/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include "opencv2/stereo.hpp" namespace opencv_test { namespace { #if 0 class CV_ProjectPointsTest : public cvtest::ArrayTest { public: CV_ProjectPointsTest(); protected: int read_params( const cv::FileStorage& fs ); void fill_array( int test_case_idx, int i, int j, Mat& arr ); int prepare_test_case( int test_case_idx ); void get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ); double get_success_error_level( int test_case_idx, int i, int j ); void run_func(); void prepare_to_validation( int ); bool calc_jacobians; }; CV_ProjectPointsTest::CV_ProjectPointsTest() : cvtest::ArrayTest( "3d-ProjectPoints", "cvProjectPoints2", "" ) { test_array[INPUT].push_back(NULL); // rotation vector test_array[OUTPUT].push_back(NULL); // rotation matrix test_array[OUTPUT].push_back(NULL); // jacobian (J) test_array[OUTPUT].push_back(NULL); // rotation vector (backward transform result) test_array[OUTPUT].push_back(NULL); // inverse transform jacobian (J1) test_array[OUTPUT].push_back(NULL); // J*J1 (or J1*J) == I(3x3) test_array[REF_OUTPUT].push_back(NULL); test_array[REF_OUTPUT].push_back(NULL); test_array[REF_OUTPUT].push_back(NULL); test_array[REF_OUTPUT].push_back(NULL); test_array[REF_OUTPUT].push_back(NULL); element_wise_relative_error = false; calc_jacobians = false; } int CV_ProjectPointsTest::read_params( const cv::FileStorage& fs ) { int code = cvtest::ArrayTest::read_params( fs ); return code; } void CV_ProjectPointsTest::get_test_array_types_and_sizes( int /*test_case_idx*/, vector >& sizes, vector >& types ) { RNG& rng = ts->get_rng(); int depth = cvtest::randInt(rng) % 2 == 0 ? CV_32F : CV_64F; int i, code; code = cvtest::randInt(rng) % 3; types[INPUT][0] = CV_MAKETYPE(depth, 1); if( code == 0 ) { sizes[INPUT][0] = cvSize(1,1); types[INPUT][0] = CV_MAKETYPE(depth, 3); } else if( code == 1 ) sizes[INPUT][0] = cvSize(3,1); else sizes[INPUT][0] = cvSize(1,3); sizes[OUTPUT][0] = cvSize(3, 3); types[OUTPUT][0] = CV_MAKETYPE(depth, 1); types[OUTPUT][1] = CV_MAKETYPE(depth, 1); if( cvtest::randInt(rng) % 2 ) sizes[OUTPUT][1] = cvSize(3,9); else sizes[OUTPUT][1] = cvSize(9,3); types[OUTPUT][2] = types[INPUT][0]; sizes[OUTPUT][2] = sizes[INPUT][0]; types[OUTPUT][3] = types[OUTPUT][1]; sizes[OUTPUT][3] = cvSize(sizes[OUTPUT][1].height, sizes[OUTPUT][1].width); types[OUTPUT][4] = types[OUTPUT][1]; sizes[OUTPUT][4] = cvSize(3,3); calc_jacobians = 1;//cvtest::randInt(rng) % 3 != 0; if( !calc_jacobians ) sizes[OUTPUT][1] = sizes[OUTPUT][3] = sizes[OUTPUT][4] = cvSize(0,0); for( i = 0; i < 5; i++ ) { types[REF_OUTPUT][i] = types[OUTPUT][i]; sizes[REF_OUTPUT][i] = sizes[OUTPUT][i]; } } double CV_ProjectPointsTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int j ) { return j == 4 ? 1e-2 : 1e-2; } void CV_ProjectPointsTest::fill_array( int /*test_case_idx*/, int /*i*/, int /*j*/, CvMat* arr ) { double r[3], theta0, theta1, f; CvMat _r = cvMat( arr->rows, arr->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(arr->type)), r ); RNG& rng = ts->get_rng(); r[0] = cvtest::randReal(rng)*CV_PI*2; r[1] = cvtest::randReal(rng)*CV_PI*2; r[2] = cvtest::randReal(rng)*CV_PI*2; theta0 = sqrt(r[0]*r[0] + r[1]*r[1] + r[2]*r[2]); theta1 = fmod(theta0, CV_PI*2); if( theta1 > CV_PI ) theta1 = -(CV_PI*2 - theta1); f = theta1/(theta0 ? theta0 : 1); r[0] *= f; r[1] *= f; r[2] *= f; cvTsConvert( &_r, arr ); } int CV_ProjectPointsTest::prepare_test_case( int test_case_idx ) { int code = cvtest::ArrayTest::prepare_test_case( test_case_idx ); return code; } void CV_ProjectPointsTest::run_func() { CvMat *v2m_jac = 0, *m2v_jac = 0; if( calc_jacobians ) { v2m_jac = &test_mat[OUTPUT][1]; m2v_jac = &test_mat[OUTPUT][3]; } cvProjectPoints2( &test_mat[INPUT][0], &test_mat[OUTPUT][0], v2m_jac ); cvProjectPoints2( &test_mat[OUTPUT][0], &test_mat[OUTPUT][2], m2v_jac ); } void CV_ProjectPointsTest::prepare_to_validation( int /*test_case_idx*/ ) { const CvMat* vec = &test_mat[INPUT][0]; CvMat* m = &test_mat[REF_OUTPUT][0]; CvMat* vec2 = &test_mat[REF_OUTPUT][2]; CvMat* v2m_jac = 0, *m2v_jac = 0; double theta0, theta1; if( calc_jacobians ) { v2m_jac = &test_mat[REF_OUTPUT][1]; m2v_jac = &test_mat[REF_OUTPUT][3]; } cvTsProjectPoints( vec, m, v2m_jac ); cvTsProjectPoints( m, vec2, m2v_jac ); cvTsCopy( vec, vec2 ); theta0 = cvtest::norm( cvarrtomat(vec2), 0, CV_L2 ); theta1 = fmod( theta0, CV_PI*2 ); if( theta1 > CV_PI ) theta1 = -(CV_PI*2 - theta1); cvScale( vec2, vec2, theta1/(theta0 ? theta0 : 1) ); if( calc_jacobians ) { //cvInvert( v2m_jac, m2v_jac, CV_SVD ); if( cvtest::norm(cvarrtomat(&test_mat[OUTPUT][3]), 0, CV_C) < 1000 ) { cvTsGEMM( &test_mat[OUTPUT][1], &test_mat[OUTPUT][3], 1, 0, 0, &test_mat[OUTPUT][4], v2m_jac->rows == 3 ? 0 : CV_GEMM_A_T + CV_GEMM_B_T ); } else { cvTsSetIdentity( &test_mat[OUTPUT][4], cvScalarAll(1.) ); cvTsCopy( &test_mat[REF_OUTPUT][2], &test_mat[OUTPUT][2] ); } cvTsSetIdentity( &test_mat[REF_OUTPUT][4], cvScalarAll(1.) ); } } CV_ProjectPointsTest ProjectPoints_test; #endif // --------------------------------- CV_CameraCalibrationTest -------------------------------------------- typedef Matx33d RotMat; class CV_CameraCalibrationTest : public cvtest::BaseTest { public: CV_CameraCalibrationTest(); ~CV_CameraCalibrationTest(); void clear(); protected: int compare(double* val, double* refVal, int len, double eps, const char* paramName); virtual void calibrate(Size imageSize, const std::vector >& imagePoints, const std::vector >& objectPoints, int iFixedPoint, Mat& distortionCoeffs, Mat& cameraMatrix, std::vector& translationVectors, std::vector& rotationMatrices, std::vector& newObjPoints, std::vector& stdDevs, std::vector& perViewErrors, int flags ) = 0; virtual void project( const std::vector& objectPoints, const RotMat& rotationMatrix, const Vec3d& translationVector, const Mat& cameraMatrix, const Mat& distortion, std::vector& imagePoints ) = 0; void run(int); }; CV_CameraCalibrationTest::CV_CameraCalibrationTest() { } CV_CameraCalibrationTest::~CV_CameraCalibrationTest() { clear(); } void CV_CameraCalibrationTest::clear() { cvtest::BaseTest::clear(); } int CV_CameraCalibrationTest::compare(double* val, double* ref_val, int len, double eps, const char* param_name ) { return cvtest::cmpEps2_64f( ts, val, ref_val, len, eps, param_name ); } void CV_CameraCalibrationTest::run( int start_from ) { int code = cvtest::TS::OK; cv::String filepath; cv::String filename; std::vector > imagePoints; std::vector > objectPoints; std::vector > reprojectPoints; std::vector transVects; std::vector rotMatrs; std::vector newObjPoints; std::vector stdDevs; std::vector perViewErrors; std::vector goodTransVects; std::vector goodRotMatrs; std::vector goodObjPoints; std::vector goodPerViewErrors; std::vector goodStdDevs; Mat cameraMatrix; Mat distortion = Mat::zeros(1, 5, CV_64F); Mat goodDistortion = Mat::zeros(1, 5, CV_64F); FILE* file = 0; FILE* datafile = 0; int i,j; int currImage; int currPoint; char i_dat_file[100]; int progress = 0; int values_read = -1; filepath = cv::format("%scv/cameracalibration/", ts->get_data_path().c_str() ); filename = cv::format("%sdatafiles.txt", filepath.c_str() ); datafile = fopen( filename.c_str(), "r" ); if( datafile == 0 ) { ts->printf( cvtest::TS::LOG, "Could not open file with list of test files: %s\n", filename.c_str() ); code = cvtest::TS::FAIL_MISSING_TEST_DATA; ts->set_failed_test_info( code ); return; } int numTests = 0; values_read = fscanf(datafile,"%d",&numTests); CV_Assert(values_read == 1); for( int currTest = start_from; currTest < numTests; currTest++ ) { values_read = fscanf(datafile,"%s",i_dat_file); CV_Assert(values_read == 1); filename = cv::format("%s%s", filepath.c_str(), i_dat_file); file = fopen(filename.c_str(),"r"); ts->update_context( this, currTest, true ); if( file == 0 ) { ts->printf( cvtest::TS::LOG, "Can't open current test file: %s\n",filename.c_str()); if( numTests == 1 ) { code = cvtest::TS::FAIL_MISSING_TEST_DATA; break; } continue; // if there is more than one test, just skip the test } Size imageSize; values_read = fscanf(file,"%d %d\n",&(imageSize.width),&(imageSize.height)); CV_Assert(values_read == 2); if( imageSize.width <= 0 || imageSize.height <= 0 ) { ts->printf( cvtest::TS::LOG, "Image size in test file is incorrect\n" ); code = cvtest::TS::FAIL_INVALID_TEST_DATA; break; } /* Read etalon size */ Size etalonSize; values_read = fscanf(file,"%d %d\n",&(etalonSize.width),&(etalonSize.height)); CV_Assert(values_read == 2); if( etalonSize.width <= 0 || etalonSize.height <= 0 ) { ts->printf( cvtest::TS::LOG, "Pattern size in test file is incorrect\n" ); code = cvtest::TS::FAIL_INVALID_TEST_DATA; break; } int numPoints = etalonSize.width * etalonSize.height; /* Read number of