/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_TEST_COMMON_HPP__ #define __OPENCV_TEST_COMMON_HPP__ #ifdef HAVE_OPENCL #include "opencv2/core/ocl.hpp" #endif namespace cv { namespace dnn { CV__DNN_EXPERIMENTAL_NS_BEGIN static inline void PrintTo(const cv::dnn::Backend& v, std::ostream* os) { switch (v) { case DNN_BACKEND_DEFAULT: *os << "DEFAULT"; return; case DNN_BACKEND_HALIDE: *os << "HALIDE"; return; case DNN_BACKEND_INFERENCE_ENGINE: *os << "DLIE"; return; case DNN_BACKEND_OPENCV: *os << "OCV"; return; } // don't use "default:" to emit compiler warnings *os << "DNN_BACKEND_UNKNOWN(" << (int)v << ")"; } static inline void PrintTo(const cv::dnn::Target& v, std::ostream* os) { switch (v) { case DNN_TARGET_CPU: *os << "CPU"; return; case DNN_TARGET_OPENCL: *os << "OCL"; return; case DNN_TARGET_OPENCL_FP16: *os << "OCL_FP16"; return; case DNN_TARGET_MYRIAD: *os << "MYRIAD"; return; case DNN_TARGET_FPGA: *os << "FPGA"; return; } // don't use "default:" to emit compiler warnings *os << "DNN_TARGET_UNKNOWN(" << (int)v << ")"; } using opencv_test::tuple; using opencv_test::get; static inline void PrintTo(const tuple v, std::ostream* os) { PrintTo(get<0>(v), os); *os << "/"; PrintTo(get<1>(v), os); } CV__DNN_EXPERIMENTAL_NS_END }} // namespace static inline const std::string &getOpenCVExtraDir() { return cvtest::TS::ptr()->get_data_path(); } static inline void normAssert(cv::InputArray ref, cv::InputArray test, const char *comment = "", double l1 = 0.00001, double lInf = 0.0001) { double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total(); EXPECT_LE(normL1, l1) << comment; double normInf = cvtest::norm(ref, test, cv::NORM_INF); EXPECT_LE(normInf, lInf) << comment; } static std::vector matToBoxes(const cv::Mat& m) { EXPECT_EQ(m.type(), CV_32FC1); EXPECT_EQ(m.dims, 2); EXPECT_EQ(m.cols, 4); std::vector boxes(m.rows); for (int i = 0; i < m.rows; ++i) { CV_Assert(m.row(i).isContinuous()); const float* data = m.ptr(i); double l = data[0], t = data[1], r = data[2], b = data[3]; boxes[i] = cv::Rect2d(l, t, r - l, b - t); } return boxes; } static inline void normAssertDetections(const std::vector& refClassIds, const std::vector& refScores, const std::vector& refBoxes, const std::vector& testClassIds, const std::vector& testScores, const std::vector& testBoxes, const char *comment = "", double confThreshold = 0.0, double scores_diff = 1e-5, double boxes_iou_diff = 1e-4) { std::vector matchedRefBoxes(refBoxes.size(), false); for (int i = 0; i < testBoxes.size(); ++i) { double testScore = testScores[i]; if (testScore < confThreshold) continue; int testClassId = testClassIds[i]; const cv::Rect2d& testBox = testBoxes[i]; bool matched = false; for (int j = 0; j < refBoxes.size() && !matched; ++j) { if (!matchedRefBoxes[j] && testClassId == refClassIds[j] && std::abs(testScore - refScores[j]) < scores_diff) { double interArea = (testBox & refBoxes[j]).area(); double iou = interArea / (testBox.area() + refBoxes[j].area() - interArea); if (std::abs(iou - 1.0) < boxes_iou_diff) { matched = true; matchedRefBoxes[j] = true; } } } if (!matched) std::cout << cv::format("Unmatched prediction: class %d score %f box ", testClassId, testScore) << testBox << std::endl; EXPECT_TRUE(matched) << comment; } // Check unmatched reference detections. for (int i = 0; i < refBoxes.size(); ++i) { if (!matchedRefBoxes[i] && refScores[i] > confThreshold) { std::cout << cv::format("Unmatched reference: class %d score %f box ", refClassIds[i], refScores[i]) << refBoxes[i] << std::endl; EXPECT_LE(refScores[i], confThreshold) << comment; } } } // For