// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "test_precomp.hpp" namespace opencv_test { namespace { static void generatePose(RNG& rng, double min_theta, double max_theta, double min_tx, double max_tx, double min_ty, double max_ty, double min_tz, double max_tz, Mat& R, Mat& tvec, bool random_sign) { Mat axis(3, 1, CV_64FC1); for (int i = 0; i < 3; i++) { axis.at(i,0) = rng.uniform(-1.0, 1.0); } double theta = rng.uniform(min_theta, max_theta); if (random_sign) { theta *= std::copysign(1.0, rng.uniform(-1.0, 1.0)); } Mat rvec(3, 1, CV_64FC1); rvec.at(0,0) = theta*axis.at(0,0); rvec.at(1,0) = theta*axis.at(1,0); rvec.at(2,0) = theta*axis.at(2,0); tvec.create(3, 1, CV_64FC1); tvec.at(0,0) = rng.uniform(min_tx, max_tx); tvec.at(1,0) = rng.uniform(min_ty, max_ty); tvec.at(2,0) = rng.uniform(min_tz, max_tz); if (random_sign) { tvec.at(0,0) *= std::copysign(1.0, rng.uniform(-1.0, 1.0)); tvec.at(1,0) *= std::copysign(1.0, rng.uniform(-1.0, 1.0)); tvec.at(2,0) *= std::copysign(1.0, rng.uniform(-1.0, 1.0)); } cv::Rodrigues(rvec, R); } static Mat homogeneousInverse(const Mat& T) { CV_Assert( T.rows == 4 && T.cols == 4 ); Mat R = T(Rect(0, 0, 3, 3)); Mat t = T(Rect(3, 0, 1, 3)); Mat Rt = R.t(); Mat tinv = -Rt * t; Mat Tinv = Mat::eye(4, 4, T.type()); Rt.copyTo(Tinv(Rect(0, 0, 3, 3))); tinv.copyTo(Tinv(Rect(3, 0, 1, 3))); return Tinv; } static void simulateDataEyeInHand(RNG& rng, int nPoses, std::vector &R_gripper2base, std::vector &t_gripper2base, std::vector &R_target2cam, std::vector &t_target2cam, bool noise, Mat& R_cam2gripper, Mat& t_cam2gripper) { //to avoid generating values close to zero, //we use positive range values and randomize the sign const bool random_sign = true; generatePose(rng, 10.0*CV_PI/180.0, 50.0*CV_PI/180.0, 0.05, 0.5, 0.05, 0.5, 0.05, 0.5, R_cam2gripper, t_cam2gripper, random_sign); Mat R_target2base, t_target2base; generatePose(rng, 5.0*CV_PI/180.0, 85.0*CV_PI/180.0, 0.5, 3.5, 0.5, 3.5, 0.5, 3.5, R_target2base, t_target2base, random_sign); for (int i = 0; i < nPoses; i++) { Mat R_gripper2base_, t_gripper2base_; generatePose(rng, 5.0*CV_PI/180.0, 45.0*CV_PI/180.0, 0.5, 1.5, 0.5, 1.5, 0.5, 1.5, R_gripper2base_, t_gripper2base_, random_sign); R_gripper2base.push_back(R_gripper2base_); t_gripper2base.push_back(t_gripper2base_); Mat T_cam2gripper = Mat::eye(4, 4, CV_64FC1); R_cam2gripper.copyTo(T_cam2gripper(Rect(0, 0, 3, 3))); t_cam2gripper.copyTo(T_cam2gripper(Rect(3, 0, 1, 3))); Mat T_gripper2base = Mat::eye(4, 4, CV_64FC1); R_gripper2base_.copyTo(T_gripper2base(Rect(0, 0, 3, 3))); t_gripper2base_.copyTo(T_gripper2base(Rect(3, 0, 1, 3))); Mat T_base2cam = homogeneousInverse(T_cam2gripper) * homogeneousInverse(T_gripper2base); Mat T_target2base = Mat::eye(4, 4, CV_64FC1); R_target2base.copyTo(T_target2base(Rect(0, 0, 3, 3))); t_target2base.copyTo(T_target2base(Rect(3, 0, 1, 3))); Mat T_target2cam = T_base2cam * T_target2base; if (noise) { //Add some noise for the transformation