images */ int numImages = 0; values_read = fscanf(file,"%d\n",&numImages); CV_Assert(values_read == 1); if( numImages <=0 ) { ts->printf( cvtest::TS::LOG, "Number of images in test file is incorrect\n"); code = cvtest::TS::FAIL_INVALID_TEST_DATA; break; } /* Read calibration flags */ int calibFlags = 0; values_read = fscanf(file,"%d\n",&calibFlags); CV_Assert(values_read == 1); /* Read index of the fixed point */ int iFixedPoint; values_read = fscanf(file,"%d\n",&iFixedPoint); CV_Assert(values_read == 1); /* Need to allocate memory */ imagePoints.resize(numImages); objectPoints.resize(numImages); reprojectPoints.resize(numImages); for( currImage = 0; currImage < numImages; currImage++ ) { imagePoints[currImage].resize(numPoints); objectPoints[currImage].resize(numPoints); reprojectPoints[currImage].resize(numPoints); } transVects.resize(numImages); rotMatrs.resize(numImages); newObjPoints.resize(numPoints); stdDevs.resize(CALIB_NINTRINSIC + 6*numImages + 3*numPoints); perViewErrors.resize(numImages); goodTransVects.resize(numImages); goodRotMatrs.resize(numImages); goodObjPoints.resize(numPoints); goodPerViewErrors.resize(numImages); int nstddev = CALIB_NINTRINSIC + 6*numImages + 3*numPoints; goodStdDevs.resize(nstddev); for( currImage = 0; currImage < numImages; currImage++ ) { for( currPoint = 0; currPoint < numPoints; currPoint++ ) { double x,y,z; values_read = fscanf(file,"%lf %lf %lf\n",&x,&y,&z); CV_Assert(values_read == 3); objectPoints[currImage][currPoint].x = x; objectPoints[currImage][currPoint].y = y; objectPoints[currImage][currPoint].z = z; } } /* Read image points */ for( currImage = 0; currImage < numImages; currImage++ ) { for( currPoint = 0; currPoint < numPoints; currPoint++ ) { double x,y; values_read = fscanf(file,"%lf %lf\n",&x,&y); CV_Assert(values_read == 2); imagePoints[currImage][currPoint].x = x; imagePoints[currImage][currPoint].y = y; } } /* Read good data computed before */ /* Focal lengths */ double goodFcx,goodFcy; values_read = fscanf(file,"%lf %lf",&goodFcx,&goodFcy); CV_Assert(values_read == 2); /* Principal points */ double goodCx,goodCy; values_read = fscanf(file,"%lf %lf",&goodCx,&goodCy); CV_Assert(values_read == 2); /* Read distortion */ for( i = 0; i < 4; i++ ) { values_read = fscanf(file,"%lf",&goodDistortion.at(i)); CV_Assert(values_read == 1); } /* Read good Rot matrices */ for( currImage = 0; currImage < numImages; currImage++ ) { for( i = 0; i < 3; i++ ) for( j = 0; j < 3; j++ ) { // Yes, load with transpose values_read = fscanf(file, "%lf", &goodRotMatrs[currImage].val[j*3+i]); CV_Assert(values_read == 1); } } /* Read good Trans vectors */ for( currImage = 0; currImage < numImages; currImage++ ) { for( i = 0; i < 3; i++ ) { values_read = fscanf(file, "%lf", &goodTransVects[currImage].val[i]); CV_Assert(values_read == 1); } } bool releaseObject = iFixedPoint > 0 && iFixedPoint < numPoints - 1; /* Read good refined 3D object points */ if( releaseObject ) { for( i = 0; i < numPoints; i++ ) { for( j = 0; j < 3; j++ ) { values_read = fscanf(file, "%lf", &goodObjPoints[i].x + j); CV_Assert(values_read == 1); } } } /* Read good stdDeviations */ for (i = 0; i < CALIB_NINTRINSIC + numImages*6; i++) { values_read = fscanf(file, "%lf", &goodStdDevs[i]); CV_Assert(values_read == 1); } for( ; i < nstddev; i++ ) { if( releaseObject ) { values_read = fscanf(file, "%lf", &goodStdDevs[i]); CV_Assert(values_read == 1); } else goodStdDevs[i] = 0.0; } cameraMatrix = Mat::zeros(3, 3, CV_64F); cameraMatrix.at(0, 0) = cameraMatrix.at(1, 1) = 807.; cameraMatrix.at(0, 2) = (imageSize.width - 1)*0.5; cameraMatrix.at(1, 2) = (imageSize.height - 1)*0.5; cameraMatrix.at(2, 2) = 1.; /* Now we can calibrate camera */ calibrate( imageSize, imagePoints, objectPoints, iFixedPoint, distortion, cameraMatrix, transVects, rotMatrs, newObjPoints, stdDevs, perViewErrors, calibFlags ); /* ---- Reproject points to the image ---- */ for( currImage = 0; currImage < numImages; currImage++ ) { if( releaseObject ) { objectPoints[currImage] = newObjPoints; } project( objectPoints[currImage], rotMatrs[currImage], transVects[currImage], cameraMatrix, distortion, reprojectPoints[currImage]); } /* ----- Compute reprojection error ----- */ double dx,dy; double rx,ry; for( currImage = 0; currImage < numImages; currImage++ ) { double imageMeanDx = 0; double imageMeanDy = 0; for( currPoint = 0; currPoint < etalonSize.width * etalonSize.height; currPoint++ ) { rx = reprojectPoints[currImage][currPoint].x; ry = reprojectPoints[currImage][currPoint].y; dx = rx - imagePoints[currImage][currPoint].x; dy = ry - imagePoints[currImage][currPoint].y; imageMeanDx += dx*dx; imageMeanDy += dy*dy; } goodPerViewErrors[currImage] = sqrt( (imageMeanDx + imageMeanDy) / (etalonSize.width * etalonSize.height)); //only for c-version of test (it does not provides evaluation of perViewErrors //and returns zeros) if(perViewErrors[currImage] == 0.0) perViewErrors[currImage] = goodPerViewErrors[currImage]; } /* ========= Compare parameters ========= */ CV_Assert(cameraMatrix.type() == CV_64F && cameraMatrix.size() == Size(3, 3)); CV_Assert(distortion.type() == CV_64F); Size dsz = distortion.size(); CV_Assert(dsz == Size(4, 1) || dsz == Size(1, 4) || dsz == Size(5, 1) || dsz == Size(1, 5)); /*std::cout << "cameraMatrix: " << cameraMatrix << "\n"; std::cout << "curr distCoeffs: " << distortion << "\n"; std::cout << "good distCoeffs: " << goodDistortion << "\n";*/ /* ----- Compare focal lengths ----- */ code = compare(&cameraMatrix.at(0, 0), &goodFcx, 1, 0.1, "fx"); if( code < 0 ) break; code = compare(&cameraMatrix.at(1, 1),&goodFcy, 1, 0.1, "fy"); if( code < 0 ) break; /* ----- Compare principal points ----- */ code = compare(&cameraMatrix.at(0,2), &goodCx, 1, 0.1, "cx"); if( code < 0 ) break; code = compare(&cameraMatrix.at(1,2), &goodCy, 1, 0.1, "cy"); if( code < 0 ) break; /* ----- Compare distortion ----- */ code = compare(&distortion.at(0), &goodDistortion.at(0), 4, 0.1, "[k1,k2,p1,p2]"); if( code < 0 ) break; /* ----- Compare rot matrixs ----- */ CV_Assert(rotMatrs.size() == (size_t)numImages); CV_Assert(transVects.size() == (size_t)numImages); //code = compare(rotMatrs[0].val, goodRotMatrs[0].val, 9*numImages, 0.05, "rotation matrices"); for( i = 0; i < numImages; i++ ) { if( cv::norm(rotMatrs[i], goodRotMatrs[i], NORM_INF) > 0.05 ) { printf("rot mats for frame #%d are very different\n", i); std::cout << "curr:\n" << rotMatrs[i] << std::endl; std::cout << "good:\n" << goodRotMatrs[i] << std::endl; code = TS::FAIL_BAD_ACCURACY; break; } } if( code < 0 ) break; /* ----- Compare rot matrixs ----- */ code = compare(transVects[0].val, goodTransVects[0].val, 3*numImages, 0.1, "translation vectors"); if( code < 0 ) break; /* ----- Compare refined 3D object points ----- */ if( releaseObject ) { code = compare(&newObjPoints[0].x, &goodObjPoints[0].x, 3*numPoints, 0.1, "refined 3D object points"); if( code < 0 ) break; } /* ----- Compare per view re-projection errors ----- */ CV_Assert(perViewErrors.size() == (size_t)numImages); code = compare(&perViewErrors[0], &goodPerViewErrors[0], numImages, 0.1, "per view errors vector"); if( code < 0 ) break; /* ----- Compare standard deviations of parameters ----- */ if( stdDevs.size() < (size_t)nstddev ) stdDevs.resize(nstddev); for ( i = 0; i < nstddev; i++) { if(stdDevs[i] == 0.0) stdDevs[i] = goodStdDevs[i]; } code = compare(&stdDevs[0], &goodStdDevs[0], nstddev, .5, "stdDevs vector"); if( code < 0 ) break; /*if( maxDx > 1.0 ) { ts->printf( cvtest::TS::LOG, "Error in reprojection maxDx=%f > 1.0\n",maxDx); code = cvtest::TS::FAIL_BAD_ACCURACY; break; } if( maxDy > 1.0 ) { ts->printf( cvtest::TS::LOG, "Error in reprojection maxDy=%f > 1.0\n",maxDy); code = cvtest::TS::FAIL_BAD_ACCURACY; break; }*/ progress = update_progress( progress, currTest, numTests, 0 ); fclose(file); file = 0; } if( file ) fclose(file); if( datafile ) fclose(datafile); if( code < 0 ) ts->set_failed_test_info( code ); } // --------------------------------- CV_CameraCalibrationTest_CPP -------------------------------------------- class CV_CameraCalibrationTest_CPP : public CV_CameraCalibrationTest { public: CV_CameraCalibrationTest_CPP(){} protected: virtual void calibrate(Size imageSize, const std::vector >& imagePoints, const std::vector >& objectPoints, int iFixedPoint, Mat& distortionCoeffs, Mat& cameraMatrix, std::vector& translationVectors, std::vector& rotationMatrices, std::vector& newObjPoints, std::vector& stdDevs, std::vector& perViewErrors, int flags ); virtual void project( const std::vector& objectPoints, const RotMat& rotationMatrix, const Vec3d& translationVector, const Mat& cameraMatrix, const Mat& distortion, std::vector& imagePoints ); }; void CV_CameraCalibrationTest_CPP::calibrate(Size