//////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // // // // The code has been contributed by Arkadiusz Raj on 2016 Oct // #include "precomp.hpp" #ifdef HAVE_ARAVIS_API #include // // This file provides wrapper for using Aravis SDK library to access GigE Vision cameras. // aravis-0.6 library shall be installed else this code will not be included in build. // To include this module invoke cmake with -DWITH_ARAVIS=ON // // Please obvserve, that jumbo frames are required when high fps & 16bit data is selected. // (camera, switches/routers and the computer this software is running on) // // Basic usage: VideoCapture cap(CAP_ARAVIS + ); // // Supported properties: // CAP_PROP_AUTO_EXPOSURE(0|1) // CAP_PROP_EXPOSURE(t), t in seconds // CAP_PROP_GAIN(g), g >=0 or -1 for automatic control if CAP_PROP_AUTO_EXPOSURE is true // CAP_PROP_FPS(f) // CAP_PROP_FOURCC(type) // // Supported types of data: // video/x-raw, fourcc:'GREY' -> 8bit, 1 channel // video/x-raw, fourcc:'Y800' -> 8bit, 1 channel // video/x-raw, fourcc:'Y12 ' -> 12bit, 1 channel // #define MODE_GREY CV_FOURCC_MACRO('G','R','E','Y') #define MODE_Y800 CV_FOURCC_MACRO('Y','8','0','0') #define MODE_Y12 CV_FOURCC_MACRO('Y','1','2',' ') #define BETWEEN(a,b,c) ((a) < (b) ? (b) : ((a) > (c) ? (c) : (a) )) /********************* Capturing video from camera via Aravis *********************/ class CvCaptureCAM_Aravis : public CvCapture { public: CvCaptureCAM_Aravis(); virtual ~CvCaptureCAM_Aravis() { close(); } virtual bool open(int); virtual void close(); virtual double getProperty(int) const; virtual bool setProperty(int, double); virtual bool grabFrame(); virtual IplImage* retrieveFrame(int); virtual int getCaptureDomain() { return CV_CAP_ARAVIS; } protected: bool create(int); bool init_buffers(); void stopCapture(); bool startCapture(); bool getDeviceNameById(int id, std::string &device); void autoExposureControl(IplImage*); ArvCamera *camera; // Camera to control. ArvStream *stream; // Object for video stream reception. void *framebuffer; // unsigned int payload; // Width x height x Pixel width. int widthMin; // Camera sensor minium width. int widthMax; // Camera sensor maximum width. int heightMin; // Camera sensor minium height. int heightMax; // Camera sensor maximum height. bool fpsAvailable; double fpsMin; // Camera minium fps. double fpsMax; // Camera maximum fps. bool gainAvailable; double gainMin; // Camera minimum gain. double gainMax; // Camera maximum gain. bool exposureAvailable; double exposureMin; // Camera's minimum exposure time. double exposureMax; // Camera's maximum exposure time. bool controlExposure; // Flag if automatic exposure shall be done by this SW bool autoGain; double targetGrey; // Target grey value (mid grey)) gint64 *pixelFormats; guint pixelFormatsCnt; int num_buffers; // number of payload transmission buffers ArvPixelFormat pixelFormat; // current pixel format int width; // current width of frame int height; // current height of image double fps; // current fps double exposure; // current value of exposure time double gain; // current value of gain IplImage *frame; // local frame copy uint64_t framesCnt; // number of retrieved frames }; CvCaptureCAM_Aravis::CvCaptureCAM_Aravis() { camera = NULL; stream = NULL; framebuffer = NULL; payload = 0; widthMin = widthMax = heightMin = heightMax = 0; fpsMin = fpsMax = gainMin = gainMax = exposureMin = exposureMax = 0; controlExposure = false; targetGrey = 0; framesCnt = 0; num_buffers = 50; frame = NULL; } void CvCaptureCAM_Aravis::close() { if(camera) stopCapture(); } bool CvCaptureCAM_Aravis::getDeviceNameById(int id, std::string &device) { arv_update_device_list(); if(id > 0 && id < arv_get_n_devices()){ device = arv_get_device_id(id); return true; } return false; } bool CvCaptureCAM_Aravis::create( int index ) { std::string deviceName; if(!getDeviceNameById(index, deviceName)) return