between the target and the camera Mat R_target2cam_noise = T_target2cam(Rect(0, 0, 3, 3)); Mat rvec_target2cam_noise; cv::Rodrigues(R_target2cam_noise, rvec_target2cam_noise); rvec_target2cam_noise.at(0,0) += rng.gaussian(0.002); rvec_target2cam_noise.at(1,0) += rng.gaussian(0.002); rvec_target2cam_noise.at(2,0) += rng.gaussian(0.002); cv::Rodrigues(rvec_target2cam_noise, R_target2cam_noise); Mat t_target2cam_noise = T_target2cam(Rect(3, 0, 1, 3)); t_target2cam_noise.at(0,0) += rng.gaussian(0.005); t_target2cam_noise.at(1,0) += rng.gaussian(0.005); t_target2cam_noise.at(2,0) += rng.gaussian(0.005); //Add some noise for the transformation between the gripper and the robot base Mat R_gripper2base_noise = T_gripper2base(Rect(0, 0, 3, 3)); Mat rvec_gripper2base_noise; cv::Rodrigues(R_gripper2base_noise, rvec_gripper2base_noise); rvec_gripper2base_noise.at(0,0) += rng.gaussian(0.001); rvec_gripper2base_noise.at(1,0) += rng.gaussian(0.001); rvec_gripper2base_noise.at(2,0) += rng.gaussian(0.001); cv::Rodrigues(rvec_gripper2base_noise, R_gripper2base_noise); Mat t_gripper2base_noise = T_gripper2base(Rect(3, 0, 1, 3)); t_gripper2base_noise.at(0,0) += rng.gaussian(0.001); t_gripper2base_noise.at(1,0) += rng.gaussian(0.001); t_gripper2base_noise.at(2,0) += rng.gaussian(0.001); } //Test rvec representation Mat rvec_target2cam; cv::Rodrigues(T_target2cam(Rect(0, 0, 3, 3)), rvec_target2cam); R_target2cam.push_back(rvec_target2cam); t_target2cam.push_back(T_target2cam(Rect(3, 0, 1, 3))); } } static void simulateDataEyeToHand(RNG& rng, int nPoses, std::vector &R_base2gripper, std::vector &t_base2gripper, std::vector &R_target2cam, std::vector &t_target2cam, bool noise, Mat& R_cam2base, Mat& t_cam2base) { //to avoid generating values close to zero, //we use positive range values and randomize the sign const bool random_sign = true; generatePose(rng, 10.0*CV_PI/180.0, 50.0*CV_PI/180.0, 0.5, 3.5, 0.5, 3.5, 0.5, 3.5, R_cam2base, t_cam2base, random_sign); Mat R_target2gripper, t_target2gripper; generatePose(rng, 5.0*CV_PI/180.0, 85.0*CV_PI/180.0, 0.05, 0.5, 0.05, 0.5, 0.05, 0.5, R_target2gripper, t_target2gripper, random_sign); Mat T_target2gripper = Mat::eye(4, 4, CV_64FC1); R_target2gripper.copyTo(T_target2gripper(Rect(0, 0, 3, 3))); t_target2gripper.copyTo(T_target2gripper(Rect(3, 0, 1, 3))); for (int i = 0; i < nPoses; i++) { Mat R_gripper2base_, t_gripper2base_; generatePose(rng, 5.0*CV_PI/180.0, 45.0*CV_PI/180.0, 0.5, 1.5, 0.5, 1.5, 0.5, 1.5, R_gripper2base_, t_gripper2base_, random_sign); Mat R_base2gripper_ = R_gripper2base_.t(); Mat t_base2gripper_ = -R_base2gripper_ * t_gripper2base_; Mat T_gripper2base = Mat::eye(4, 4, CV_64FC1); R_gripper2base_.copyTo(T_gripper2base(Rect(0, 0, 3, 3))); t_gripper2base_.copyTo(T_gripper2base(Rect(3, 0, 1, 3))); Mat T_cam2base = Mat::eye(4, 4, CV_64FC1); R_cam2base.copyTo(T_cam2base(Rect(0, 0, 3, 3))); t_cam2base.copyTo(T_cam2base(Rect(3, 0, 1, 3))); Mat T_target2cam = homogeneousInverse(T_cam2base) * T_gripper2base * T_target2gripper; if (noise) { //Add some noise for the transformation between the target and the camera Mat R_target2cam_noise = T_target2cam(Rect(0, 0, 3, 3)); Mat rvec_target2cam_noise; cv::Rodrigues(R_target2cam_noise, rvec_target2cam_noise); rvec_target2cam_noise.at(0,0) += rng.gaussian(0.002); rvec_target2cam_noise.at(1,0) += rng.gaussian(0.002); rvec_target2cam_noise.at(2,0) += rng.gaussian(0.002); cv::Rodrigues(rvec_target2cam_noise, R_target2cam_noise); Mat t_target2cam_noise = T_target2cam(Rect(3, 0, 1, 3)); t_target2cam_noise.at(0,0) += rng.gaussian(0.005); t_target2cam_noise.at(1,0) += rng.gaussian(0.005); t_target2cam_noise.at(2,0) += rng.gaussian(0.005); //Add some noise for the transformation between the robot base and the gripper Mat rvec_base2gripper_noise; cv::Rodrigues(R_base2gripper_, rvec_base2gripper_noise); rvec_base2gripper_noise.at(0,0) += rng.gaussian(0.001); rvec_base2gripper_noise.at(1,0) += rng.gaussian(0.001); rvec_base2gripper_noise.at(2,0) += rng.gaussian(0.001); cv::Rodrigues(rvec_base2gripper_noise, R_base2gripper_); t_base2gripper_.at(0,0) += rng.gaussian(0.001); t_base2gripper_.at(1,0) += rng.gaussian(0.001); t_base2gripper_.at(2,0) += rng.gaussian(0.001); } R_base2gripper.push_back(R_base2gripper_); t_base2gripper.push_back(t_base2gripper_); //Test rvec representation Mat rvec_target2cam; cv::Rodrigues(T_target2cam(Rect(0, 0, 3, 3)), rvec_target2cam); R_target2cam.push_back(rvec_target2cam); t_target2cam.push_back(T_target2cam(Rect(3, 0, 1, 3))); } } static std::string getMethodName(HandEyeCalibrationMethod method) { std::string method_name = ""; switch (method) { case CALIB_HAND_EYE_TSAI: method_name = "Tsai"; break; case CALIB_HAND_EYE_PARK: method_name = "Park"; break; case CALIB_HAND_EYE_HORAUD: method_name = "Horaud"; break; case CALIB_HAND_EYE_ANDREFF: method_name = "Andreff"; break; case CALIB_HAND_EYE_DANIILIDIS: method_name = "Daniilidis"; break; default: break; } return method_name; } static std::string getMethodName(RobotWorldHandEyeCalibrationMethod method) { std::string method_name = ""; switch (method) { case CALIB_ROBOT_WORLD_HAND_EYE_SHAH: method_name = "Shah"; break; case CALIB_ROBOT_WORLD_HAND_EYE_LI: method_name = "Li"; break; default: break; } return method_name; } static void printStats(const std::string& methodName, const std::vector& rvec_diff, const std::vector& tvec_diff) { double max_rvec_diff = *std::max_element(rvec_diff.begin(), rvec_diff.end()); double mean_rvec_diff = std::accumulate(rvec_diff.begin(), rvec_diff.end(), 0.0) / rvec_diff.size(); double sq_sum_rvec_diff = std::inner_product(rvec_diff.begin(), rvec_diff.end(), rvec_diff.begin(), 0.0); double std_rvec_diff = std::sqrt(sq_sum_rvec_diff / rvec_diff.size() - mean_rvec_diff * mean_rvec_diff); double max_tvec_diff = *std::max_element(tvec_diff.begin(), tvec_diff.end()); double mean_tvec_diff = std::accumulate(tvec_diff.begin(), tvec_diff.end(), 