imageSize, const std::vector >& _imagePoints, const std::vector >& _objectPoints, int iFixedPoint, Mat& _distCoeffs, Mat& _cameraMatrix, std::vector& translationVectors, std::vector& rotationMatrices, std::vector& newObjPoints, std::vector& stdDevs, std::vector& perViewErrors, int flags ) { int pointCount = (int)_imagePoints[0].size(); size_t i, imageCount = _imagePoints.size(); vector > objectPoints( imageCount ); vector > imagePoints( imageCount ); Mat cameraMatrix, distCoeffs(1,4,CV_64F,Scalar::all(0)); vector rvecs, tvecs; Mat newObjMat; Mat stdDevsMatInt, stdDevsMatExt; Mat stdDevsMatObj; Mat perViewErrorsMat; for( i = 0; i < imageCount; i++ ) { Mat(_imagePoints[i]).convertTo(imagePoints[i], CV_32F); Mat(_objectPoints[i]).convertTo(objectPoints[i], CV_32F); } size_t nstddev0 = CALIB_NINTRINSIC + imageCount*6, nstddev1 = nstddev0 + _imagePoints[0].size()*3; for( i = nstddev0; i < nstddev1; i++ ) { stdDevs[i] = 0.0; } calibrateCameraRO( objectPoints, imagePoints, imageSize, iFixedPoint, cameraMatrix, distCoeffs, rvecs, tvecs, newObjMat, stdDevsMatInt, stdDevsMatExt, stdDevsMatObj, perViewErrorsMat, flags ); bool releaseObject = iFixedPoint > 0 && iFixedPoint < pointCount - 1; if( releaseObject ) { newObjMat.convertTo( newObjPoints, CV_64F ); } Mat stdDevMats[] = {stdDevsMatInt, stdDevsMatExt, stdDevsMatObj}, stdDevsMat; vconcat(stdDevMats, releaseObject ? 3 : 2, stdDevsMat); stdDevsMat.convertTo(stdDevs, CV_64F); perViewErrorsMat.convertTo(perViewErrors, CV_64F); cameraMatrix.convertTo(_cameraMatrix, CV_64F); distCoeffs.convertTo(_distCoeffs, CV_64F); for( i = 0; i < imageCount; i++ ) { Mat r9; Rodrigues( rvecs[i], r9 ); r9.convertTo(rotationMatrices[i], CV_64F); tvecs[i].convertTo(translationVectors[i], CV_64F); } } void CV_CameraCalibrationTest_CPP::project( const std::vector& objectPoints, const RotMat& rotationMatrix, const Vec3d& translationVector, const Mat& cameraMatrix, const Mat& distortion, std::vector& imagePoints ) { projectPoints(objectPoints, rotationMatrix, translationVector, cameraMatrix, distortion, imagePoints ); /*Mat objectPoints( pointCount, 3, CV_64FC1, _objectPoints ); Mat rmat( 3, 3, CV_64FC1, rotationMatrix ), rvec( 1, 3, CV_64FC1 ), tvec( 1, 3, CV_64FC1, translationVector ); Mat cameraMatrix( 3, 3, CV_64FC1, _cameraMatrix ); Mat distCoeffs( 1, 4, CV_64FC1, distortion ); vector imagePoints; cvtest::Rodrigues( rmat, rvec ); objectPoints.convertTo( objectPoints, CV_32FC1 ); projectPoints( objectPoints, rvec, tvec, cameraMatrix, distCoeffs, imagePoints ); vector::const_iterator it = imagePoints.begin(); for( int i = 0; it != imagePoints.end(); ++it, i++ ) { _imagePoints[i] = cvPoint2D64f( it->x, it->y ); }*/ } //----------------------------------------- CV_CalibrationMatrixValuesTest -------------------------------- class CV_CalibrationMatrixValuesTest : public cvtest::BaseTest { public: CV_CalibrationMatrixValuesTest() {} protected: void run(int); virtual void calibMatrixValues( const Mat& cameraMatrix, Size imageSize, double apertureWidth, double apertureHeight, double& fovx, double& fovy, double& focalLength, Point2d& principalPoint, double& aspectRatio ) = 0; }; void CV_CalibrationMatrixValuesTest::run(int) { int code = cvtest::TS::OK; const double fcMinVal = 1e-5; const double fcMaxVal = 1000; const double apertureMaxVal = 0.01; RNG rng = ts->get_rng(); double fx, fy, cx, cy, nx, ny; Mat cameraMatrix( 3, 3, CV_64FC1 ); cameraMatrix.setTo( Scalar(0) ); fx = cameraMatrix.at(0,0) = rng.uniform( fcMinVal, fcMaxVal ); fy = cameraMatrix.at(1,1) = rng.uniform( fcMinVal, fcMaxVal ); cx = cameraMatrix.at(0,2) = rng.uniform( fcMinVal, fcMaxVal ); cy = cameraMatrix.at(1,2) = rng.uniform( fcMinVal, fcMaxVal ); cameraMatrix.at(2,2) = 1; Size imageSize( 600, 400 ); double apertureWidth = (double)rng * apertureMaxVal, apertureHeight = (double)rng * apertureMaxVal; double fovx, fovy, focalLength, aspectRatio, goodFovx, goodFovy, goodFocalLength, goodAspectRatio; Point2d principalPoint, goodPrincipalPoint; calibMatrixValues( cameraMatrix, imageSize, apertureWidth, apertureHeight, fovx, fovy, focalLength, principalPoint, aspectRatio ); // calculate calibration matrix values goodAspectRatio = fy / fx; if( apertureWidth != 0.0 && apertureHeight != 0.0 ) { nx = imageSize.width / apertureWidth; ny = imageSize.height / apertureHeight; } else { nx = 1.0; ny = goodAspectRatio; } goodFovx = (atan2(cx, fx) + atan2(imageSize.width - cx, fx)) * 180.0 / CV_PI; goodFovy = (atan2(cy, fy) + atan2(imageSize.height - cy, fy)) * 180.0 / CV_PI; goodFocalLength = fx / nx; goodPrincipalPoint.x = cx / nx; goodPrincipalPoint.y = cy / ny; // check results if( fabs(fovx - goodFovx) > FLT_EPSILON ) { ts->printf( cvtest::TS::LOG, "bad fovx (real=%f, good = %f\n", fovx, goodFovx ); code = cvtest::TS::FAIL_BAD_ACCURACY; goto _exit_; } if( fabs(fovy - goodFovy) > FLT_EPSILON ) { ts->printf( cvtest::TS::LOG, "bad fovy (real=%f, good = %f\n", fovy, goodFovy ); code = cvtest::TS::FAIL_BAD_ACCURACY; goto _exit_; } if( fabs(focalLength - goodFocalLength) > FLT_EPSILON ) { ts->printf( cvtest::TS::LOG, "bad focalLength (real=%f, good = %f\n", focalLength, goodFocalLength ); code = cvtest::TS::FAIL_BAD_ACCURACY; goto _exit_; } if( fabs(aspectRatio - goodAspectRatio) > FLT_EPSILON ) { ts->printf( cvtest::TS::LOG, "bad aspectRatio (real=%f, good = %f\n", aspectRatio, goodAspectRatio ); code = cvtest::TS::FAIL_BAD_ACCURACY; goto _exit_; } if( cv::norm(principalPoint - goodPrincipalPoint) > FLT_EPSILON ) // Point2d { ts->printf( cvtest::TS::LOG, "bad principalPoint\n" ); code = cvtest::TS::FAIL_BAD_ACCURACY; goto _exit_; } _exit_: RNG& _rng = ts->get_rng(); _rng = rng; ts->set_failed_test_info( code ); } //----------------------------------------- CV_CalibrationMatrixValuesTest_CPP -------------------------------- class CV_CalibrationMatrixValuesTest_CPP : public CV_CalibrationMatrixValuesTest { public: CV_CalibrationMatrixValuesTest_CPP() {} protected: virtual void calibMatrixValues( const Mat& cameraMatrix, Size imageSize, double apertureWidth, double apertureHeight, double& fovx, double& fovy, double& focalLength, Point2d& principalPoint, double& aspectRatio ); }; void CV_CalibrationMatrixValuesTest_CPP::calibMatrixValues( const Mat& cameraMatrix, Size imageSize, double apertureWidth, double apertureHeight, double& fovx, double& fovy, double& focalLength, Point2d& principalPoint, double& aspectRatio ) { calibrationMatrixValues( cameraMatrix, imageSize, apertureWidth, apertureHeight, fovx, fovy, focalLength, principalPoint, aspectRatio ); } //----------------------------------------- CV_ProjectPointsTest -------------------------------- void calcdfdx( const vector >& leftF, const vector >& rightF, double eps, Mat& dfdx ) { const int fdim = 2; CV_Assert( !leftF.empty() && !rightF.empty() && !leftF[0].empty() && !rightF[0].empty() ); CV_Assert( leftF[0].size() == rightF[0].size() ); CV_Assert( fabs(eps) > std::numeric_limits::epsilon() ); int fcount = (int)leftF[0].size(), xdim = (int)leftF.size(); dfdx.create( fcount*fdim, xdim, CV_64FC1 ); vector >::const_iterator arrLeftIt = leftF.begin(); vector >::const_iterator arrRightIt = rightF.begin(); for( int xi = 0; xi < xdim; xi++, ++arrLeftIt, ++arrRightIt ) { CV_Assert( (int)arrLeftIt->size() == fcount ); CV_Assert( (int)arrRightIt->size() == fcount ); vector::const_iterator lIt = arrLeftIt->begin(); vector::const_iterator rIt = arrRightIt->begin(); for( int fi = 0; fi < dfdx.rows; fi+=fdim, ++lIt, ++rIt ) { dfdx.at(fi, xi ) = 0.5 * ((double)(rIt->x - lIt->x)) / eps; dfdx.at(fi+1, xi ) = 0.5 * ((double)(rIt->y - lIt->y)) / eps; } } } class CV_ProjectPointsTest : public cvtest::BaseTest { public: CV_ProjectPointsTest() {} protected: void run(int); virtual void project( const Mat& objectPoints, const Mat& rvec, const Mat& tvec, const Mat& cameraMatrix, const Mat& distCoeffs, vector& imagePoints, Mat& dpdrot, Mat& dpdt, Mat& dpdf, Mat& dpdc, Mat& dpddist, double aspectRatio=0 ) = 0; }; void CV_ProjectPointsTest::run(int) { //typedef float matType; int code = cvtest::TS::OK; const int pointCount = 100; const float zMinVal = 10.0f, zMaxVal = 100.0f, rMinVal = -0.3f, rMaxVal = 0.3f, tMinVal = -2.0f, tMaxVal = 2.0f; const float imgPointErr = 1e-3f, dEps = 1e-3f; double err; Size imgSize( 600, 800 ); Mat_ objPoints( pointCount, 3), rvec( 1, 3), rmat, tvec( 1, 3 ), cameraMatrix( 3, 3 ), distCoeffs( 1, 4 ), leftRvec, rightRvec, leftTvec, rightTvec, leftCameraMatrix, rightCameraMatrix, leftDistCoeffs, rightDistCoeffs; RNG rng = ts->get_rng(); // generate data cameraMatrix << 300.f, 0.f, imgSize.width/2.f, 0.f, 300.f, imgSize.height/2.f, 0.f, 0.f, 1.f; distCoeffs << 0.1, 0.01, 0.001, 0.001; rvec(0,0) = rng.uniform( rMinVal, rMaxVal ); rvec(0,1) = rng.uniform( rMinVal, rMaxVal ); rvec(0,2) = rng.uniform( rMinVal, rMaxVal ); rmat = cv::Mat_::zeros(3, 3); Rodrigues( rvec, rmat ); tvec(0,0) = rng.uniform( tMinVal, tMaxVal ); tvec(0,1) = rng.uniform( tMinVal, tMaxVal ); tvec(0,2) = rng.uniform( tMinVal, tMaxVal ); for( int y = 0; y < objPoints.rows; y++ ) { Mat point(1, 3, CV_32FC1, objPoints.ptr(y) ); float z = rng.uniform( zMinVal, zMaxVal ); point.at(0,2) = z; point.at(0,0) = (rng.uniform(2.f,(float)(imgSize.width-2)) - cameraMatrix(0,2)) / cameraMatrix(0,0) * z; point.at(0,1) = (rng.uniform(2.f,(float)(imgSize.height-2)) - cameraMatrix(1,2)) / cameraMatrix(1,1) * z; point = (point - tvec) * rmat; } vector imgPoints; vector > leftImgPoints; vector > rightImgPoints; Mat dpdrot, dpdt, dpdf, dpdc, dpddist, valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist; project( objPoints, rvec, tvec, cameraMatrix, distCoeffs, imgPoints, dpdrot, dpdt, dpdf, dpdc, dpddist, 0 ); // calculate and check image points CV_Assert( (int)imgPoints.size() == pointCount ); vector::const_iterator it = imgPoints.begin(); for( int i = 0; i < pointCount; i++, ++it ) { Point3d p( objPoints(i,0), objPoints(i,1), objPoints(i,2) ); double z = p.x*rmat(2,0) + p.y*rmat(2,1) + p.z*rmat(2,2) + tvec(0,2), x = (p.x*rmat(0,0) + p.y*rmat(0,1) + p.z*rmat(0,2) + tvec(0,0)) / z, y = (p.x*rmat(1,0) + p.y*rmat(1,1) + p.z*rmat(1,2) + tvec(0,1)) / z, r2 = x*x + y*y, r4 = r2*r2; Point2f validImgPoint; double a1 = 2*x*y, a2 = r2 + 2*x*x, a3 = r2 + 2*y*y, cdist = 1+distCoeffs(0,0)*r2+distCoeffs(0,1)*r4; validImgPoint.x = static_cast((double)cameraMatrix(0,0)*(x*cdist + (double)distCoeffs(0,2)*a1 + (double)distCoeffs(0,3)*a2) + (double)cameraMatrix(0,2)); validImgPoint.y = static_cast((double)cameraMatrix(1,1)*(y*cdist + (double)distCoeffs(0,2)*a3 + distCoeffs(0,3)*a1) + (double)cameraMatrix(1,2)); if( fabs(it->x - validImgPoint.x) > imgPointErr || fabs(it->y - validImgPoint.y) > imgPointErr ) { ts->printf( cvtest::TS::LOG, "bad image point\n" ); code = cvtest::TS::FAIL_BAD_ACCURACY; goto _exit_; } } // check derivatives // 1. rotation leftImgPoints.resize(3); rightImgPoints.resize(3); for( int i = 0; i < 3; i++ ) { rvec.copyTo( leftRvec ); leftRvec(0,i) -= dEps; project( objPoints, leftRvec, tvec, cameraMatrix, distCoeffs, leftImgPoints[i], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 ); rvec.copyTo( rightRvec ); rightRvec(0,i) += dEps; project( objPoints, rightRvec, tvec, cameraMatrix, distCoeffs, rightImgPoints[i], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 ); } calcdfdx( leftImgPoints, rightImgPoints, dEps, valDpdrot ); err = cvtest::norm( dpdrot, valDpdrot, NORM_INF ); if( err > 3 ) { ts->printf( cvtest::TS::LOG, "bad dpdrot: too big difference = %g\n", err ); code = cvtest::TS::FAIL_BAD_ACCURACY; } // 2. translation for( int i = 0; i < 3; i++ ) { tvec.copyTo( leftTvec ); leftTvec(0,i) -= dEps; project( objPoints, rvec, leftTvec, cameraMatrix, distCoeffs, leftImgPoints[i], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 ); tvec.copyTo( rightTvec ); rightTvec(0,i) += dEps; project( objPoints, rvec, rightTvec, cameraMatrix, distCoeffs, rightImgPoints[i], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 ); } calcdfdx( leftImgPoints, rightImgPoints, dEps, valDpdt ); if( cvtest::norm( dpdt, valDpdt, NORM_INF ) > 0.2 ) { ts->printf( cvtest::TS::LOG, "bad dpdtvec\n" ); code = cvtest::TS::FAIL_BAD_ACCURACY; } // 3. camera matrix // 3.1. focus leftImgPoints.resize(2); rightImgPoints.resize(2); cameraMatrix.copyTo( leftCameraMatrix ); leftCameraMatrix(0,0) -= dEps; project( objPoints, rvec, tvec, leftCameraMatrix, distCoeffs, leftImgPoints[0], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 ); cameraMatrix.copyTo( leftCameraMatrix ); leftCameraMatrix(1,1) -= dEps; project( objPoints, rvec, tvec, leftCameraMatrix, distCoeffs, leftImgPoints[1], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 ); cameraMatrix.copyTo( rightCameraMatrix ); rightCameraMatrix(0,0) += dEps; project( objPoints, rvec, tvec, rightCameraMatrix, distCoeffs, rightImgPoints[0], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 ); cameraMatrix.copyTo( rightCameraMatrix ); rightCameraMatrix(1,1) += dEps; project( objPoints, rvec, tvec, rightCameraMatrix, distCoeffs, rightImgPoints[1], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 ); calcdfdx( leftImgPoints, rightImgPoints, dEps, valDpdf ); if ( cvtest::norm( dpdf, valDpdf, NORM_L2 ) > 0.2 ) { ts->printf( cvtest::TS::LOG, "bad dpdf\n" ); code = cvtest::TS::FAIL_BAD_ACCURACY; } // 3.2. principal point leftImgPoints.resize(2); rightImgPoints.resize(2); cameraMatrix.copyTo( leftCameraMatrix ); leftCameraMatrix(0,2) -= dEps; project( objPoints, rvec, tvec, leftCameraMatrix, distCoeffs, leftImgPoints[0], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 ); cameraMatrix.copyTo( leftCameraMatrix ); leftCameraMatrix(1,2) -= dEps; project( objPoints, rvec, tvec, leftCameraMatrix, distCoeffs, leftImgPoints[1], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 ); cameraMatrix.copyTo( rightCameraMatrix ); rightCameraMatrix(0,2) += dEps; project( objPoints, rvec, tvec, rightCameraMatrix, distCoeffs, rightImgPoints[0], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 ); cameraMatrix.copyTo( rightCameraMatrix ); rightCameraMatrix(1,2) += dEps; project( objPoints, rvec, tvec, rightCameraMatrix, distCoeffs, rightImgPoints[1], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 ); calcdfdx( leftImgPoints, rightImgPoints, dEps, valDpdc ); if ( cvtest::norm( dpdc, valDpdc, NORM_L2 ) > 0.2 ) { ts->printf( cvtest::TS::LOG, "bad dpdc\n" ); code = cvtest::TS::FAIL_BAD_ACCURACY; } // 4. distortion leftImgPoints.resize(distCoeffs.cols); rightImgPoints.resize(distCoeffs.cols); for( int i = 0; i < distCoeffs.cols; i++ ) { distCoeffs.copyTo( leftDistCoeffs ); leftDistCoeffs(0,i) -= dEps; project( objPoints, rvec, tvec, cameraMatrix, leftDistCoeffs, leftImgPoints[i], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 ); distCoeffs.copyTo( rightDistCoeffs ); rightDistCoeffs(0,i) += dEps; project( objPoints, rvec, tvec, cameraMatrix, rightDistCoeffs, rightImgPoints[i], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 ); } calcdfdx( leftImgPoints, rightImgPoints, dEps, valDpddist ); if( cvtest::norm( dpddist, valDpddist, NORM_L2 ) > 0.3 ) { ts->printf( cvtest::TS::LOG, "bad dpddist\n" ); code = cvtest::TS::FAIL_BAD_ACCURACY; } _exit_: RNG& _rng = ts->get_rng(); _rng = rng; ts->set_failed_test_info( code ); } //----------------------------------------- CV_ProjectPointsTest_CPP -------------------------------- class CV_ProjectPointsTest_CPP : public CV_ProjectPointsTest { public: CV_ProjectPointsTest_CPP() {} protected: virtual void project( const Mat& objectPoints, const Mat& rvec, const Mat& tvec, const Mat& cameraMatrix, const Mat& distCoeffs, vector& imagePoints, Mat& dpdrot, Mat& dpdt, Mat& dpdf, Mat& dpdc, Mat& dpddist, double aspectRatio=0 ); }; void CV_ProjectPointsTest_CPP::project( const Mat& objectPoints, const Mat& rvec, const Mat& tvec, const Mat& cameraMatrix, const Mat& distCoeffs, vector& imagePoints, Mat& dpdrot, Mat& dpdt, Mat& dpdf, Mat& dpdc, Mat& dpddist, double aspectRatio) { Mat J; projectPoints( objectPoints, rvec, tvec, cameraMatrix, distCoeffs, imagePoints, J, aspectRatio); J.colRange(0, 3).copyTo(dpdrot); J.colRange(3, 6).copyTo(dpdt); J.colRange(6, 8).copyTo(dpdf); J.colRange(8, 10).copyTo(dpdc); J.colRange(10, J.cols).copyTo(dpddist); } ///////////////////////////////// Stereo Calibration ///////////////////////////////////// class CV_StereoCalibrationTest : public cvtest::BaseTest { public: CV_StereoCalibrationTest(); ~CV_StereoCalibrationTest(); void clear(); protected: bool checkPandROI( int test_case_idx, const Mat& M, const Mat& D, const Mat& R, const Mat& P, Size imgsize, Rect roi ); // covers of tested functions virtual double calibrateStereoCamera( const vector >& objectPoints, const vector >& imagePoints1, const vector >& imagePoints2, Mat& cameraMatrix1, Mat& distCoeffs1, Mat& cameraMatrix2, Mat& distCoeffs2, Size imageSize, Mat& R, Mat& T, Mat& E, Mat& F, TermCriteria criteria, int flags ) = 0; virtual void rectify( const Mat& cameraMatrix1, const Mat& distCoeffs1, const Mat& cameraMatrix2, const Mat& distCoeffs2, Size imageSize, const Mat& R, const Mat& T, Mat& R1, Mat& R2, Mat& P1, Mat& P2, Mat& Q, double alpha, Size newImageSize, Rect* validPixROI1, Rect* validPixROI2, int flags ) = 0; virtual bool rectifyUncalibrated( const Mat& points1, const Mat& points2, const Mat& F, Size imgSize, Mat& H1, Mat& H2, double threshold=5 ) = 0; virtual void triangulate( const Mat& P1, const Mat& P2, const Mat &points1, const Mat &points2, Mat &points4D ) = 0; virtual void