// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html #include "precomp.hpp" #include "persistence.hpp" #include #include namespace cv { namespace fs { int strcasecmp(const char* s1, const char* s2) { const char* dummy=""; if(!s1) s1=dummy; if(!s2) s2=dummy; size_t len1 = strlen(s1); size_t len2 = strlen(s2); size_t i, len = std::min(len1, len2); for( i = 0; i < len; i++ ) { int d = tolower((int)s1[i]) - tolower((int)s2[i]); if( d != 0 ) return d; } return len1 < len2 ? -1 : len1 > len2 ? 1 : 0; } char* itoa( int _val, char* buffer, int /*radix*/ ) { const int radix = 10; char* ptr=buffer + 23 /* enough even for 64-bit integers */; unsigned val = abs(_val); *ptr = '\0'; do { unsigned r = val / radix; *--ptr = (char)(val - (r*radix) + '0'); val = r; } while( val != 0 ); if( _val < 0 ) *--ptr = '-'; return ptr; } char* doubleToString( char* buf, double value, bool explicitZero ) { Cv64suf val; unsigned ieee754_hi; val.f = value; ieee754_hi = (unsigned)(val.u >> 32); if( (ieee754_hi & 0x7ff00000) != 0x7ff00000 ) { int ivalue = cvRound(value); if( ivalue == value ) { if( explicitZero ) sprintf( buf, "%d.0", ivalue ); else sprintf( buf, "%d.", ivalue ); } else { static const char* fmt = "%.16e"; char* ptr = buf; sprintf( buf, fmt, value ); if( *ptr == '+' || *ptr == '-' ) ptr++; for( ; cv_isdigit(*ptr); ptr++ ) ; if( *ptr == ',' ) *ptr = '.'; } } else { unsigned ieee754_lo = (unsigned)val.u; if( (ieee754_hi & 0x7fffffff) + (ieee754_lo != 0) > 0x7ff00000 ) strcpy( buf, ".Nan" ); else strcpy( buf, (int)ieee754_hi < 0 ? "-.Inf" : ".Inf" ); } return buf; } char* floatToString( char* buf, float value, bool halfprecision, bool explicitZero ) { Cv32suf val; unsigned ieee754; val.f = value; ieee754 = val.u; if( (ieee754 & 0x7f800000) != 0x7f800000 ) { int ivalue = cvRound(value); if( ivalue == value ) { if( explicitZero ) sprintf( buf, "%d.0", ivalue ); else sprintf( buf, "%d.", ivalue ); } else { char* ptr = buf; if (halfprecision) sprintf(buf, "%.4e", value); else sprintf(buf, "%.8e", value); if( *ptr == '+' || *ptr == '-' ) ptr++; for( ; cv_isdigit(*ptr); ptr++ ) ; if( *ptr == ',' ) *ptr = '.'; } } else { if( (ieee754 & 0x7fffffff) != 0x7f800000 ) strcpy( buf, ".Nan" ); else strcpy( buf, (int)ieee754 < 0 ? "-.Inf" : ".Inf" ); } return buf; } static const char symbols[9] = "ucwsifdh"; static char typeSymbol(int depth) { CV_StaticAssert(CV_64F == 6, ""); CV_Assert(depth >=0 && depth <= CV_64F); return symbols[depth]; } static int symbolToType(char c) { const char* pos = strchr( symbols, c ); if( !pos ) CV_Error( CV_StsBadArg, "Invalid data type specification" ); if (c == 'r') return CV_SEQ_ELTYPE_PTR; return static_cast(pos - symbols); } char* encodeFormat(int elem_type, char* dt) { int cn = (elem_type == CV_SEQ_ELTYPE_PTR/*CV_USRTYPE1*/) ? 1 : CV_MAT_CN(elem_type); char symbol = (elem_type == CV_SEQ_ELTYPE_PTR/*CV_USRTYPE1*/) ? 'r' : typeSymbol(CV_MAT_DEPTH(elem_type)); sprintf(dt, "%d%c", cn, symbol); return dt + (cn == 1 ? 