0.0) / tvec_diff.size(); double sq_sum_tvec_diff = std::inner_product(tvec_diff.begin(), tvec_diff.end(), tvec_diff.begin(), 0.0); double std_tvec_diff = std::sqrt(sq_sum_tvec_diff / tvec_diff.size() - mean_tvec_diff * mean_tvec_diff); std::cout << "Method " << methodName << ":\n" << "Max rvec error: " << max_rvec_diff << ", Mean rvec error: " << mean_rvec_diff << ", Std rvec error: " << std_rvec_diff << "\n" << "Max tvec error: " << max_tvec_diff << ", Mean tvec error: " << mean_tvec_diff << ", Std tvec error: " << std_tvec_diff << std::endl; } static void loadDataset(std::vector& R_target2cam, std::vector& t_target2cam, std::vector& R_base2gripper, std::vector& t_base2gripper) { const std::string camera_poses_filename = findDataFile("cv/robot_world_hand_eye_calibration/cali.txt"); const std::string end_effector_poses = findDataFile("cv/robot_world_hand_eye_calibration/robot_cali.txt"); // Parse camera poses, the pose of the chessboard in the camera frame { std::ifstream file(camera_poses_filename); ASSERT_TRUE(file.is_open()); int ndata = 0; file >> ndata; R_target2cam.reserve(ndata); t_target2cam.reserve(ndata); std::string image_name; Matx33d cameraMatrix; Matx33d R; Matx31d t; Matx16d distCoeffs; Matx13d distCoeffs2; while (file >> image_name >> cameraMatrix(0,0) >> cameraMatrix(0,1) >> cameraMatrix(0,2) >> cameraMatrix(1,0) >> cameraMatrix(1,1) >> cameraMatrix(1,2) >> cameraMatrix(2,0) >> cameraMatrix(2,1) >> cameraMatrix(2,2) >> R(0,0) >> R(0,1) >> R(0,2) >> R(1,0) >> R(1,1) >> R(1,2) >> R(2,0) >> R(2,1) >> R(2,2) >> t(0) >> t(1) >> t(2) >> distCoeffs(0) >> distCoeffs(1) >> distCoeffs(2) >> distCoeffs(3) >> distCoeffs(4) >> distCoeffs2(0) >> distCoeffs2(1) >> distCoeffs2(2)) { R_target2cam.push_back(Mat(R)); t_target2cam.push_back(Mat(t)); } } // Parse robot poses, the pose of the robot base in the robot hand frame { std::ifstream file(end_effector_poses); ASSERT_TRUE(file.is_open()); int ndata = 0; file >> ndata; R_base2gripper.reserve(ndata); t_base2gripper.reserve(ndata); Matx33d R; Matx31d t; Matx14d last_row; while (file >> R(0,0) >> R(0,1) >> R(0,2) >> t(0) >> R(1,0) >> R(1,1) >> R(1,2) >> t(1) >> R(2,0) >> R(2,1) >> R(2,2) >> t(2) >> last_row(0) >> last_row(1) >> last_row(2) >> last_row(3)) { R_base2gripper.push_back(Mat(R)); t_base2gripper.push_back(Mat(t)); } } } static void loadResults(Matx33d& wRb, Matx31d& wtb, Matx33d& cRg, Matx31d& ctg) { const std::string transformations_filename = findDataFile("cv/robot_world_hand_eye_calibration/rwhe_AA_RPI/transformations.txt"); std::ifstream file(transformations_filename); ASSERT_TRUE(file.is_open()); std::string str; //Parse X file >> str; Matx44d wTb; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { file >> wTb(i,j); } } //Parse Z file >> str; int cam_num = 0; //Parse camera number file >> cam_num; Matx44d cTg; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { file >> cTg(i,j); } } for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { wRb(i,j) = wTb(i,j); cRg(i,j) = cTg(i,j); } wtb(i) = wTb(i,3); ctg(i) = cTg(i,3); } } class CV_CalibrateHandEyeTest : public cvtest::BaseTest { public: CV_CalibrateHandEyeTest(bool eyeToHand) : eyeToHandConfig(eyeToHand) { eps_rvec[CALIB_HAND_EYE_TSAI] = 1.0e-8; eps_rvec[CALIB_HAND_EYE_PARK] = 1.0e-8; eps_rvec[CALIB_HAND_EYE_HORAUD] = 1.0e-8; eps_rvec[CALIB_HAND_EYE_ANDREFF] = 1.0e-8; eps_rvec[CALIB_HAND_EYE_DANIILIDIS] = 1.0e-8; eps_tvec[CALIB_HAND_EYE_TSAI] = 1.0e-8; eps_tvec[CALIB_HAND_EYE_PARK] = 1.0e-8; eps_tvec[CALIB_HAND_EYE_HORAUD] = 1.0e-8; eps_tvec[CALIB_HAND_EYE_ANDREFF] = 1.0e-8; eps_tvec[CALIB_HAND_EYE_DANIILIDIS] = 1.0e-8; eps_rvec_noise[CALIB_HAND_EYE_TSAI] = 2.0e-2; eps_rvec_noise[CALIB_HAND_EYE_PARK] = 2.0e-2; eps_rvec_noise[CALIB_HAND_EYE_HORAUD] = 2.0e-2; eps_rvec_noise[CALIB_HAND_EYE_ANDREFF] = 1.0e-2; eps_rvec_noise[CALIB_HAND_EYE_DANIILIDIS] = 1.0e-2; eps_tvec_noise[CALIB_HAND_EYE_TSAI] = 7.0e-2; eps_tvec_noise[CALIB_HAND_EYE_PARK] = 7.0e-2; eps_tvec_noise[CALIB_HAND_EYE_HORAUD] = 7.0e-2; if (eyeToHandConfig) { eps_tvec_noise[CALIB_HAND_EYE_ANDREFF] = 7.0e-2; } else { eps_tvec_noise[CALIB_HAND_EYE_ANDREFF] = 5.0e-2; } eps_tvec_noise[CALIB_HAND_EYE_DANIILIDIS] = 5.0e-2; } protected: virtual void run(int); bool eyeToHandConfig; double eps_rvec[5]; double eps_tvec[5]; double eps_rvec_noise[5]; double eps_tvec_noise[5]; }; void CV_CalibrateHandEyeTest::run(int) { ts->set_failed_test_info(cvtest::TS::OK); RNG& rng = cv::theRNG(); std::vector > vec_rvec_diff(5); std::vector > vec_tvec_diff(5); std::vector > vec_rvec_diff_noise(5); std::vector > vec_tvec_diff_noise(5); std::vector methods; methods.push_back(CALIB_HAND_EYE_TSAI); methods.push_back(CALIB_HAND_EYE_PARK); methods.push_back(CALIB_HAND_EYE_HORAUD); methods.push_back(CALIB_HAND_EYE_ANDREFF); methods.push_back(CALIB_HAND_EYE_DANIILIDIS); const int nTests = 100; for (int i = 0; i < nTests; i++) { const int nPoses = 10; if (eyeToHandConfig) { { //No noise std::vector R_base2gripper, t_base2gripper; std::vector R_target2cam, t_target2cam; Mat R_cam2base_true, t_cam2base_true; const bool noise = false; simulateDataEyeToHand(rng, nPoses, R_base2gripper, t_base2gripper, R_target2cam, t_target2cam, noise, R_cam2base_true, t_cam2base_true); for (size_t idx = 0; idx < methods.size(); idx++) { Mat rvec_cam2base_true; cv::Rodrigues(R_cam2base_true, rvec_cam2base_true); Mat R_cam2base_est, t_cam2base_est; calibrateHandEye(R_base2gripper, t_base2gripper, R_target2cam, t_target2cam, R_cam2base_est, t_cam2base_est, methods[idx]); Mat rvec_cam2base_est; cv::Rodrigues(R_cam2base_est, rvec_cam2base_est); double rvecDiff = cvtest::norm(rvec_cam2base_true, rvec_cam2base_est, NORM_L2); double tvecDiff = cvtest::norm(t_cam2base_true, t_cam2base_est, NORM_L2); vec_rvec_diff[idx].push_back(rvecDiff); vec_tvec_diff[idx].push_back(tvecDiff); const double epsilon_rvec = eps_rvec[idx]; const double epsilon_tvec = eps_tvec[idx]; //Maybe a better accuracy test would be to compare the mean and std errors with some thresholds? if (rvecDiff > epsilon_rvec || tvecDiff > epsilon_tvec) { ts->printf(cvtest::TS::LOG, "Invalid accuracy (no noise) for method: %s, rvecDiff: %f, epsilon_rvec: %f, tvecDiff: %f, epsilon_tvec: %f\n", getMethodName(methods[idx]).c_str(), rvecDiff, epsilon_rvec, tvecDiff, epsilon_tvec); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); } } } { //Gaussian noise on transformations between calibration target frame and camera frame and between robot base and gripper frames std::vector R_base2gripper, t_base2gripper; std::vector R_target2cam, t_target2cam; Mat R_cam2base_true, t_cam2base_true; const bool noise = true; simulateDataEyeToHand(rng, nPoses, R_base2gripper, t_base2gripper, R_target2cam, t_target2cam, noise, R_cam2base_true, t_cam2base_true); for (size_t idx = 0; idx < methods.size(); idx++) { Mat rvec_cam2base_true; cv::Rodrigues(R_cam2base_true, rvec_cam2base_true); Mat R_cam2base_est, t_cam2base_est; calibrateHandEye(R_base2gripper, t_base2gripper, R_target2cam, t_target2cam, R_cam2base_est, t_cam2base_est, methods[idx]); Mat rvec_cam2base_est; cv::Rodrigues(R_cam2base_est, rvec_cam2base_est); double rvecDiff = cvtest::norm(rvec_cam2base_true, rvec_cam2base_est, NORM_L2); double tvecDiff = cvtest::norm(t_cam2base_true, t_cam2base_est, NORM_L2); vec_rvec_diff_noise[idx].push_back(rvecDiff); vec_tvec_diff_noise[idx].push_back(tvecDiff); const double epsilon_rvec = eps_rvec_noise[idx]; const double epsilon_tvec = eps_tvec_noise[idx]; //Maybe a better accuracy test would be to compare the mean and std errors with some thresholds? if (rvecDiff > epsilon_rvec || tvecDiff > epsilon_tvec) { ts->printf(cvtest::TS::LOG, "Invalid accuracy (noise) for method: %s, rvecDiff: %f, epsilon_rvec: %f, tvecDiff: %f, epsilon_tvec: %f\n", getMethodName(methods[idx]).c_str(), rvecDiff, epsilon_rvec, tvecDiff, epsilon_tvec); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); } } } } else { { //No noise std::vector R_gripper2base, t_gripper2base; std::vector R_target2cam, t_target2cam; Mat R_cam2gripper_true, t_cam2gripper_true; const bool noise = false; simulateDataEyeInHand(rng, nPoses, R_gripper2base, t_gripper2base, R_target2cam, t_target2cam, noise, R_cam2gripper_true, t_cam2gripper_true); for (size_t idx = 0; idx < methods.size(); idx++) { Mat rvec_cam2gripper_true; cv::Rodrigues(R_cam2gripper_true, rvec_cam2gripper_true); Mat R_cam2gripper_est, t_cam2gripper_est; calibrateHandEye(R_gripper2base, t_gripper2base, R_target2cam, t_target2cam, R_cam2gripper_est, t_cam2gripper_est, methods[idx]); Mat rvec_cam2gripper_est; cv::Rodrigues(R_cam2gripper_est, rvec_cam2gripper_est); double rvecDiff = cvtest::norm(rvec_cam2gripper_true, rvec_cam2gripper_est, NORM_L2); double tvecDiff = cvtest::norm(t_cam2gripper_true, t_cam2gripper_est, NORM_L2); vec_rvec_diff[idx].push_back(rvecDiff); vec_tvec_diff[idx].push_back(tvecDiff); const