correct( const Mat& F, const Mat &points1, const Mat &points2, Mat &newPoints1, Mat &newPoints2 ) = 0; void run(int); }; CV_StereoCalibrationTest::CV_StereoCalibrationTest() { } CV_StereoCalibrationTest::~CV_StereoCalibrationTest() { clear(); } void CV_StereoCalibrationTest::clear() { cvtest::BaseTest::clear(); } bool CV_StereoCalibrationTest::checkPandROI( int test_case_idx, const Mat& M, const Mat& D, const Mat& R, const Mat& P, Size imgsize, Rect roi ) { const double eps = 0.05; const int N = 21; int x, y, k; vector pts, upts; // step 1. check that all the original points belong to the destination image for( y = 0; y < N; y++ ) for( x = 0; x < N; x++ ) pts.push_back(Point2f((float)x*imgsize.width/(N-1), (float)y*imgsize.height/(N-1))); undistortPoints(pts, upts, M, D, R, P ); for( k = 0; k < N*N; k++ ) if( upts[k].x < -imgsize.width*eps || upts[k].x > imgsize.width*(1+eps) || upts[k].y < -imgsize.height*eps || upts[k].y > imgsize.height*(1+eps) ) { ts->printf(cvtest::TS::LOG, "Test #%d. The point (%g, %g) was mapped to (%g, %g) which is out of image\n", test_case_idx, pts[k].x, pts[k].y, upts[k].x, upts[k].y); return false; } // step 2. check that all the points inside ROI belong to the original source image Mat temp(imgsize, CV_8U), utemp, map1, map2; temp = Scalar::all(1); initUndistortRectifyMap(M, D, R, P, imgsize, CV_16SC2, map1, map2); remap(temp, utemp, map1, map2, INTER_LINEAR); if(roi.x < 0 || roi.y < 0 || roi.x + roi.width > imgsize.width || roi.y + roi.height > imgsize.height) { ts->printf(cvtest::TS::LOG, "Test #%d. The ROI=(%d, %d, %d, %d) is outside of the imge rectangle\n", test_case_idx, roi.x, roi.y, roi.width, roi.height); return false; } double s = sum(utemp(roi))[0]; if( s > roi.area() || roi.area() - s > roi.area()*(1-eps) ) { ts->printf(cvtest::TS::LOG, "Test #%d. The ratio of black pixels inside the valid ROI (~%g%%) is too large\n", test_case_idx, s*100./roi.area()); return false; } return true; } void CV_StereoCalibrationTest::run( int ) { const int ntests = 1; const double maxReprojErr = 2; const double maxScanlineDistErr_c = 3; const double maxScanlineDistErr_uc = 4; FILE* f = 0; for(int testcase = 1; testcase <= ntests; testcase++) { cv::String filepath; char buf[1000]; filepath = cv::format("%scv/stereo/case%d/stereo_calib.txt", ts->get_data_path().c_str(), testcase ); f = fopen(filepath.c_str(), "rt"); Size patternSize; vector imglist; if( !f || !fgets(buf, sizeof(buf)-3, f) || sscanf(buf, "%d%d", &patternSize.width, &patternSize.height) != 2 ) { ts->printf( cvtest::TS::LOG, "The file %s can not be opened or has invalid content\n", filepath.c_str() ); ts->set_failed_test_info( f ? cvtest::TS::FAIL_INVALID_TEST_DATA : cvtest::TS::FAIL_MISSING_TEST_DATA ); if (f) fclose(f); return; } for(;;) { if( !fgets( buf, sizeof(buf)-3, f )) break; size_t len = strlen(buf); while( len > 0 && isspace(buf[len-1])) buf[--len] = '\0'; if( buf[0] == '#') continue; filepath = cv::format("%scv/stereo/case%d/%s", ts->get_data_path().c_str(), testcase, buf ); imglist.push_back(string(filepath)); } fclose(f); if( imglist.size() == 0 || imglist.size() % 2 != 0 ) { ts->printf( cvtest::TS::LOG, "The number of images is 0 or an odd number in the case #%d\n", testcase ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); return; } int nframes = (int)(imglist.size()/2); int npoints = patternSize.width*patternSize.height; vector > objpt(nframes); vector > imgpt1(nframes); vector > imgpt2(nframes); Size imgsize; int total = 0; for( int i = 0; i < nframes; i++ ) { Mat left = imread(imglist[i*2]); Mat right = imread(imglist[i*2+1]); if(left.empty() || right.empty()) { ts->printf( cvtest::TS::LOG, "Can not load images %s and %s, testcase %d\n", imglist[i*2].c_str(), imglist[i*2+1].c_str(), testcase ); ts->set_failed_test_info( cvtest::TS::FAIL_MISSING_TEST_DATA ); return; } imgsize = left.size(); bool found1 = findChessboardCorners(left, patternSize, imgpt1[i]); bool found2 = findChessboardCorners(right, patternSize, imgpt2[i]); if(!found1 || !found2) { ts->printf( cvtest::TS::LOG, "The function could not detect boards (%d x %d) on the images %s and %s, testcase %d\n", patternSize.width, patternSize.height, imglist[i*2].c_str(), imglist[i*2+1].c_str(), testcase ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); return; } total += (int)imgpt1[i].size(); for( int j = 0; j < npoints; j++ ) objpt[i].push_back(Point3f((float)(j%patternSize.width), (float)(j/patternSize.width), 0.f)); } // rectify (calibrated) Mat M1 = Mat::eye(3,3,CV_64F), M2 = Mat::eye(3,3,CV_64F), D1(5,1,CV_64F), D2(5,1,CV_64F), R, T, E, F; M1.at(0,2) = M2.at(0,2)=(imgsize.width-1)*0.5; M1.at(1,2) = M2.at(1,2)=(imgsize.height-1)*0.5; D1 = Scalar::all(0); D2 = Scalar::all(0); double err = calibrateStereoCamera(objpt, imgpt1, imgpt2, M1, D1, M2, D2, imgsize, R, T, E, F, TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 30, 1e-6), CALIB_SAME_FOCAL_LENGTH //+ CV_CALIB_FIX_ASPECT_RATIO + CALIB_FIX_PRINCIPAL_POINT + CALIB_ZERO_TANGENT_DIST + CALIB_FIX_K3 + CALIB_FIX_K4 + CALIB_FIX_K5 //+ CV_CALIB_FIX_K6 ); err /= nframes*npoints; if( err > maxReprojErr ) { ts->printf( cvtest::TS::LOG, "The average reprojection error is too big (=%g), testcase %d\n", err, testcase); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); return; } Mat R1, R2, P1, P2, Q; Rect roi1, roi2; rectify(M1, D1, M2, D2, imgsize, R, T, R1, R2, P1, P2, Q, 1, imgsize, &roi1, &roi2, 0); Mat eye33 = Mat::eye(3,3,CV_64F); Mat R1t = R1.t(), R2t = R2.t(); if( cvtest::norm(R1t*R1 - eye33, NORM_L2) > 0.01 || cvtest::norm(R2t*R2 - eye33, NORM_L2) > 0.01 || abs(determinant(F)) > 0.01) { ts->printf( cvtest::TS::LOG, "The computed (by rectify) R1 and R2 are not orthogonal," "or the computed (by calibrate) F is not singular, testcase %d\n", testcase); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); return; } if(!checkPandROI(testcase, M1, D1, R1, P1, imgsize, roi1)) { ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } if(!checkPandROI(testcase, M2, D2, R2, P2, imgsize, roi2)) { ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } //check that Tx after rectification is equal to distance between cameras double tx = fabs(P2.at(0, 3) / P2.at(0, 0)); if (fabs(tx - cvtest::norm(T, NORM_L2)) > 1e-5) { ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } //check that Q reprojects points before the camera double testPoint[4] = {0.0, 0.0, 100.0, 1.0}; Mat reprojectedTestPoint = Q * Mat_(4, 1, testPoint); CV_Assert(reprojectedTestPoint.type() == CV_64FC1); if( reprojectedTestPoint.at(2) / reprojectedTestPoint.at(3) < 0 ) { ts->printf( cvtest::TS::LOG, "A point after rectification is reprojected behind the camera, testcase %d\n", testcase); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } //check that Q reprojects the same points as reconstructed by triangulation const float minCoord = -300.0f; const float maxCoord = 300.0f; const float minDisparity = 0.1f; const float maxDisparity = 60.0f; const int pointsCount = 500; const float requiredAccuracy = 1e-3f; const float allowToFail = 0.2f; // 20% RNG& rng = ts->get_rng(); Mat projectedPoints_1(2, pointsCount, CV_32FC1); Mat projectedPoints_2(2, pointsCount, CV_32FC1); Mat disparities(1, pointsCount, CV_32FC1); rng.fill(projectedPoints_1, RNG::UNIFORM, minCoord, maxCoord); rng.fill(disparities, RNG::UNIFORM, minDisparity, maxDisparity); projectedPoints_2.row(0) = projectedPoints_1.row(0) - disparities; Mat ys_2 = projectedPoints_2.row(1); projectedPoints_1.row(1).copyTo(ys_2); Mat points4d; triangulate(P1, P2, projectedPoints_1, projectedPoints_2, points4d); Mat homogeneousPoints4d = points4d.t(); const int dimension = 4; homogeneousPoints4d = homogeneousPoints4d.reshape(dimension); Mat triangulatedPoints; convertPointsFromHomogeneous(homogeneousPoints4d, triangulatedPoints); Mat sparsePoints; sparsePoints.push_back(projectedPoints_1); sparsePoints.push_back(disparities); sparsePoints = sparsePoints.t(); sparsePoints = sparsePoints.reshape(3); Mat reprojectedPoints; perspectiveTransform(sparsePoints, reprojectedPoints, Q); Mat diff; absdiff(triangulatedPoints, reprojectedPoints, diff); Mat mask = diff > requiredAccuracy; mask = mask.reshape(1); mask = mask.col(0) | mask.col(1) | mask.col(2); int numFailed = countNonZero(mask); #if 0 std::cout << "numFailed=" << numFailed << std::endl; for (int i = 0; i < triangulatedPoints.rows; i++) { if (mask.at(i)) { // failed points usually have 'w'~0 (points4d[3]) std::cout << "i=" << i << " triangulatePoints=" << triangulatedPoints.row(i) << " reprojectedPoints=" << reprojectedPoints.row(i) << std::endl << " points4d=" << points4d.col(i).t() << " projectedPoints_1=" << projectedPoints_1.col(i).t() << " disparities=" << disparities.col(i).t() << std::endl; } } #endif