false; return NULL != (camera = arv_camera_new(deviceName.c_str())); } bool CvCaptureCAM_Aravis::init_buffers() { if(stream) { g_object_unref(stream); stream = NULL; } if( (stream = arv_camera_create_stream(camera, NULL, NULL)) ) { g_object_set(stream, "socket-buffer", ARV_GV_STREAM_SOCKET_BUFFER_AUTO, "socket-buffer-size", 0, NULL); g_object_set(stream, "packet-resend", ARV_GV_STREAM_PACKET_RESEND_NEVER, NULL); g_object_set(stream, "packet-timeout", (unsigned) 40000, "frame-retention", (unsigned) 200000, NULL); payload = arv_camera_get_payload (camera); for (int i = 0; i < num_buffers; i++) arv_stream_push_buffer(stream, arv_buffer_new(payload, NULL)); return true; } return false; } bool CvCaptureCAM_Aravis::open( int index ) { if(create(index)) { // fetch properties bounds pixelFormats = arv_camera_get_available_pixel_formats(camera, &pixelFormatsCnt); arv_camera_get_width_bounds(camera, &widthMin, &widthMax); arv_camera_get_height_bounds(camera, &heightMin, &heightMax); arv_camera_set_region(camera, 0, 0, widthMax, heightMax); if( (fpsAvailable = arv_camera_is_frame_rate_available(camera)) ) arv_camera_get_frame_rate_bounds(camera, &fpsMin, &fpsMax); if( (gainAvailable = arv_camera_is_gain_available(camera)) ) arv_camera_get_gain_bounds (camera, &gainMin, &gainMax); if( (exposureAvailable = arv_camera_is_exposure_time_available(camera)) ) arv_camera_get_exposure_time_bounds (camera, &exposureMin, &exposureMax); // get initial values pixelFormat = arv_camera_get_pixel_format(camera); exposure = exposureAvailable ? arv_camera_get_exposure_time(camera) : 0; gain = gainAvailable ? arv_camera_get_gain(camera) : 0; fps = arv_camera_get_frame_rate(camera); return startCapture(); } return false; } bool CvCaptureCAM_Aravis::grabFrame() { // remove content of previous frame framebuffer = NULL; if(stream) { ArvBuffer *arv_buffer = NULL; int max_tries = 10; int tries = 0; for(; tries < max_tries; tries ++) { arv_buffer = arv_stream_timeout_pop_buffer (stream, 200000); if (arv_buffer != NULL && arv_buffer_get_status (arv_buffer) != ARV_BUFFER_STATUS_SUCCESS) { arv_stream_push_buffer (stream, arv_buffer); } else break; } if (tries < max_tries) { size_t buffer_size; framebuffer = (void*)arv_buffer_get_data (arv_buffer, &buffer_size); arv_buffer_get_image_region (arv_buffer, NULL, NULL, &width, &height); arv_stream_push_buffer(stream, arv_buffer); return true; } } return false; } IplImage* CvCaptureCAM_Aravis::retrieveFrame(int) { if(framebuffer) { int depth = 0, channels = 0; switch(pixelFormat) { case ARV_PIXEL_FORMAT_MONO_8: depth = IPL_DEPTH_8U; channels = 1; break; case ARV_PIXEL_FORMAT_MONO_12: depth = IPL_DEPTH_16U; channels = 1; break; } if(depth && channels) { IplImage src; cvInitImageHeader( &src, cvSize( width, height ), depth, channels, IPL_ORIGIN_TL, 4 ); cvSetData( &src, framebuffer, src.widthStep ); if( !frame || frame->width != src.width || frame->height != src.height || frame->depth != src.depth || frame->nChannels != src.nChannels) { cvReleaseImage( &frame ); frame = cvCreateImage( cvGetSize(&src), src.depth, channels ); } cvCopy(&src, frame); if(controlExposure && !(framesCnt % 2)) { // control exposure every second frame // i.e. skip frame taken with previous exposure setup autoExposureControl(frame); } framesCnt++; return frame; } } return NULL; } void CvCaptureCAM_Aravis::autoExposureControl(IplImage* image) { // Software control of exposure parameters utilizing // automatic change of exposure time & gain // Priority is set as follows: // - to increase brightness, first increase time then gain // - to decrease brightness, first decrease gain then time cv::Mat m = cv::cvarrToMat(image); // calc mean value for luminance or green channel double brightness = cv::mean(m)[image->nChannels > 1 ? 