double epsilon_rvec = eps_rvec[idx]; const double epsilon_tvec = eps_tvec[idx]; //Maybe a better accuracy test would be to compare the mean and std errors with some thresholds? if (rvecDiff > epsilon_rvec || tvecDiff > epsilon_tvec) { ts->printf(cvtest::TS::LOG, "Invalid accuracy (no noise) for method: %s, rvecDiff: %f, epsilon_rvec: %f, tvecDiff: %f, epsilon_tvec: %f\n", getMethodName(methods[idx]).c_str(), rvecDiff, epsilon_rvec, tvecDiff, epsilon_tvec); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); } } } { //Gaussian noise on transformations between calibration target frame and camera frame and between gripper and robot base frames std::vector R_gripper2base, t_gripper2base; std::vector R_target2cam, t_target2cam; Mat R_cam2gripper_true, t_cam2gripper_true; const bool noise = true; simulateDataEyeInHand(rng, nPoses, R_gripper2base, t_gripper2base, R_target2cam, t_target2cam, noise, R_cam2gripper_true, t_cam2gripper_true); for (size_t idx = 0; idx < methods.size(); idx++) { Mat rvec_cam2gripper_true; cv::Rodrigues(R_cam2gripper_true, rvec_cam2gripper_true); Mat R_cam2gripper_est, t_cam2gripper_est; calibrateHandEye(R_gripper2base, t_gripper2base, R_target2cam, t_target2cam, R_cam2gripper_est, t_cam2gripper_est, methods[idx]); Mat rvec_cam2gripper_est; cv::Rodrigues(R_cam2gripper_est, rvec_cam2gripper_est); double rvecDiff = cvtest::norm(rvec_cam2gripper_true, rvec_cam2gripper_est, NORM_L2); double tvecDiff = cvtest::norm(t_cam2gripper_true, t_cam2gripper_est, NORM_L2); vec_rvec_diff_noise[idx].push_back(rvecDiff); vec_tvec_diff_noise[idx].push_back(tvecDiff); const double epsilon_rvec = eps_rvec_noise[idx]; const double epsilon_tvec = eps_tvec_noise[idx]; //Maybe a better accuracy test would be to compare the mean and std errors with some thresholds? if (rvecDiff > epsilon_rvec || tvecDiff > epsilon_tvec) { ts->printf(cvtest::TS::LOG, "Invalid accuracy (noise) for method: %s, rvecDiff: %f, epsilon_rvec: %f, tvecDiff: %f, epsilon_tvec: %f\n", getMethodName(methods[idx]).c_str(), rvecDiff, epsilon_rvec, tvecDiff, epsilon_tvec); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); } } } } } for (size_t idx = 0; idx < methods.size(); idx++) { std::cout << std::endl; printStats(getMethodName(methods[idx]), vec_rvec_diff[idx], vec_tvec_diff[idx]); printStats("(noise) " + getMethodName(methods[idx]), vec_rvec_diff_noise[idx], vec_tvec_diff_noise[idx]); } } /////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Calib3d_CalibrateHandEye, regression_eye_in_hand) { //Eye-in-Hand configuration (camera mounted on the robot end-effector observing a static calibration pattern) const bool eyeToHand = false; CV_CalibrateHandEyeTest test(eyeToHand); test.safe_run(); } TEST(Calib3d_CalibrateHandEye, regression_eye_to_hand) { //Eye-to-Hand configuration (static camera observing a calibration pattern mounted on the robot end-effector) const bool eyeToHand = true; CV_CalibrateHandEyeTest