1 : 0); } int decodeFormat( const char* dt, int* fmt_pairs, int max_len ) { int fmt_pair_count = 0; int i = 0, k = 0, len = dt ? (int)strlen(dt) : 0; if( !dt || !len ) return 0; assert( fmt_pairs != 0 && max_len > 0 ); fmt_pairs[0] = 0; max_len *= 2; for( ; k < len; k++ ) { char c = dt[k]; if( cv_isdigit(c) ) { int count = c - '0'; if( cv_isdigit(dt[k+1]) ) { char* endptr = 0; count = (int)strtol( dt+k, &endptr, 10 ); k = (int)(endptr - dt) - 1; } if( count <= 0 ) CV_Error( CV_StsBadArg, "Invalid data type specification" ); fmt_pairs[i] = count; } else { int depth = symbolToType(c); if( fmt_pairs[i] == 0 ) fmt_pairs[i] = 1; fmt_pairs[i+1] = depth; if( i > 0 && fmt_pairs[i+1] == fmt_pairs[i-1] ) fmt_pairs[i-2] += fmt_pairs[i]; else { i += 2; if( i >= max_len ) CV_Error( CV_StsBadArg, "Too long data type specification" ); } fmt_pairs[i] = 0; } } fmt_pair_count = i/2; return fmt_pair_count; } int calcElemSize( const char* dt, int initial_size ) { int size = 0; int fmt_pairs[CV_FS_MAX_FMT_PAIRS], i, fmt_pair_count; int comp_size; fmt_pair_count = decodeFormat( dt, fmt_pairs, CV_FS_MAX_FMT_PAIRS ); fmt_pair_count *= 2; for( i = 0, size = initial_size; i < fmt_pair_count; i += 2 ) { comp_size = CV_ELEM_SIZE(fmt_pairs[i+1]); size = cvAlign( size, comp_size ); size += comp_size * fmt_pairs[i]; } if( initial_size == 0 ) { comp_size = CV_ELEM_SIZE(fmt_pairs[1]); size = cvAlign( size, comp_size ); } return size; } int calcStructSize( const char* dt, int initial_size ) { int size = calcElemSize( dt, initial_size ); size_t elem_max_size = 0; for ( const char * type = dt; *type != '\0'; type++ ) { switch ( *type ) { case 'u': { elem_max_size = std::max( elem_max_size, sizeof(uchar ) ); break; } case 'c': { elem_max_size = std::max( elem_max_size, sizeof(schar ) ); break; } case 'w': { elem_max_size = std::max( elem_max_size, sizeof(ushort) ); break; } case 's': { elem_max_size = std::max( elem_max_size, sizeof(short ) ); break; } case 'i': { elem_max_size = std::max( elem_max_size, sizeof(int ) ); break; } case 'f': { elem_max_size = std::max( elem_max_size, sizeof(float ) ); break; } case 'd': { elem_max_size = std::max( elem_max_size, sizeof(double) ); break; } default: break; } } size = cvAlign( size, static_cast(elem_max_size) ); return size; } int decodeSimpleFormat( const char* dt ) { int elem_type = -1; int fmt_pairs[CV_FS_MAX_FMT_PAIRS], fmt_pair_count; fmt_pair_count = decodeFormat( dt, fmt_pairs, CV_FS_MAX_FMT_PAIRS ); if( fmt_pair_count != 1 || fmt_pairs[0] >= CV_CN_MAX) CV_Error( CV_StsError, "Too complex format for the matrix" ); elem_type = CV_MAKETYPE( fmt_pairs[1], fmt_pairs[0] ); return elem_type; } } #if defined __i386__ || defined(_M_IX86) || defined __x86_64__ || defined(_M_X64) #define CV_UNALIGNED_LITTLE_ENDIAN_MEM_ACCESS 1 #else #define CV_UNALIGNED_LITTLE_ENDIAN_MEM_ACCESS 0 #endif static inline int readInt(const uchar* p) { #if CV_UNALIGNED_LITTLE_ENDIAN_MEM_ACCESS return *(const int*)p; #else int val = (int)(p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24)); return val; #endif } static inline double readReal(const uchar* p) { #if CV_UNALIGNED_LITTLE_ENDIAN_MEM_ACCESS return *(const double*)p; #else unsigned val0 = (unsigned)(p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24)); unsigned val1 = (unsigned)(p[4] | (p[5] << 8) | (p[6] << 16) | (p[7] << 24)); Cv64suf val; val.u = val0 | ((uint64)val1 << 32); return val.f; #endif } static inline void writeInt(uchar* p, int ival) { #if CV_UNALIGNED_LITTLE_ENDIAN_MEM_ACCESS