#include #include #include #include #include #if defined(HAVE_THREADS) #define USE_THREADS 1 #endif #ifdef USE_THREADS #include #include #include #endif #include "common.hpp" std::string param_keys = "{ help h | | Print help message. }" "{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }" "{ zoo | models.yml | An optional path to file with preprocessing parameters }" "{ device | 0 | camera device number. }" "{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera. }" "{ framework f | | Optional name of an origin framework of the model. Detect it automatically if it does not set. }" "{ classes | | Optional path to a text file with names of classes to label detected objects. }" "{ thr | .5 | Confidence threshold. }" "{ nms | .4 | Non-maximum suppression threshold. }" "{ async | 0 | Number of asynchronous forwards at the same time. " "Choose 0 for synchronous mode }"; std::string backend_keys = cv::format( "{ backend | 0 | Choose one of computation backends: " "%d: automatically (by default), " "%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), " "%d: OpenCV implementation, " "%d: VKCOM, " "%d: CUDA }", cv::dnn::DNN_BACKEND_DEFAULT, cv::dnn::DNN_BACKEND_INFERENCE_ENGINE, cv::dnn::DNN_BACKEND_OPENCV, cv::dnn::DNN_BACKEND_VKCOM, cv::dnn::DNN_BACKEND_CUDA); std::string target_keys = cv::format( "{ target | 0 | Choose one of target computation devices: " "%d: CPU target (by default), " "%d: OpenCL, " "%d: OpenCL fp16 (half-float precision), " "%d: VPU, " "%d: Vulkan, " "%d: CUDA, " "%d: CUDA fp16 (half-float preprocess) }", cv::dnn::DNN_TARGET_CPU, cv::dnn::DNN_TARGET_OPENCL, cv::dnn::DNN_TARGET_OPENCL_FP16, cv::dnn::DNN_TARGET_MYRIAD, cv::dnn::DNN_TARGET_VULKAN, cv::dnn::DNN_TARGET_CUDA, cv::dnn::DNN_TARGET_CUDA_FP16); std::string keys = param_keys + backend_keys + target_keys; using namespace cv; using namespace dnn; float confThreshold, nmsThreshold; std::vector classes; inline void preprocess(const Mat& frame, Net& net, Size inpSize, float scale, const Scalar& mean, bool swapRB); void postprocess(Mat& frame, const std::vector& out, Net& net, int backend); void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame); void callback(int pos, void* userdata); #ifdef USE_THREADS template class QueueFPS : public std::queue { public: QueueFPS() : counter(0) {} void push(const T& entry) { std::lock_guard lock(mutex); std::queue::push(entry); counter += 1; if (counter == 1) { // Start counting from a second frame (warmup). tm.reset(); tm.start(); } } T get() { std::lock_guard lock(mutex); T entry = this->front(); this->pop(); return entry; } float getFPS() { tm.stop(); double fps = counter / tm.getTimeSec(); tm.start(); return static_cast(fps); } void clear() { std::lock_guard lock(mutex); while (!this->empty()) this->pop(); } unsigned int counter; private: TickMeter tm; std::mutex mutex; }; #endif // USE_THREADS int main(int argc, char** argv) { CommandLineParser parser(argc, argv, keys); const std::string modelName = parser.get("@alias"); const std::string zooFile = parser.get("zoo"); keys += genPreprocArguments(modelName, zooFile); parser = CommandLineParser(argc, argv, keys); parser.about("Use this script to run object detection deep learning networks using OpenCV."); if (argc == 1 || parser.has("help")) { parser.printMessage(); return 0; } confThreshold = parser.get("thr"); nmsThreshold = parser.get("nms"); float scale = parser.get("scale"); Scalar mean = parser.get("mean"); bool swapRB = parser.get("rgb"); int inpWidth = parser.get("width"); int inpHeight = parser.get("height"); size_t asyncNumReq = parser.get("async"); CV_Assert(parser.has("model")); std::string modelPath = findFile(parser.get("model")); std::string configPath = findFile(parser.get("config")); // Open file with classes names. if (parser.has("classes")) { std::string file = parser.get("classes"); std::ifstream ifs(file.c_str()); if (!ifs.is_open()) CV_Error(Error::StsError, "File " + file + " not found"); std::string line; while (std::getline(ifs, line)) { classes.push_back(line); } } // Load a model. Net net = readNet(modelPath, configPath, parser.get("framework")); int backend = parser.get("backend"); net.setPreferableBackend(backend); net.setPreferableTarget(parser.get("target")); std::vector outNames = net.getUnconnectedOutLayersNames(); // Create a window static const std::string kWinName = "Deep learning object detection in OpenCV"; namedWindow(kWinName, WINDOW_NORMAL); int initialConf = (int)(confThreshold * 100); createTrackbar("Confidence threshold, %", kWinName, &initialConf, 99, callback); // Open a video file or an image file or a camera stream. VideoCapture cap; if (parser.has("input")) cap.open(parser.get("input")); else cap.open(parser.get("device")); #ifdef USE_THREADS bool process = true; // Frames capturing thread QueueFPS framesQueue; std::thread framesThread([&](){ Mat frame; while (process) { cap >> frame; if (!frame.empty()) framesQueue.push(frame.clone()); else break; } }); // Frames processing thread QueueFPS processedFramesQueue; QueueFPS > predictionsQueue; std::thread processingThread([&](){ std::queue futureOutputs; Mat blob; while (process) { // Get a next frame Mat frame; { if (!framesQueue.empty()) { frame = framesQueue.get(); if (asyncNumReq) { if (futureOutputs.size() == asyncNumReq) frame = Mat(); } else framesQueue.clear(); // Skip the rest of frames } } // Process the frame if (!frame.empty()) { preprocess(frame, net, Size(inpWidth, inpHeight), scale, mean, swapRB); processedFramesQueue.push(frame); if (asyncNumReq) { futureOutputs.push(net.forwardAsync()); } else { std::vector outs; net.forward(outs, outNames); predictionsQueue.push(outs); } } while (!futureOutputs.empty() && futureOutputs.front().wait_for(std::chrono::seconds(0))) { AsyncArray async_out = futureOutputs.front(); futureOutputs.pop(); Mat out; async_out.get(out); predictionsQueue.push({out}); } } }); // Postprocessing and rendering loop while (waitKey(1) < 0) { if (predictionsQueue.empty()) continue; std::vector outs = predictionsQueue.get(); Mat frame = processedFramesQueue.get(); postprocess(frame, outs, net, backend); if (predictionsQueue.counter > 1) { std::string label = format("Camera: %.2f FPS", framesQueue.getFPS()); putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0)); label = format("Network: %.2f FPS", predictionsQueue.getFPS()); putText(frame, label, Point(0, 30), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0)); label = format("Skipped frames: %d", framesQueue.counter - predictionsQueue.counter); putText(frame, label, Point(0, 45), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0)); } imshow(kWinName, frame); } process = false; framesThread.join(); processingThread.join(); #else // USE_THREADS if (asyncNumReq) CV_Error(Error::StsNotImplemented, "Asynchronous forward is supported only with Inference Engine backend."); // Process frames. Mat frame, blob; while (waitKey(1) < 0) { cap >> frame; if (frame.empty()) { waitKey(); break; } preprocess(frame, net, Size(inpWidth, inpHeight), scale, mean, swapRB); std::vector outs; net.forward(outs, outNames); postprocess(frame, outs, net, backend); // Put efficiency information. std::vector layersTimes; double freq = getTickFrequency() / 1000; double t = net.getPerfProfile(layersTimes) / freq; std::string label = format("Inference time: %.2f ms", t); putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0)); imshow(kWinName, frame); } #endif // USE_THREADS return 0; } inline void preprocess(const Mat& frame, Net& net, Size inpSize, float scale, const Scalar& mean, bool swapRB) { static Mat blob; // Create a 4D blob from a frame. if (inpSize.width <= 0) inpSize.width = frame.cols; if (inpSize.height <= 0) inpSize.height = frame.rows; blobFromImage(frame, blob, 1.0, inpSize, Scalar(), swapRB, false, CV_8U); // Run a model. net.setInput(blob, "", scale, mean); if (net.getLayer(0)->outputNameToIndex("im_info") != -1) // Faster-RCNN or R-FCN { resize(frame, frame, inpSize); Mat imInfo = (Mat_(1, 3) << inpSize.height, inpSize.width, 1.6f); net.setInput(imInfo, "im_info"); } } void postprocess(Mat& frame, const std::vector& outs, Net& net, int backend) { static std::vector outLayers = net.getUnconnectedOutLayers(); static std::string outLayerType = net.getLayer(outLayers[0])->type; std::vector