument."; const string param_keys = "{ help h | | Print help message. }" "{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }" "{ zoo | ../dnn/models.yml | An optional path to file with preprocessing parameters }" "{ device | 0 | camera device number. }" "{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera. }" "{ colors | | Optional path to a text file with colors for an every class. " "Every color is represented with three values from 0 to 255 in BGR channels order. }"; const string backend_keys = format( "{ backend | default | Choose one of computation backends: " "default: automatically (by default), " "openvino: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), " "opencv: OpenCV implementation, " "vkcom: VKCOM, " "cuda: CUDA, " "webnn: WebNN }"); const string target_keys = format( "{ target | cpu | Choose one of target computation devices: " "cpu: CPU target (by default), " "opencl: OpenCL, " "opencl_fp16: OpenCL fp16 (half-float precision), " "vpu: VPU, " "vulkan: Vulkan, " "cuda: CUDA, " "cuda_fp16: CUDA fp16 (half-float preprocess) }"); string keys = param_keys + backend_keys + target_keys; vector labels; vector colors; static void colorizeSegmentation(const Mat &score, Mat &segm) { const int rows = score.size[2]; const int cols = score.size[3]; const int chns = score.size[1]; if (colors.empty()) { // Generate colors. colors.push_back(Vec3b()); for (int i = 1; i < chns; ++i) { Vec3b color; for (int j = 0; j < 3; ++j) color[j] = (colors[i - 1][j] + rand() % 256) / 2; colors.push_back(color); } } else if (chns != (int)colors.size()) { CV_Error(Error::StsError, format("Number of output labels does not match " "number of colors (%d != %zu)", chns, colors.size())); } Mat maxCl = Mat::zeros(rows, cols, CV_8UC1); Mat maxVal(rows, cols, CV_32FC1, score.data); for (int ch = 1; ch < chns; ch++) { for (int row = 0; row < rows; row++) { const float *ptrScore = score.ptr(0, ch, row); uint8_t *ptrMaxCl = maxCl.ptr(row); float *ptrMaxVal = maxVal.ptr(row); for (int col = 0; col < cols; col++) { if (ptrScore[col] > ptrMaxVal[col]) { ptrMaxVal[col] = ptrScore[col]; ptrMaxCl[col] = (uchar)ch; } } } } segm.create(rows, cols, CV_8UC3); for (int row = 0; row < rows; row++) { const uchar *ptrMaxCl = maxCl.ptr(row); Vec3b *ptrSegm = segm.ptr(row); for (int col = 0; col < cols; col++) { ptrSegm[col] = colors[ptrMaxCl[col]]; } } } static void showLegend(FontFace fontFace) { static const int kBlockHeight = 30; static Mat legend; if (legend.empty()) { const int numClasses = (int)labels.size(); if ((int)colors.size() != numClasses) { CV_Error(Error::StsError, format("Number of output labels does not match " "number of labels (%zu != %zu)", colors.size(), labels.size())); } legend.create(kBlockHeight * numClasses, 200, CV_8UC3); for (int i = 0; i < numClasses; i++) { Mat block = legend.rowRange(i * kBlockHeight, (i + 1) * kBlockHeight); block.setTo(colors[i]); Rect r = getTextSize(Size(), labels[i], Point(), fontFace, 15, 400); r.height += 15; // padding r.width += 10; // padding rectangle(block, r, Scalar::all(255), FILLED); putText(block, labels[i], Point(10, kBlockHeight/2), Scalar(0,0,0), fontFace, 15, 400); } namedWindow("Legend", WINDOW_AUTOSIZE); imshow("Legend", legend); } } int main(int argc, char **argv) { CommandLineParser parser(argc, argv, keys); const string modelName = parser.get("@alias"); const string zooFile = findFile(parser.get("zoo")); keys += genPreprocArguments(modelName, zooFile); parser = CommandLineParser(argc, argv, keys); parser.about(about); if (!parser.has("@alias") || parser.has("help")) { parser.printMessage(); return 0; } string sha1 = parser.get("sha1"); float scale = parser.get("scale"); Scalar mean = parser.get("mean"); bool swapRB = parser.get("rgb"); int inpWidth = parser.get("width"); int inpHeight = parser.get("height"); String model = findModel(parser.get("model"), sha1); const string backend = parser.get("backend"); const string target = parser.get("target"); int stdSize = 20; int stdWeight = 400; int stdImgSize = 512; int imgWidth = -1; // Initialization int fontSize = 50; int fontWeight = 500; FontFace fontFace("sans"); // Open file with labels names. if (parser.has("labels")) { string file = findFile(parser.get("labels")); ifstream ifs(file.c_str()); if (!ifs.is_open()) CV_Error(Error::StsError, "File " + file + " not found"); string line; while (getline(ifs, line)) { labels.push_back(line); } } // Open file with colors. if (parser.has("colors")) { string file = findFile(parser.get("colors")); ifstream ifs(file.c_str()); if (!ifs.is_open()) CV_Error(Error::StsError, "File " + file + " not found"); string line; while (getline(ifs, line)) { istringstream colorStr(line.c_str()); Vec3b color; for (int i = 0; i < 3 && !colorStr.eof(); ++i) colorStr >> color[i]; colors.push_back(color); } } if (!parser.check()) { parser.printErrors(); return 1; } CV_Assert(!model.empty()); //! [Read and initialize network] EngineType engine = ENGINE_AUTO; if (backend != "default" || target != "cpu"){ engine = ENGINE_CLASSIC; } Net net = readNetFromONNX(model, engine); net.setPreferableBackend(getBackendID(backend)); net.setPreferableTarget(getTargetID(target)); //! [Read and initialize network] // Create a window static const string kWinName = "Deep learning semantic segmentation in OpenCV"; namedWindow(kWinName, WINDOW_AUTOSIZE); //! [Open a video file or an image file or a camera stream] VideoCapture cap; if (parser.has("input")) cap.open(findFile(parser.get("input"))); else cap.open(parser.get("device")); if (!cap.isOpened()) { cerr << "Error: Video could not be opened." << endl; return -1; } //! [Open a video file or an image file or a camera stream] // Process frames. Mat frame, blob; while (waitKey(1) < 0) { cap >> frame; if (frame.empty()) { waitKey(); break; } if (imgWidth == -1){ imgWidth = max(frame.rows, frame.cols); fontSize = min(fontSize, (stdSize*imgWidth)/stdImgSize); fontWeight = min(fontWeight, (stdWeight*imgWidth)/stdImgSize); } imshow("Original Image", frame); //! [Create a 4D blob from a frame] blobFromImage(frame, blob, scale, Size(inpWidth, inpHeight), mean, swapRB, false); //! [Set input blob] net.setInput(blob); //! [Set input blob] if (modelName == "u2netp") { vector output; net.forward(output, net.getUnconnectedOutLayersNames()); Mat pred = output[0].reshape(1, output[0].size[2]); pred.convertTo(pred, CV_8U, 255.0); Mat mask; resize(pred, mask, Size(frame.cols, frame.rows), 0, 0, INTER_AREA); // Create overlays for foreground and background Mat foreground_overlay; // Set foreground (object) to red Mat all_zeros = Mat::zeros(frame.size(), CV_8UC1); vector channels = {all_zeros, all_zeros, mask}; merge(channels, foreground_overlay); // Blend the overlays with the original frame addWeighted(frame, 0.25, foreground_overlay, 0.75, 0, frame); } else { //! [Make forward pass] Mat score = net.forward(); //! [Make forward pass] Mat segm; colorizeSegmentation(score, segm); resize(segm, segm, frame.size(), 0, 0, INTER_NEAREST); addWeighted(frame, 0.1, segm, 0.9, 0.0, frame); } // Put efficiency information. vector layersTimes; double freq = getTickFrequency() / 1000; double t = net.getPerfProfile(layersTimes) / freq; string label = format("Inference time: %.2f ms", t); Rect r = getTextSize(Size(), label, Point(), fontFace, fontSize, fontWeight); r.height += fontSize; // padding r.width += 10; // padding rectangle(frame, r, Scalar::all(255), FILLED); putText(frame, label, Point(10, fontSize), Scalar(0,0,0), fontFace, fontSize, fontWeight); imshow(kWinName, frame); if (!labels.empty()) showLegend(fontFace); } return 0; }