if (numFailed >= allowToFail * pointsCount) { ts->printf( cvtest::TS::LOG, "Points reprojected with a matrix Q and points reconstructed by triangulation are different (tolerance=%g, failed=%d), testcase %d\n", requiredAccuracy, numFailed, testcase); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } //check correctMatches const float constraintAccuracy = 1e-5f; Mat newPoints1, newPoints2; Mat points1 = projectedPoints_1.t(); points1 = points1.reshape(2, 1); Mat points2 = projectedPoints_2.t(); points2 = points2.reshape(2, 1); correctMatches(F, points1, points2, newPoints1, newPoints2); Mat newHomogeneousPoints1, newHomogeneousPoints2; convertPointsToHomogeneous(newPoints1, newHomogeneousPoints1); convertPointsToHomogeneous(newPoints2, newHomogeneousPoints2); newHomogeneousPoints1 = newHomogeneousPoints1.reshape(1); newHomogeneousPoints2 = newHomogeneousPoints2.reshape(1); Mat typedF; F.convertTo(typedF, newHomogeneousPoints1.type()); for (int i = 0; i < newHomogeneousPoints1.rows; ++i) { Mat error = newHomogeneousPoints2.row(i) * typedF * newHomogeneousPoints1.row(i).t(); CV_Assert(error.rows == 1 && error.cols == 1); if (cvtest::norm(error, NORM_L2) > constraintAccuracy) { ts->printf( cvtest::TS::LOG, "Epipolar constraint is violated after correctMatches, testcase %d\n", testcase); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); } } // rectifyUncalibrated CV_Assert( imgpt1.size() == imgpt2.size() ); Mat _imgpt1( total, 1, CV_32FC2 ), _imgpt2( total, 1, CV_32FC2 ); vector >::const_iterator iit1 = imgpt1.begin(); vector >::const_iterator iit2 = imgpt2.begin(); for( int pi = 0; iit1 != imgpt1.end(); ++iit1, ++iit2 ) { vector::const_iterator pit1 = iit1->begin(); vector::const_iterator pit2 = iit2->begin(); CV_Assert( iit1->size() == iit2->size() ); for( ; pit1 != iit1->end(); ++pit1, ++pit2, pi++ ) { _imgpt1.at(pi,0) = Point2f( pit1->x, pit1->y ); _imgpt2.at(pi,0) = Point2f( pit2->x, pit2->y ); } } Mat _M1, _M2, _D1, _D2; vector _R1, _R2, _T1, _T2; calibrateCamera( objpt, imgpt1, imgsize, _M1, _D1, _R1, _T1, 0 ); calibrateCamera( objpt, imgpt2, imgsize, _M2, _D2, _R2, _T2, 0 ); undistortPoints( _imgpt1, _imgpt1, _M1, _D1, Mat(), _M1 ); undistortPoints( _imgpt2, _imgpt2, _M2, _D2, Mat(), _M2 ); Mat matF, _H1, _H2; matF = findFundamentalMat( _imgpt1, _imgpt2 ); rectifyUncalibrated( _imgpt1, _imgpt2, matF, imgsize, _H1, _H2 ); Mat rectifPoints1, rectifPoints2; perspectiveTransform( _imgpt1, rectifPoints1, _H1 ); perspectiveTransform( _imgpt2, rectifPoints2, _H2 ); bool verticalStereo = abs(P2.at(0,3)) < abs(P2.at(1,3)); double maxDiff_c = 0, maxDiff_uc = 0; for( int i = 0, k = 0; i < nframes; i++ ) { vector temp[2]; undistortPoints(imgpt1[i], temp[0], M1, D1, R1, P1); undistortPoints(imgpt2[i], temp[1], M2, D2, R2, P2); for( int j = 0; j < npoints; j++, k++ ) { double diff_c = verticalStereo ? abs(temp[0][j].x - temp[1][j].x) : abs(temp[0][j].y - temp[1][j].y); Point2f d = rectifPoints1.at(k,0) - rectifPoints2.at(k,0); double diff_uc = verticalStereo ? abs(d.x) : abs(d.y); maxDiff_c = max(maxDiff_c, diff_c); maxDiff_uc = max(maxDiff_uc, diff_uc); if( maxDiff_c > maxScanlineDistErr_c ) { ts->printf( cvtest::TS::LOG, "The distance between %s coordinates is too big(=%g) (used calibrated stereo), testcase %d\n", verticalStereo ? "x" : "y", diff_c, testcase); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } if( maxDiff_uc > maxScanlineDistErr_uc ) { ts->printf( cvtest::TS::LOG, "The distance between %s coordinates is too big(=%g) (used uncalibrated stereo), testcase %d\n", verticalStereo ? "x" : "y", diff_uc, testcase); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } } } ts->printf( cvtest::TS::LOG, "Testcase %d. Max distance (calibrated) =%g\n" "Max distance (uncalibrated) =%g\n", testcase, maxDiff_c, maxDiff_uc ); } } //-------------------------------- CV_StereoCalibrationTest_CPP ------------------------------ class CV_StereoCalibrationTest_CPP : public CV_StereoCalibrationTest { public: CV_StereoCalibrationTest_CPP() {} protected: virtual double calibrateStereoCamera( const vector >& objectPoints, const vector >& imagePoints1, const vector >& imagePoints2, Mat& cameraMatrix1, Mat& distCoeffs1, Mat& cameraMatrix2, Mat& distCoeffs2, Size imageSize, Mat& R, Mat& T, Mat& E, Mat& F, TermCriteria criteria, int flags ); virtual void rectify( const Mat& cameraMatrix1, const Mat& distCoeffs1, const Mat& cameraMatrix2, const Mat& distCoeffs2, Size imageSize, const Mat& R, const Mat& T, Mat& R1, Mat& R2, Mat& P1, Mat& P2, Mat& Q, double alpha, Size newImageSize, Rect* validPixROI1, Rect* validPixROI2, int flags ); virtual bool rectifyUncalibrated( const Mat& points1, const Mat& points2, const Mat& F, Size imgSize, Mat& H1, Mat& H2, double threshold=5 ); virtual void triangulate( const Mat& P1, const Mat& P2, const Mat &points1, const Mat &points2, Mat &points4D ); virtual void correct( const Mat& F, const Mat &points1, const Mat &points2, Mat &newPoints1, Mat &newPoints2 ); }; double CV_StereoCalibrationTest_CPP::calibrateStereoCamera( const vector >& objectPoints, const vector >& imagePoints1, const vector >& imagePoints2, Mat& cameraMatrix1, Mat& distCoeffs1, Mat& cameraMatrix2, Mat& distCoeffs2, Size imageSize, Mat& R, Mat& T, Mat& E, Mat& F, TermCriteria criteria, int flags ) { return stereoCalibrate( objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R, T, E, F, flags, criteria ); } void CV_StereoCalibrationTest_CPP::rectify( const Mat& cameraMatrix1, const Mat& distCoeffs1, const Mat& cameraMatrix2, const Mat& distCoeffs2, Size imageSize, const Mat& R, const Mat& T, Mat& R1, Mat& R2, Mat& P1, Mat& P2, Mat& Q, double alpha, Size newImageSize, Rect* validPixROI1, Rect* validPixROI2, int flags ) { stereoRectify( cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R, T, R1, R2, P1, P2, Q, flags, alpha, newImageSize,validPixROI1, validPixROI2 ); } bool CV_StereoCalibrationTest_CPP::rectifyUncalibrated( const Mat& points1, const Mat& points2, const Mat& F, Size imgSize, Mat& H1, Mat& H2, double threshold ) { return stereoRectifyUncalibrated( points1, points2, F, imgSize, H1, H2, threshold ); } void CV_StereoCalibrationTest_CPP::triangulate( const Mat& P1, const Mat& P2, const Mat &points1, const Mat &points2, Mat &points4D ) { triangulatePoints(P1, P2, points1, points2, points4D); } void CV_StereoCalibrationTest_CPP::correct( const Mat& F, const Mat &points1, const Mat &points2, Mat &newPoints1, Mat &newPoints2 ) { correctMatches(F, points1, points2, newPoints1, newPoints2); } /////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Calib3d_CalibrateCamera_CPP, regression) { CV_CameraCalibrationTest_CPP test; test.safe_run(); } TEST(Calib3d_CalibrationMatrixValues_CPP, accuracy) { CV_CalibrationMatrixValuesTest_CPP test; test.safe_run(); } TEST(Calib3d_ProjectPoints_CPP, regression) { CV_ProjectPointsTest_CPP test; test.safe_run(); } TEST(Calib3d_ProjectPoints_CPP, inputShape) { Matx31d rvec = Matx31d::zeros(); Matx31d tvec(0, 0, 1); Matx33d cameraMatrix = Matx33d::eye(); const float L = 0.1f; { //3xN 1-channel Mat objectPoints = (Mat_(3, 2) << -L, L, L, L, 0, 0); vector imagePoints; projectPoints(objectPoints, rvec, tvec, cameraMatrix, noArray(), imagePoints); EXPECT_EQ(objectPoints.cols, static_cast(imagePoints.size())); EXPECT_NEAR(imagePoints[0].x, -L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints[0].y, L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints[1].x, L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints[1].y, L, std::numeric_limits::epsilon()); } { //Nx2 1-channel Mat objectPoints = (Mat_(2, 3) << -L, L, 0, L, L, 0); vector imagePoints; projectPoints(objectPoints, rvec, tvec, cameraMatrix, noArray(), imagePoints); EXPECT_EQ(objectPoints.rows, static_cast(imagePoints.size())); EXPECT_NEAR(imagePoints[0].x, -L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints[0].y, L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints[1].x, L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints[1].y, L, std::numeric_limits::epsilon()); } { //1xN 3-channel Mat objectPoints(1, 2, CV_32FC3); objectPoints.at(0,0) = Vec3f(-L, L, 0); objectPoints.at(0,1) = Vec3f(L, L, 0); vector imagePoints; projectPoints(objectPoints, rvec, tvec, cameraMatrix, noArray(), imagePoints); EXPECT_EQ(objectPoints.cols, static_cast(imagePoints.size())); EXPECT_NEAR(imagePoints[0].x, -L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints[0].y, L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints[1].x, L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints[1].y, L, std::numeric_limits::epsilon()); } { //Nx1 3-channel Mat objectPoints(2, 1, CV_32FC3); objectPoints.at(0,0) = Vec3f(-L, L, 0); objectPoints.at(1,0) = Vec3f(L, L, 