test(eyeToHand); test.safe_run(); } TEST(Calib3d_CalibrateHandEye, regression_17986) { std::vector R_target2cam, t_target2cam; // Dataset contains transformation from base to gripper frame since it contains data for AX = ZB calibration problem std::vector R_base2gripper, t_base2gripper; loadDataset(R_target2cam, t_target2cam, R_base2gripper, t_base2gripper); std::vector methods = {CALIB_HAND_EYE_TSAI, CALIB_HAND_EYE_PARK, CALIB_HAND_EYE_HORAUD, CALIB_HAND_EYE_ANDREFF, CALIB_HAND_EYE_DANIILIDIS}; for (auto method : methods) { SCOPED_TRACE(cv::format("method=%s", getMethodName(method).c_str())); Matx33d R_cam2base_est; Matx31d t_cam2base_est; calibrateHandEye(R_base2gripper, t_base2gripper, R_target2cam, t_target2cam, R_cam2base_est, t_cam2base_est, method); EXPECT_TRUE(checkRange(R_cam2base_est)); EXPECT_TRUE(checkRange(t_cam2base_est)); } } TEST(Calib3d_CalibrateRobotWorldHandEye, regression) { std::vector R_world2cam, t_worldt2cam; std::vector R_base2gripper, t_base2gripper; loadDataset(R_world2cam, t_worldt2cam, R_base2gripper, t_base2gripper); std::vector rvec_R_world2cam; rvec_R_world2cam.reserve(R_world2cam.size()); for (size_t i = 0; i < R_world2cam.size(); i++) { Mat rvec; cv::Rodrigues(R_world2cam[i], rvec); rvec_R_world2cam.push_back(rvec); } std::vector methods = {CALIB_ROBOT_WORLD_HAND_EYE_SHAH, CALIB_ROBOT_WORLD_HAND_EYE_LI}; Matx33d wRb, cRg; Matx31d wtb, ctg; loadResults(wRb, wtb, cRg, ctg); for (auto method : methods) { SCOPED_TRACE(cv::format("method=%s", getMethodName(method).c_str())); Matx33d wRb_est, cRg_est; Matx31d wtb_est, ctg_est; calibrateRobotWorldHandEye(rvec_R_world2cam, t_worldt2cam, R_base2gripper, t_base2gripper, wRb_est, wtb_est, cRg_est, ctg_est, method); EXPECT_TRUE(checkRange(wRb_est)); EXPECT_TRUE(checkRange(wtb_est)); EXPECT_TRUE(checkRange(cRg_est)); EXPECT_TRUE(checkRange(ctg_est)); //Arbitrary thresholds const double rotation_threshold = 1.0; //1deg const double translation_threshold = 50.0; //5cm //X //rotation error Matx33d wRw_est = wRb * wRb_est.t(); Matx31d rvec_wRw_est; cv::Rodrigues(wRw_est, rvec_wRw_est); double X_rotation_error = cv::norm(rvec_wRw_est)*180/CV_PI; //translation error double X_t_error = cv::norm(wtb_est - wtb); SCOPED_TRACE(cv::format("X rotation error=%f", X_rotation_error)); SCOPED_TRACE(cv::format("X translation error=%f", X_t_error)); EXPECT_TRUE(X_rotation_error < rotation_threshold); EXPECT_TRUE(X_t_error < translation_threshold); //Z //rotation error Matx33d cRc_est = cRg * cRg_est.t(); Matx31d rvec_cMc_est; cv::Rodrigues(cRc_est, rvec_cMc_est); double Z_rotation_error = cv::norm(rvec_cMc_est)*180/CV_PI; //translation error double Z_t_error = cv::norm(ctg_est - ctg); SCOPED_TRACE(cv::format("Z rotation error=%f", Z_rotation_error)); SCOPED_TRACE(cv::format("Z translation error=%f", Z_t_error)); EXPECT_TRUE(Z_rotation_error < rotation_threshold); EXPECT_TRUE(Z_t_error < translation_threshold); } } }} // namespace