/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or bpied warranties, including, but not limited to, the bpied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "opencv2/gpu/device/common.hpp" #include "opencv2/gpu/device/vec_traits.hpp" #include "opencv2/gpu/device/limits.hpp" namespace cv { namespace gpu { namespace device { namespace bgfg_gmg { __constant__ int c_width; __constant__ int c_height; __constant__ float c_minVal; __constant__ float c_maxVal; __constant__ int c_quantizationLevels; __constant__ float c_backgroundPrior; __constant__ float c_decisionThreshold; __constant__ int c_maxFeatures; __constant__ int c_numInitializationFrames; void loadConstants(int width, int height, float minVal, float maxVal, int quantizationLevels, float backgroundPrior, float decisionThreshold, int maxFeatures, int numInitializationFrames) { cudaSafeCall( cudaMemcpyToSymbol(c_width, &width, sizeof(width)) ); cudaSafeCall( cudaMemcpyToSymbol(c_height, &height, sizeof(height)) ); cudaSafeCall( cudaMemcpyToSymbol(c_minVal, &minVal, sizeof(minVal)) ); cudaSafeCall( cudaMemcpyToSymbol(c_maxVal, &maxVal, sizeof(maxVal)) ); cudaSafeCall( cudaMemcpyToSymbol(c_quantizationLevels, &quantizationLevels, sizeof(quantizationLevels)) ); cudaSafeCall( cudaMemcpyToSymbol(c_backgroundPrior, &backgroundPrior, sizeof(backgroundPrior)) ); cudaSafeCall( cudaMemcpyToSymbol(c_decisionThreshold, &decisionThreshold, sizeof(decisionThreshold)) ); cudaSafeCall( cudaMemcpyToSymbol(c_maxFeatures, &maxFeatures, sizeof(maxFeatures)) ); cudaSafeCall( cudaMemcpyToSymbol(c_numInitializationFrames, &numInitializationFrames, sizeof(numInitializationFrames)) ); } __device__ float findFeature(const int color, const PtrStepi& colors, const PtrStepf& weights, const int x, const int y, const int nfeatures) { for (int i = 0, fy = y; i < nfeatures; ++i, fy += c_height) { if (color == colors(fy, x)) return weights(fy, x); } // not in histogram, so return 0. return 0.0f; } __device__ void normalizeHistogram(PtrStepf weights, const int x, const int y, const int nfeatures) { float total = 0.0f; for (int i = 0, fy = y; i < nfeatures; ++i, fy += c_height) total += weights(fy, x); if (total != 0.0f) { for (int i = 0, fy = y; i < nfeatures; ++i, fy += c_height) weights(fy, x) /= total; } } __device__ bool insertFeature(const int color, const float weight, PtrStepi colors, PtrStepf weights, const int x, const int y, int& nfeatures) { for (int i = 0, fy = y; i < nfeatures; ++i, fy += c_height) { if (color == colors(fy, x)) { // feature in histogram weights(fy, x) += weight; return false; } } if (nfeatures == c_maxFeatures) { // discard oldest feature int idx = -1; float minVal = numeric_limits::max(); for (int i = 0, fy = y; i < nfeatures; ++i, fy += c_height) { const float w = weights(fy, x); if (w < minVal) { minVal = w; idx = fy; } } colors(idx, x) = color; weights(idx, x) = weight; return false; } colors(nfeatures * c_height + y, x) = color; weights(nfeatures * c_height + y, x) = weight; ++nfeatures; return true; } namespace detail { template struct Quantization { template __device__ static int apply(const T& val) { int res = 0; res |= static_cast((val.x - c_minVal) * c_quantizationLevels / (c_maxVal - c_minVal)); res |= static_cast((val.y - c_minVal) * c_quantizationLevels / (c_maxVal - c_minVal)) << 8; res |= static_cast((val.z - c_minVal) * c_quantizationLevels / (c_maxVal - c_minVal)) << 16; return res; } }; template <> struct Quantization<1> { template __device__ static int apply(T val) { return static_cast((val - c_minVal) * c_quantizationLevels / (c_maxVal - c_minVal)); } }; } template struct Quantization : detail::Quantization::cn> {}; template __global__ void update(const PtrStep frame, PtrStepb fgmask, PtrStepi colors_, PtrStepf weights_, PtrStepi nfeatures_, const int frameNum, const float learningRate, const bool updateBackgroundModel) { const int x = blockIdx.x * blockDim.x + threadIdx.x; const int y = blockIdx.y * blockDim.y + threadIdx.y; if (x >= c_width || y >= c_height) return; const SrcT pix = frame(y, x); const int newFeatureColor = Quantization::apply(pix); int nfeatures = nfeatures_(y, x); if (frameNum >= c_numInitializationFrames) { // typical operation const float weight = findFeature(newFeatureColor, colors_, weights_, x, y, nfeatures); // see Godbehere, Matsukawa, Goldberg (2012) for reasoning behind this implementation of Bayes rule const float posterior = (weight * c_backgroundPrior) / (weight * c_backgroundPrior + (1.0f - weight) * (1.0f - c_backgroundPrior)); const bool isForeground = ((1.0f - posterior) > c_decisionThreshold); fgmask(y, x) = (uchar)(-isForeground); // update histogram. if (updateBackgroundModel) { for (int i = 0, fy = y; i < nfeatures; ++i, fy += c_height) weights_(fy, x) *= 1.0f - learningRate; bool inserted = insertFeature(newFeatureColor, learningRate, colors_, weights_, x, y, nfeatures); if (inserted) { normalizeHistogram(weights_, x, y, nfeatures); nfeatures_(y, x) = nfeatures; } } } else if (updateBackgroundModel) { // training-mode update insertFeature(newFeatureColor, 1.0f, colors_, weights_, x, y, nfeatures); if (frameNum == c_numInitializationFrames - 1) normalizeHistogram(weights_, x, y, nfeatures); } } template void update_gpu(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream) { const dim3 block(32, 8); const dim3 grid(divUp(frame.cols, block.x), divUp(frame.rows, block.y)); cudaSafeCall( cudaFuncSetCacheConfig(update, cudaFuncCachePreferL1) ); update<<>>((PtrStepSz) frame, fgmask, colors, weights, nfeatures, frameNum, learningRate, updateBackgroundModel); cudaSafeCall( cudaGetLastError() ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } template void update_gpu(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); template void update_gpu(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); template void update_gpu(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); template void update_gpu(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); template void update_gpu(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); template void update_gpu(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); template void update_gpu(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); template void update_gpu(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); template void update_gpu(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); } }}}