SSD-based object detection networks which produce output of shape 1x1xNx7 // where N is a number of detections and an every detection is represented by // a vector [batchId, classId, confidence, left, top, right, bottom]. static inline void normAssertDetections(cv::Mat ref, cv::Mat out, const char *comment = "", double confThreshold = 0.0, double scores_diff = 1e-5, double boxes_iou_diff = 1e-4) { CV_Assert(ref.total() % 7 == 0); CV_Assert(out.total() % 7 == 0); ref = ref.reshape(1, ref.total() / 7); out = out.reshape(1, out.total() / 7); cv::Mat refClassIds, testClassIds; ref.col(1).convertTo(refClassIds, CV_32SC1); out.col(1).convertTo(testClassIds, CV_32SC1); std::vector refScores(ref.col(2)), testScores(out.col(2)); std::vector refBoxes = matToBoxes(ref.colRange(3, 7)); std::vector testBoxes = matToBoxes(out.colRange(3, 7)); normAssertDetections(refClassIds, refScores, refBoxes, testClassIds, testScores, testBoxes, comment, confThreshold, scores_diff, boxes_iou_diff); } static inline bool readFileInMemory(const std::string& filename, std::string& content) { std::ios::openmode mode = std::ios::in | std::ios::binary; std::ifstream ifs(filename.c_str(), mode); if (!ifs.is_open()) return false; content.clear(); ifs.seekg(0, std::ios::end); content.reserve(ifs.tellg()); ifs.seekg(0, std::ios::beg); content.assign((std::istreambuf_iterator(ifs)), std::istreambuf_iterator()); return true; } namespace opencv_test { using namespace cv::dnn; static inline testing::internal::ParamGenerator< tuple > dnnBackendsAndTargets( bool withInferenceEngine = true, bool withHalide = false, bool withCpuOCV = true ) { std::vector< tuple > targets; std::vector< Target > available; if (withHalide) { available = getAvailableTargets(DNN_BACKEND_HALIDE); for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i) targets.push_back(make_tuple(DNN_BACKEND_HALIDE, *i)); } if (withInferenceEngine) { available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE); for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i) targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE, *i)); } { available = getAvailableTargets(DNN_BACKEND_OPENCV); for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i) { if (!withCpuOCV && *i == DNN_TARGET_CPU) continue; targets.push_back(make_tuple(DNN_BACKEND_OPENCV, *i)); } } if (targets.empty()) // validate at least CPU mode targets.push_back(make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU)); return testing::ValuesIn(targets); } } // namespace namespace opencv_test { using namespace cv::dnn; class DNNTestLayer : public TestWithParam > { public: dnn::Backend backend; dnn::Target target; double default_l1, default_lInf; DNNTestLayer() { backend = (dnn::Backend)(int)get<0>(GetParam()); target = (dnn::Target)(int)get<1>(GetParam()); getDefaultThresholds(backend, target, &default_l1, &default_lInf); } static void getDefaultThresholds(int backend, int target, double* l1, double* lInf) { if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) { *l1 = 4e-3; *lInf = 2e-2; } else { *l1 = 1e-5; *lInf = 1e-4; } } static void checkBackend(int backend, int target, Mat* inp = 0, Mat* ref = 0) { if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) { if (inp && ref && inp->dims == 4 && ref->dims == 4 && inp->size[0] != 1 && inp->size[0] != ref->size[0]) throw SkipTestException("Inconsistent batch size of input and output blobs for Myriad plugin"); } } protected: void checkBackend(Mat* inp = 0, Mat* ref = 0) { checkBackend(backend, target, inp, ref); } }; } // namespace #endif