int* ip = (int*)p; *ip = ival; #else p[0] = (uchar)ival; p[1] = (uchar)(ival >> 8); p[2] = (uchar)(ival >> 16); p[3] = (uchar)(ival >> 24); #endif } static inline void writeReal(uchar* p, double fval) { #if CV_UNALIGNED_LITTLE_ENDIAN_MEM_ACCESS double* fp = (double*)p; *fp = fval; #else Cv64suf v; v.f = fval; p[0] = (uchar)v.u; p[1] = (uchar)(v.u >> 8); p[2] = (uchar)(v.u >> 16); p[3] = (uchar)(v.u >> 24); p[4] = (uchar)(v.u >> 32); p[5] = (uchar)(v.u >> 40); p[6] = (uchar)(v.u >> 48); p[7] = (uchar)(v.u >> 56); #endif } class FileStorage::Impl : public FileStorage_API { public: void init() { flags = 0; buffer.clear(); bufofs = 0; state = UNDEFINED; is_opened = false; dummy_eof = false; write_mode = false; mem_mode = false; space = 0; wrap_margin = 71; fmt = 0; file = 0; gzfile = 0; empty_stream = true; strbufv.clear(); strbuf = 0; strbufsize = strbufpos = 0; roots.clear(); fs_data.clear(); fs_data_ptrs.clear(); fs_data_blksz.clear(); freeSpaceOfs = 0; str_hash.clear(); str_hash_data.clear(); str_hash_data.resize(1); str_hash_data[0] = '\0'; filename.clear(); lineno = 0; } Impl(FileStorage* _fs) { fs_ext = _fs; init(); } virtual ~Impl() { release(); } void release(String* out=0) { if( is_opened ) { if(out) out->clear(); if( write_mode ) { while( write_stack.size() > 1 ) { endWriteStruct(); } flush(); if( fmt == FileStorage::FORMAT_XML ) puts( "\n" ); else if ( fmt == FileStorage::FORMAT_JSON ) puts( "}\n" ); } closeFile(); if( mem_mode && out ) { *out = cv::String(outbuf.begin(), outbuf.end()); } init(); } } void analyze_file_name( const std::string& file_name, std::vector& params ) { params.clear(); static const char not_file_name = '\n'; static const char parameter_begin = '?'; static const char parameter_separator = '&'; if( file_name.find(not_file_name, (size_t)0) != std::string::npos ) return; size_t beg = file_name.find_last_of(parameter_begin); params.push_back(file_name.substr((size_t)0, beg)); if( beg != std::string::npos ) { size_t end = file_name.size(); beg++; for( size_t param_beg = beg, param_end = beg; param_end < end; param_beg = param_end + 1 ) { param_end = file_name.find_first_of( parameter_separator, param_beg ); if( (param_end == std::string::npos || param_end != param_beg) && param_beg + 1 < end ) { params.push_back( file_name.substr( param_beg, param_end - param_beg ) ); } } } } bool open( const char* filename_or_buf, int _flags, const char* encoding ) { _flags &= ~FileStorage::BASE64; bool ok = true; release(); bool append = (_flags & 3) == FileStorage::APPEND; mem_mode = (_flags & FileStorage::MEMORY) != 0; write_mode = (_flags & 3) != 0; bool isGZ = false; size_t fnamelen = 0; std::vector params; //if ( !mem_mode ) { analyze_file_name( filename_or_buf, params ); if( !params.empty() ) filename = params[0]; /*if( !write_base64 && params.size() >= 2 && std::find(params.begin()+1, params.end(), std::string("base64")) != params.end()) write_base64 = (write_mode || append);*/ } if( filename.size() == 0 && !mem_mode && !write_mode ) CV_Error( CV_StsNullPtr, "NULL or empty filename" ); if( mem_mode && append ) CV_Error( CV_StsBadFlag, "FileStorage::APPEND and FileStorage::MEMORY are not currently compatible" ); flags = _flags; if( !mem_mode ) { char* dot_pos = strrchr((char*)filename.c_str(), '.'); char compression = '\0'; if( dot_pos && dot_pos[1] == 'g' && dot_pos[2] == 'z' && (dot_pos[3] == '\0' || (cv_isdigit(dot_pos[3]) && dot_pos[4] == '\0')) ) { if( append ) { CV_Error(CV_StsNotImplemented, "Appending data to compressed file is not implemented" ); } isGZ = true; compression = dot_pos[3]; if( compression ) dot_pos[3] = '\0', fnamelen--; } if( !isGZ ) { file = fopen(filename.c_str(), !write_mode ? "rt" : !append ? "wt" : "a+t" ); if( !file ) return false; } else { #if USE_ZLIB char mode[] = { write_mode ? 'w' : 'r', 'b', compression ? compression : '3', '\0' }; gzfile = gzopen(filename.c_str(), mode); if( !gzfile ) return false; #else CV_Error(CV_StsNotImplemented, "There is no compressed file storage support in this configuration"); #endif } } roots.clear(); fs_data.clear(); wrap_margin = 71; fmt = FileStorage::FORMAT_AUTO; if( write_mode ) { fmt = flags & FileStorage::FORMAT_MASK; if( mem_mode ) outbuf.clear(); if( fmt == FileStorage::FORMAT_AUTO && !filename.empty() ) { const char* dot_pos = NULL; const char* dot_pos2 = NULL; // like strrchr() implementation, but save two last positions simultaneously for (const char* pos = &filename[0]; pos[0] != 0; pos++) { if( pos[0] == '.' ) { dot_pos2 = dot_pos; dot_pos = pos; } } if (fs::strcasecmp(dot_pos, ".gz") == 0 && dot_pos2 != NULL) { dot_pos = dot_pos2; } fmt = (fs::strcasecmp(dot_pos, ".xml") == 0 || fs::strcasecmp(dot_pos, ".xml.gz") == 0 ) ? FileStorage::FORMAT_XML : (fs::strcasecmp(dot_pos, ".json") == 0 || fs::strcasecmp(dot_pos, ".json.gz") == 0) ? FileStorage::FORMAT_JSON : FileStorage::FORMAT_YAML; } else if( fmt == FileStorage::FORMAT_AUTO ) { fmt = FileStorage::FORMAT_XML; } // we use factor=6 for XML (the longest characters (' and ") are encoded with 6 bytes (' and ") // and factor=4 for YAML ( as we use 4 bytes for non ASCII characters (e.g. \xAB)) int buf_size = CV_FS_MAX_LEN*(fmt == FileStorage::FORMAT_XML ? 6 : 4) + 1024; if (append) { fseek( file, 0, SEEK_END ); if (ftell(file) == 0) append = false; } write_stack.clear(); empty_stream = true; write_stack.push_back(FStructData("", FileNode::MAP | FileNode::EMPTY, 0)); buffer.reserve(buf_size + 1024); buffer.resize(buf_size); bufofs = 0; if( fmt == FileStorage::FORMAT_XML ) { size_t file_size = file ? (size_t)ftell(file) : (size_t)0; if( !append || file_size == 0 ) { if( encoding && *encoding != '\0' ) { if( fs::strcasecmp(encoding, "UTF-16" ) == 0 ) { release(); CV_Error( CV_StsBadArg, "UTF-16 XML encoding is not supported! Use 8-bit encoding\n"); } CV_Assert( strlen(encoding) < 1000 ); char buf[1100]; sprintf(buf, "\n", encoding); puts( buf ); } else puts( "\n" ); puts( "\n" ); } else { int xml_buf_size = 1 << 10; char substr[] = ""; int last_occurence = -1; xml_buf_size = MIN(xml_buf_size, int(file_size)); fseek( file, -xml_buf_size, SEEK_END ); std::vector xml_buf_(xml_buf_size+2); // find the last occurrence of for(;;) { int line_offset = (int)ftell( file ); const char* ptr0 = this->gets(&xml_buf_[0], xml_buf_size ); const char* ptr = NULL; if( !ptr0 ) break; ptr = ptr0; for(;;) { ptr = strstr( ptr, substr ); if( !ptr ) break; last_occurence = line_offset + (int)(ptr - ptr0); ptr += strlen(substr); } } if( last_occurence < 0 ) { release(); CV_Error( CV_StsError, "Could not find in the end of file.