classIds; std::vector confidences; std::vector boxes; if (outLayerType == "DetectionOutput") { // Network produces output blob with a shape 1x1xNx7 where N is a number of // detections and an every detection is a vector of values // [batchId, classId, confidence, left, top, right, bottom] CV_Assert(outs.size() > 0); for (size_t k = 0; k < outs.size(); k++) { float* data = (float*)outs[k].data; for (size_t i = 0; i < outs[k].total(); i += 7) { float confidence = data[i + 2]; if (confidence > confThreshold) { int left = (int)data[i + 3]; int top = (int)data[i + 4]; int right = (int)data[i + 5]; int bottom = (int)data[i + 6]; int width = right - left + 1; int height = bottom - top + 1; if (width <= 2 || height <= 2) { left = (int)(data[i + 3] * frame.cols); top = (int)(data[i + 4] * frame.rows); right = (int)(data[i + 5] * frame.cols); bottom = (int)(data[i + 6] * frame.rows); width = right - left + 1; height = bottom - top + 1; } classIds.push_back((int)(data[i + 1]) - 1); // Skip 0th background class id. boxes.push_back(Rect(left, top, width, height)); confidences.push_back(confidence); } } } } else if (outLayerType == "Region") { for (size_t i = 0; i < outs.size(); ++i) { // Network produces output blob with a shape NxC where N is a number of // detected objects and C is a number of classes + 4 where the first 4 // numbers are [center_x, center_y, width, height] float* data = (float*)outs[i].data; for (int j = 0; j < outs[i].rows; ++j, data += outs[i].cols) { Mat scores = outs[i].row(j).colRange(5, outs[i].cols); Point classIdPoint; double confidence; minMaxLoc(scores, 0, &confidence, 0, &classIdPoint); if (confidence > confThreshold) { int centerX = (int)(data[0] * frame.cols); int centerY = (int)(data[1] * frame.rows); int width = (int)(data[2] * frame.cols); int height = (int)(data[3] * frame.rows); int left = centerX - width / 2; int top = centerY - height / 2; classIds.push_back(classIdPoint.x); confidences.push_back((float)confidence); boxes.push_back(Rect(left, top, width, height)); } } } } else CV_Error(Error::StsNotImplemented, "Unknown output layer type: " + outLayerType); // NMS is used inside Region layer only on DNN_BACKEND_OPENCV for another backends we need NMS in sample // or NMS is required if number of outputs > 1 if (outLayers.size() > 1 || (outLayerType == "Region" && backend != DNN_BACKEND_OPENCV)) { std::map > class2indices; for (size_t i = 0; i < classIds.size(); i++) { if (confidences[i] >= confThreshold) { class2indices[classIds[i]].push_back(i); } } std::vector nmsBoxes; std::vector nmsConfidences; std::vector nmsClassIds; for (std::map >::iterator it = class2indices.begin(); it != class2indices.end(); ++it) { std::vector localBoxes; std::vector localConfidences; std::vector classIndices = it->second; for (size_t i = 0; i < classIndices.size(); i++) { localBoxes.push_back(boxes[classIndices[i]]); localConfidences.push_back(confidences[classIndices[i]]); } std::vector nmsIndices; NMSBoxes(localBoxes, localConfidences, confThreshold, nmsThreshold, nmsIndices); for (size_t i = 0; i < nmsIndices.size(); i++) { size_t idx = nmsIndices[i]; nmsBoxes.push_back(localBoxes[idx]); nmsConfidences.push_back(localConfidences[idx]); nmsClassIds.push_back(it->first); } } boxes = nmsBoxes; classIds = nmsClassIds; confidences = nmsConfidences; } for (size_t idx = 0; idx < boxes.size(); ++idx) { Rect box = boxes[idx]; drawPred(classIds[idx], confidences[idx], box.x, box.y, box.x + box.width, box.y + box.height, frame); } } void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame) { rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 255, 0)); std::string label = format("%.2f", conf); if (!classes.empty()) { CV_Assert(classId < (int)classes.size()); label = classes[classId] + ": " + label; } int baseLine; Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); top = max(top, labelSize.height); rectangle(frame, Point(left, top - labelSize.height), Point(left + labelSize.width, top + baseLine), Scalar::all(255), FILLED); putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.5, Scalar()); } void callback(int pos, void*) { confThreshold = pos * 0.01f; }