0); vector imagePoints; projectPoints(objectPoints, rvec, tvec, cameraMatrix, noArray(), imagePoints); EXPECT_EQ(objectPoints.rows, static_cast(imagePoints.size())); EXPECT_NEAR(imagePoints[0].x, -L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints[0].y, L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints[1].x, L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints[1].y, L, std::numeric_limits::epsilon()); } { //vector vector objectPoints; objectPoints.push_back(Point3f(-L, L, 0)); objectPoints.push_back(Point3f(L, L, 0)); vector imagePoints; projectPoints(objectPoints, rvec, tvec, cameraMatrix, noArray(), imagePoints); EXPECT_EQ(objectPoints.size(), imagePoints.size()); EXPECT_NEAR(imagePoints[0].x, -L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints[0].y, L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints[1].x, L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints[1].y, L, std::numeric_limits::epsilon()); } { //vector vector objectPoints; objectPoints.push_back(Point3d(-L, L, 0)); objectPoints.push_back(Point3d(L, L, 0)); vector imagePoints; projectPoints(objectPoints, rvec, tvec, cameraMatrix, noArray(), imagePoints); EXPECT_EQ(objectPoints.size(), imagePoints.size()); EXPECT_NEAR(imagePoints[0].x, -L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints[0].y, L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints[1].x, L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints[1].y, L, std::numeric_limits::epsilon()); } } TEST(Calib3d_ProjectPoints_CPP, outputShape) { Matx31d rvec = Matx31d::zeros(); Matx31d tvec(0, 0, 1); Matx33d cameraMatrix = Matx33d::eye(); const float L = 0.1f; { vector objectPoints; objectPoints.push_back(Point3f(-L, L, 0)); objectPoints.push_back(Point3f( L, L, 0)); objectPoints.push_back(Point3f( L, -L, 0)); //Mat --> will be Nx1 2-channel Mat imagePoints; projectPoints(objectPoints, rvec, tvec, cameraMatrix, noArray(), imagePoints); EXPECT_EQ(static_cast(objectPoints.size()), imagePoints.rows); EXPECT_NEAR(imagePoints.at(0,0)(0), -L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints.at(0,0)(1), L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints.at(1,0)(0), L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints.at(1,0)(1), L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints.at(2,0)(0), L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints.at(2,0)(1), -L, std::numeric_limits::epsilon()); } { vector objectPoints; objectPoints.push_back(Point3f(-L, L, 0)); objectPoints.push_back(Point3f( L, L, 0)); objectPoints.push_back(Point3f( L, -L, 0)); //Nx1 2-channel Mat imagePoints(3,1,CV_32FC2); projectPoints(objectPoints, rvec, tvec, cameraMatrix, noArray(), imagePoints); EXPECT_EQ(static_cast(objectPoints.size()), imagePoints.rows); EXPECT_NEAR(imagePoints.at(0,0)(0), -L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints.at(0,0)(1), L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints.at(1,0)(0), L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints.at(1,0)(1), L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints.at(2,0)(0), L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints.at(2,0)(1), -L, std::numeric_limits::epsilon()); } { vector objectPoints; objectPoints.push_back(Point3f(-L, L, 0)); objectPoints.push_back(Point3f( L, L, 0)); objectPoints.push_back(Point3f( L, -L, 0)); //1xN 2-channel Mat imagePoints(1,3,CV_32FC2); projectPoints(objectPoints, rvec, tvec, cameraMatrix, noArray(), imagePoints); EXPECT_EQ(static_cast(objectPoints.size()), imagePoints.cols); EXPECT_NEAR(imagePoints.at(0,0)(0), -L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints.at(0,0)(1), L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints.at(0,1)(0), L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints.at(0,1)(1), L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints.at(0,2)(0), L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints.at(0,2)(1), -L, std::numeric_limits::epsilon()); } { vector objectPoints; objectPoints.push_back(Point3f(-L, L, 0)); objectPoints.push_back(Point3f(L, L, 0)); //vector vector imagePoints; projectPoints(objectPoints, rvec, tvec, cameraMatrix, noArray(), imagePoints); EXPECT_EQ(objectPoints.size(), imagePoints.size()); EXPECT_NEAR(imagePoints[0].x, -L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints[0].y, L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints[1].x, L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints[1].y, L, std::numeric_limits::epsilon()); } { vector objectPoints; objectPoints.push_back(Point3d(-L, L, 0)); objectPoints.push_back(Point3d(L, L, 0)); //vector vector imagePoints; projectPoints(objectPoints, rvec, tvec, cameraMatrix, noArray(), imagePoints); EXPECT_EQ(objectPoints.size(), imagePoints.size()); EXPECT_NEAR(imagePoints[0].x, -L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints[0].y, L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints[1].x, L, std::numeric_limits::epsilon()); EXPECT_NEAR(imagePoints[1].y, L, std::numeric_limits::epsilon()); } } TEST(Calib3d_StereoCalibrate_CPP, regression) { CV_StereoCalibrationTest_CPP test; test.safe_run(); } TEST(Calib3d_StereoCalibrate_CPP, extended) { cvtest::TS* ts = cvtest::TS::ptr(); String filepath = cv::format("%scv/stereo/case%d/", ts->get_data_path().c_str(), 1 ); Mat left = imread(filepath+"left01.png"); Mat right = imread(filepath+"right01.png"); if(left.empty() || right.empty()) { ts->set_failed_test_info( cvtest::TS::FAIL_MISSING_TEST_DATA ); return; } vector > imgpt1(1), imgpt2(1); vector > objpt(1); Size patternSize(9, 6), imageSize(640, 480); bool found1 = findChessboardCorners(left, patternSize, imgpt1[0]); bool found2 = findChessboardCorners(right, patternSize, imgpt2[0]); if(!found1 || !found2) { ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); return; } for( int j = 0; j < patternSize.width*patternSize.height; j++ ) objpt[0].push_back(Point3f((float)(j%patternSize.width), (float)(j/patternSize.width), 0.f)); Mat K1, K2, c1, c2, R, T, E, F, err; int flags = 0; double res0 = stereoCalibrate( objpt, imgpt1, imgpt2, K1, c1, K2, c2, imageSize, R, T, E, F, err, flags); flags = CALIB_USE_EXTRINSIC_GUESS; double res1 = stereoCalibrate( objpt, imgpt1, imgpt2, K1, c1, K2, c2, imageSize, R, T, E, F, err, flags); EXPECT_LE(res1, res0); EXPECT_TRUE(err.total() == 2); } TEST(Calib3d_StereoCalibrate, regression_10791) { const Matx33d M1( 853.1387981631528, 0, 704.154907802121, 0, 853.6445089162528, 520.3600712930319, 0, 0, 1 ); const Matx33d M2( 848.6090216909176, 0, 701.6162856852185, 0, 849.7040162357157, 509.1864036137, 0, 0, 1 ); const Matx D1(-6.463598629567206, 79.00104930508179, -0.0001006144444464403, -0.0005437499822299972, 12.56900616588467, -6.056719942752855, 76.3842481414836, 45.57460250612659, 0, 0, 0, 0, 0, 0); const Matx D2(0.6123436439798265, -0.4671756923224087, -0.0001261947899033442, -0.000597334584036978, -0.05660119809538371, 1.037075740629769, -0.3076042835831711, -0.2502169324283623, 0, 0, 0, 0, 0, 0); const Matx33d R( 0.9999926627018476, -0.0001095586963765905, 0.003829169539302921, 0.0001021735876758584, 0.9999981346680941, 0.0019287874145156, -0.003829373712065528, -0.001928382022437616, 0.9999908085776333 ); const Matx31d T(-58.9161771697128, -0.01581306249996402, -0.8492960216760961); const Size imageSize(1280, 960); Mat R1, R2, P1, P2, Q; Rect roi1, roi2; stereoRectify(M1, D1, M2, D2, imageSize, R, T, R1, R2, P1, P2, Q, CALIB_ZERO_DISPARITY, 1, imageSize, &roi1, &roi2); EXPECT_GE(roi1.area(), 400*300) << roi1; EXPECT_GE(roi2.area(), 400*300) << roi2; } TEST(Calib3d_StereoCalibrate, regression_11131) { const Matx33d M1( 1457.572438721727, 0, 1212.945694211622, 0, 1457.522226502963, 1007.32058848921, 0, 0, 1 ); const Matx33d M2( 1460.868570835972, 0, 1215.024068023046, 0, 1460.791367088, 1011.107202932225, 0, 0, 1 ); const Matx D1(0, 0, 0, 0, 0); const Matx D2(0, 0, 0, 0, 0); const Matx33d R( 0.9985404059825475, 0.02963547172078553, -0.04515303352041626, -0.03103795276460111, 0.9990471552537432, -0.03068268351343364, 0.04420071389006859, 0.03203935697372317, 0.9985087763742083 ); const Matx31d T(0.9995500167379527, 0.0116311595111068, 0.02764923448462666); const Size imageSize(2456, 2058); Mat R1, R2, P1, P2, Q; Rect roi1, roi2; stereoRectify(M1, D1, M2, D2, imageSize, R, T, R1, R2, P1, P2, Q, CALIB_ZERO_DISPARITY, 1, imageSize, &roi1, &roi2); EXPECT_GT(P1.at(0, 0), 0); EXPECT_GT(P2.at(0, 0), 0); EXPECT_GT(R1.at(0, 0), 0); EXPECT_GT(R2.at(0, 0), 0); EXPECT_GE(roi1.area(), 400*300) << roi1; EXPECT_GE(roi2.area(), 400*300) << roi2; } TEST(Calib_StereoCalibrate, regression_22421) { cv::Mat K1, K2, dist1, dist2; std::vector image_points1, image_points2; Mat