#include #ifdef HAVE_OPENCV_XFEATURES2D #include #include "opencv2/xfeatures2d.hpp" #include #include using namespace std; using namespace cv; const float inlier_threshold = 2.5f; // Distance threshold to identify inliers with homography check const float nn_match_ratio = 0.8f; // Nearest neighbor matching ratio int main(int argc, char* argv[]) { //! [load] CommandLineParser parser(argc, argv, "{@img1 | graf1.png | input image 1}" "{@img2 | graf3.png | input image 2}" "{@homography | H1to3p.xml | homography matrix}"); Mat img1 = imread( samples::findFile( parser.get("@img1") ), IMREAD_GRAYSCALE); Mat img2 = imread( samples::findFile( parser.get("@img2") ), IMREAD_GRAYSCALE); Mat homography; FileStorage fs( samples::findFile( parser.get("@homography") ), FileStorage::READ); fs.getFirstTopLevelNode() >> homography; //! [load] //! [AKAZE] vector kpts1, kpts2; Mat desc1, desc2; Ptr akaze = xfeatures2d::AKAZE::create(); akaze->detectAndCompute(img1, noArray(), kpts1, desc1); akaze->detectAndCompute(img2, noArray(), kpts2, desc2); //! [AKAZE] //! [2-nn matching] BFMatcher matcher(NORM_HAMMING); vector< vector > nn_matches; matcher.knnMatch(desc1, desc2, nn_matches, 2); //! [2-nn matching] //! [ratio test filtering] vector matched1, matched2; for(size_t i = 0; i < nn_matches.size(); i++) { DMatch first = nn_matches[i][0]; float dist1 = nn_matches[i][0].distance; float dist2 = nn_matches[i][1].distance; if(dist1 < nn_match_ratio * dist2) { matched1.push_back(kpts1[first.queryIdx]); matched2.push_back(kpts2[first.trainIdx]); } } //! [ratio test filtering] //! [homography check] vector good_matches; vector inliers1, inliers2; for(size_t i = 0; i < matched1.size(); i++) { Mat col = Mat::ones(3, 1, CV_64F); col.at(0) = matched1[i].pt.x; col.at(1) = matched1[i].pt.y; col = homography * col; col /= col.at(2); double dist = sqrt( pow(col.at(0) - matched2[i].pt.x, 2) + pow(col.at(1) - matched2[i].pt.y, 2)); if(dist < inlier_threshold) { int new_i = static_cast(inliers1.size()); inliers1.push_back(matched1[i]); inliers2.push_back(matched2[i]); good_matches.push_back(DMatch(new_i, new_i, 0)); } } //! [homography check] //! [draw final matches] Mat res; drawMatches(img1, inliers1, img2, inliers2, good_matches, res); imwrite("akaze_result.png", res); double inlier_ratio = inliers1.size() / (double) matched1.size(); cout << "A-KAZE Matching Results" << endl; cout << "*******************************" << endl; cout << "# Keypoints 1: \t" << kpts1.size() << endl; cout << "# Keypoints 2: \t" << kpts2.size() << endl; cout << "# Matches: \t" << matched1.size() << endl; cout << "# Inliers: \t" << inliers1.size() << endl; cout << "# Inliers Ratio: \t" << inlier_ratio << endl; cout << endl; imshow("result", res); waitKey(); //! [draw final matches] return 0; } #else int main() { std::cout << "This tutorial code needs the xfeatures2d contrib module to be run." << std::endl; return 0; } #endif