1 : 0]; if(brightness < 1) brightness = 1; // mid point - 100 % means no change static const double dmid = 100; // distance from optimal value as a percentage double d = (targetGrey * dmid) / brightness; // if change of value requires intervention if(fabs(d-dmid) > 5) { if(d >= dmid) d = ( d + (dmid * 2) ) / 3; double ng = 0, ne = 0, maxe = 1e6 / fps; double ev = log( d / dmid ) / log(2); if(gainAvailable && autoGain) { // depending on device single gain step may equal to 1 or 1/3 EV double ngg = gain + ev; ng = BETWEEN( ngg, gainMin, gainMax); if( ng < gain ) { // piority 1 - reduce gain arv_camera_set_gain(camera, (gain = ng)); return; } } if(exposureAvailable) { double nee = ( exposure * d ) / dmid; ne = BETWEEN( nee, exposureMin, maxe); if(abs(exposure - ne) > 2) { // priority 2 - control of exposure time arv_camera_set_exposure_time(camera, (exposure = ne) ); return; } } if(gainAvailable && autoGain) { if(exposureAvailable) { // exposure at maximum - increase gain if possible if(ng > gain && ne >= maxe) { if(ng < gainMax) { arv_camera_set_gain(camera, (gain = ng)); } return; } // if gain can be reduced - do it if(gain > gainMin && exposure < maxe) { exposure = BETWEEN( ne * 1.05, exposureMin, maxe); arv_camera_set_exposure_time(camera, exposure ); } } else { arv_camera_set_gain(camera, (gain = ng)); } } } } double CvCaptureCAM_Aravis::getProperty( int property_id ) const { switch(property_id) { case CV_CAP_PROP_AUTO_EXPOSURE: return (controlExposure ? 1 : 0); case CV_CAP_PROP_EXPOSURE: if(exposureAvailable) { /* exposure time in seconds, like 1/100 s */ return arv_camera_get_exposure_time(camera) / 1e6; } break; case CV_CAP_PROP_FPS: if(fpsAvailable) { return arv_camera_get_frame_rate(camera); } break; case CV_CAP_PROP_GAIN: if(gainAvailable) { return arv_camera_get_gain(camera); } break; case CV_CAP_PROP_FOURCC: { ArvPixelFormat currFormat = arv_camera_get_pixel_format(camera); switch( currFormat ) { case ARV_PIXEL_FORMAT_MONO_8: return MODE_Y800; case ARV_PIXEL_FORMAT_MONO_12: return MODE_Y12; } } } return -1.0; } bool CvCaptureCAM_Aravis::setProperty( int property_id, double value ) { switch(property_id) { case CV_CAP_PROP_AUTO_EXPOSURE: if(exposureAvailable || gainAvailable) { if( (controlExposure = (bool)(int)value) ) { exposure = exposureAvailable ? arv_camera_get_exposure_time(camera) : 0; gain = gainAvailable ? arv_camera_get_gain(camera) : 0; } } break; case CV_CAP_PROP_EXPOSURE: if(exposureAvailable) { /* exposure time in seconds, like 1/100 s */ value *= 1e6; // -> from s to us arv_camera_set_exposure_time(camera, exposure = BETWEEN(value, exposureMin, exposureMax)); break; } else return false; case CV_CAP_PROP_FPS: if(fpsAvailable) { arv_camera_set_frame_rate(camera, fps = BETWEEN(value, fpsMin, fpsMax)); break; } else return false; case CV_CAP_PROP_GAIN: if(gainAvailable) { if ( (autoGain = (-1 == value) ) ) break; arv_camera_set_gain(camera, gain = BETWEEN(value, gainMin, gainMax)); break; } else return false; case CV_CAP_PROP_FOURCC: { ArvPixelFormat newFormat = pixelFormat; switch((int)value) { case MODE_GREY: case MODE_Y800: newFormat = ARV_PIXEL_FORMAT_MONO_8; targetGrey = 128; break; case MODE_Y12: newFormat = ARV_PIXEL_FORMAT_MONO_12; targetGrey = 2048; break; } if(newFormat != pixelFormat) { stopCapture(); arv_camera_set_pixel_format(camera, pixelFormat = newFormat); startCapture(); } } break; default: return false; } return true; } void CvCaptureCAM_Aravis::stopCapture() { arv_camera_stop_acquisition(camera); g_object_unref(stream); stream = NULL; } bool CvCaptureCAM_Aravis::startCapture() { if(init_buffers() ) { arv_camera_set_acquisition_mode(camera, ARV_ACQUISITION_MODE_CONTINUOUS); arv_device_set_string_feature_value(arv_camera_get_device (camera), "TriggerMode" , "Off"); arv_camera_start_acquisition(camera); return true; } return false; } CvCapture* cvCreateCameraCapture_Aravis( int index ) { CvCaptureCAM_Aravis* capture = new CvCaptureCAM_Aravis; if(capture->open(index)) { return capture; } delete capture; return NULL; } #endif