desiredR, desiredT; std::string fname = cvtest::TS::ptr()->get_data_path() + std::string("/cv/cameracalibration/regression22421.yaml.gz"); FileStorage fs(fname, FileStorage::Mode::READ); ASSERT_TRUE(fs.isOpened()); fs["imagePoints1"] >> image_points1; fs["imagePoints2"] >> image_points2; fs["K1"] >> K1; fs["K2"] >> K2; fs["dist1"] >> dist1; fs["dist2"] >> dist2; fs["desiredR"] >> desiredR; fs["desiredT"] >> desiredT; std::vector obj_points = {0, 0, 0, 0.5, 0, 0, 1, 0, 0, 1.5000001, 0, 0, 2, 0, 0, 0, 0.5, 0, 0.5, 0.5, 0, 1, 0.5, 0, 1.5000001, 0.5, 0, 2, 0.5, 0, 0, 1, 0, 0.5, 1, 0, 1, 1, 0, 1.5000001, 1, 0, 2, 1, 0, 0, 1.5000001, 0, 0.5, 1.5000001, 0, 1, 1.5000001, 0, 1.5000001, 1.5000001, 0, 2, 1.5000001, 0}; cv::Mat obj_points_mat(obj_points, true); obj_points_mat = obj_points_mat.reshape(1, obj_points.size() / 3); std::vector grid_points(image_points1.size(), obj_points_mat); cv::Mat R, T; double error = cv::stereoCalibrate(grid_points, image_points1, image_points2, K1, dist1, K2, dist2, cv::Size(), R, T, cv::noArray(), cv::noArray(), cv::noArray(), cv::CALIB_FIX_INTRINSIC); EXPECT_LE(error, 0.071544); double rerr = cv::norm(R, desiredR, NORM_INF); double terr = cv::norm(T, desiredT, NORM_INF); EXPECT_LE(rerr, 0.0000001); EXPECT_LE(terr, 0.0000001); } TEST(Calib3d_Triangulate, accuracy) { // the testcase from http://code.opencv.org/issues/4334 { double P1data[] = { 250, 0, 200, 0, 0, 250, 150, 0, 0, 0, 1, 0 }; double P2data[] = { 250, 0, 200, -250, 0, 250, 150, 0, 0, 0, 1, 0 }; Mat P1(3, 4, CV_64F, P1data), P2(3, 4, CV_64F, P2data); float x1data[] = { 200.f, 0.f }; float x2data[] = { 170.f, 1.f }; float Xdata[] = { 0.f, -5.f, 25/3.f }; Mat x1(2, 1, CV_32F, x1data); Mat x2(2, 1, CV_32F, x2data); Mat res0(1, 3, CV_32F, Xdata); Mat res_, res; triangulatePoints(P1, P2, x1, x2, res_); cv::transpose(res_, res_); // TODO cvtest (transpose doesn't support inplace) convertPointsFromHomogeneous(res_, res); res = res.reshape(1, 1); cout << "[1]:" << endl; cout << "\tres0: " << res0 << endl; cout << "\tres: " << res << endl; ASSERT_LE(cvtest::norm(res, res0, NORM_INF), 1e-1); } // another testcase http://code.opencv.org/issues/3461 { Matx33d K1(6137.147949, 0.000000, 644.974609, 0.000000, 6137.147949, 573.442749, 0.000000, 0.000000, 1.000000); Matx33d K2(6137.147949, 0.000000, 644.674438, 0.000000, 6137.147949, 573.079834, 0.000000, 0.000000, 1.000000); Matx34d RT1(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0); Matx34d RT2(0.998297, 0.0064108, -0.0579766, 143.614334, -0.0065818, 0.999975, -0.00275888, -5.160085, 0.0579574, 0.00313577, 0.998314, 96.066109); Matx34d P1 = K1*RT1; Matx34d P2 = K2*RT2; float x1data[] = { 438.f, 19.f }; float x2data[] = { 452.363600f, 16.452225f }; float Xdata[] = { -81.049530f, -215.702804f, 2401.645449f }; Mat x1(2, 1, CV_32F, x1data); Mat x2(2, 1, CV_32F, x2data); Mat res0(1, 3, CV_32F, Xdata); Mat res_, res; triangulatePoints(P1, P2, x1, x2, res_); cv::transpose(res_, res_); // TODO cvtest (transpose doesn't support inplace) convertPointsFromHomogeneous(res_, res); res = res.reshape(1, 1); cout << "[2]:" << endl; cout << "\tres0: " << res0 << endl; cout << "\tres: " << res << endl; ASSERT_LE(cvtest::norm(res, res0, NORM_INF), 2); } } /////////////////////////////////////////////////////////////////////////////////////////////////// TEST(CV_RecoverPoseTest, regression_15341) { // initialize test data const int invalid_point_count = 2; const float _points1_[] = { 1537.7f, 166.8f, 1599.1f, 179.6f, 1288.0f, 207.5f, 1507.1f, 193.2f, 1742.7f, 210.0f, 1041.6f, 271.7f, 1591.8f, 247.2f, 1524.0f, 261.3f, 1330.3f, 285.0f, 1403.1f, 284.0f, 1506.6f, 342.9f, 1502.8f, 347.3f, 1344.9f, 364.9f, 0.0f, 0.0f // last point is initial invalid }; const float _points2_[] = { 1533.4f, 532.9f, 1596.6f, 552.4f, 1277.0f, 556.4f, 1502.1f, 557.6f, 1744.4f, 601.3f, 1023.0f, 612.6f, 1589.2f, 621.6f, 1519.4f, 629.0f, 1320.3f, 637.3f, 1395.2f, 642.2f, 1501.5f, 710.3f, 1497.6f, 714.2f, 1335.1f, 719.61f, 1000.0f, 1000.0f // last point is initial invalid }; vector _points1; Mat(14, 1, CV_32FC2, (void*)_points1_).copyTo(_points1); vector _points2; Mat(14, 1, CV_32FC2, (void*)_points2_).copyTo(_points2); const int point_count = (int) _points1.size(); CV_Assert(point_count == (int) _points2.size()); // camera matrix with both focal lengths = 1, and principal point = (0, 0) const Mat cameraMatrix = Mat::eye(3, 3, CV_64F); // camera matrix with focal lengths 0.5 and 0.6 respectively and principal point = (100, 200) double cameraMatrix2Data[] = { 0.5, 0, 100, 0, 0.6, 200, 0, 0, 1 }; const Mat cameraMatrix2( 3, 3, CV_64F, cameraMatrix2Data ); // zero and nonzero distortion coefficients double nonZeroDistCoeffsData[] = { 0.01, 0.0001, 0, 0, 1e-04, 0.2, 0.02, 0.0002 }; // k1, k2, p1, p2, k3, k4, k5, k6 vector distCoeffsList = {Mat::zeros(1, 5, CV_64F), Mat{1, 8, CV_64F, nonZeroDistCoeffsData}}; const auto &zeroDistCoeffs = distCoeffsList[0]; int Inliers = 0; const int ntests = 3; for (int testcase = 1; testcase <= ntests; ++testcase) { if (testcase == 1) // testcase with vector input data { // init temporary test data vector mask(point_count); vector points1(_points1); vector points2(_points2); // Estimation of fundamental matrix using the RANSAC algorithm Mat E, E2, R, t; // Check pose when camera matrices are different. for (const auto &distCoeffs: distCoeffsList) { E = findEssentialMat(points1, points2, cameraMatrix, distCoeffs, cameraMatrix2, distCoeffs, RANSAC, 0.999, 1.0, mask); recoverPose(points1, points2, cameraMatrix, distCoeffs, cameraMatrix2, distCoeffs, E2, R, t, RANSAC, 0.999, 1.0, mask); EXPECT_LT(cv::norm(E, E2, NORM_INF), 1e-4) << "Two big difference between the same essential matrices computed using different functions with different cameras, testcase " << testcase; EXPECT_EQ(0, (int)mask[13]) << "Detecting outliers in function failed with different cameras, testcase " << testcase; } // Check pose when camera matrices are the same. E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, 1000/*maxIters*/, mask); E2 = findEssentialMat(points1, points2, cameraMatrix, zeroDistCoeffs, cameraMatrix, zeroDistCoeffs, RANSAC, 0.999, 1.0, mask); EXPECT_LT(cv::norm(E, E2, NORM_INF), 1e-4) << "Two big difference between the same essential matrices computed using different functions with same cameras, testcase " << testcase; EXPECT_EQ(0, (int)mask[13]) << "Detecting outliers in function findEssentialMat failed with same cameras, testcase " << testcase; points2[12] = Point2f(0.0f, 0.0f); // provoke another outlier detection for recover Pose Inliers = recoverPose(E, points1, points2, cameraMatrix, R, t, mask); EXPECT_EQ(0, (int)mask[12]) << "Detecting outliers in function failed with same cameras, testcase " << testcase; } else // testcase with mat input data { Mat points1(_points1, true); Mat points2(_points2, true); Mat mask; if (testcase == 2) { // init temporary testdata mask = Mat::zeros(point_count, 1, CV_8UC1); } else // testcase == 3 - with transposed mask { mask = Mat::zeros(1, point_count, CV_8UC1); } // Estimation of fundamental matrix using the RANSAC algorithm Mat E, E2, R, t; // Check pose when camera matrices are different. for (const auto &distCoeffs: distCoeffsList) { E = findEssentialMat(points1, points2, cameraMatrix, distCoeffs, cameraMatrix2, distCoeffs, RANSAC, 0.999, 1.0, mask); recoverPose(points1, points2, cameraMatrix, distCoeffs, cameraMatrix2, distCoeffs, E2, R, t, RANSAC, 0.999, 1.0, mask); EXPECT_LT(cv::norm(E, E2, NORM_INF), 1e-4) << "Two big difference between the same essential matrices computed using different functions with different cameras, testcase " << testcase; EXPECT_EQ(0, (int)mask.at(13)) << "Detecting outliers in function failed with different cameras, testcase " << testcase; } // Check pose when camera matrices are the same. E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, 1000/*maxIters*/, mask); E2 = findEssentialMat(points1, points2, cameraMatrix, zeroDistCoeffs, cameraMatrix, zeroDistCoeffs, RANSAC, 0.999, 1.0, mask); EXPECT_LT(cv::norm(E, E2, NORM_INF), 1e-4) << "Two big difference between the same essential matrices computed using different functions with same cameras, testcase " << testcase; EXPECT_EQ(0, (int)mask.at(13)) << "Detecting outliers in function findEssentialMat failed with same cameras, testcase " << testcase; points2.at(12) = Point2f(0.0f, 0.0f); // provoke an outlier detection Inliers = recoverPose(E, points1, points2, cameraMatrix, R, t, mask); EXPECT_EQ(0, (int)mask.at(12)) << "Detecting outliers in function failed with same cameras, testcase " << testcase; } EXPECT_EQ(Inliers, point_count - invalid_point_count) << "Number of inliers differs from expected number of inliers, testcase " << testcase; } } }} // namespace