\n" ); } closeFile(); file = fopen( filename.c_str(), "r+t" ); CV_Assert(file != 0); fseek( file, last_occurence, SEEK_SET ); // replace the last "" with " ", which has the same length puts( " " ); fseek( file, 0, SEEK_END ); puts( "\n" ); } emitter = createXMLEmitter(this); } else if( fmt == FileStorage::FORMAT_YAML ) { if( !append) puts( "%YAML:1.0\n---\n" ); else puts( "...\n---\n" ); emitter = createYAMLEmitter(this); } else { CV_Assert( fmt == FileStorage::FORMAT_JSON ); if( !append ) puts( "{\n" ); else { bool valid = false; long roffset = 0; for ( ; fseek( file, roffset, SEEK_END ) == 0; roffset -= 1 ) { const char end_mark = '}'; if ( fgetc( file ) == end_mark ) { fseek( file, roffset, SEEK_END ); valid = true; break; } } if ( valid ) { closeFile(); file = fopen( filename.c_str(), "r+t" ); CV_Assert(file != 0); fseek( file, roffset, SEEK_END ); fputs( ",", file ); } else { CV_Error( CV_StsError, "Could not find '}' in the end of file.\n" ); } } write_stack.back().indent = 4; emitter = createJSONEmitter(this); } is_opened = true; } else { const size_t buf_size0 = 1 << 20; size_t buf_size = buf_size0; if( mem_mode ) { strbuf = (char*)filename_or_buf; strbufsize = strlen(strbuf); } const char* yaml_signature = "%YAML"; const char* json_signature = "{"; const char* xml_signature = "gets( buf, sizeof(buf)-2 ); char* bufPtr = cv_skip_BOM(buf); size_t bufOffset = bufPtr - buf; if(strncmp( bufPtr, yaml_signature, strlen(yaml_signature) ) == 0) fmt = FileStorage::FORMAT_YAML; else if(strncmp( bufPtr, json_signature, strlen(json_signature) ) == 0) fmt = FileStorage::FORMAT_JSON; else if(strncmp( bufPtr, xml_signature, strlen(xml_signature) ) == 0) fmt = FileStorage::FORMAT_XML; else if(strbufsize == bufOffset) CV_Error(CV_BADARG_ERR, "Input file is invalid"); else CV_Error(CV_BADARG_ERR, "Unsupported file storage format"); if( !isGZ ) { if( !mem_mode ) { fseek( file, 0, SEEK_END ); buf_size = ftell( file ); } else buf_size = strbufsize; buf_size = MIN( buf_size, buf_size0 ); buf_size = MAX( buf_size, (size_t)(CV_FS_MAX_LEN*6 + 1024) ); } rewind(); strbufpos = bufOffset; buffer.reserve(buf_size + 256); buffer.resize(buf_size); bufofs = 0; try { char* ptr = bufferStart(); ptr[0] = ptr[1] = ptr[2] = '\0'; FileNode root_nodes(fs_ext, 0, 0); uchar* rptr = reserveNodeSpace(root_nodes, 9); *rptr = FileNode::SEQ; writeInt(rptr + 1, 4); writeInt(rptr + 5, 0); roots.clear(); switch (fmt) { case FileStorage::FORMAT_XML: parser = createXMLParser(this); break; case FileStorage::FORMAT_YAML: parser = createYAMLParser(this); break; case FileStorage::FORMAT_JSON: parser = createJSONParser(this); break; default: parser = Ptr(); } if( !parser.empty() ) { ok = parser->parse(ptr); if( ok ) { finalizeCollection(root_nodes); CV_Assert( !fs_data_ptrs.empty() ); FileNode roots_node(fs_ext, 0, 0); size_t i, nroots = roots_node.size(); FileNodeIterator it = roots_node.begin(); for( i = 0; i < nroots; i++, ++it ) roots.push_back(*it); } } } catch(...) { is_opened = true; release(); throw; } // release resources that we do not need anymore closeFile(); is_opened = true; std::vector tmpbuf; std::swap(buffer, tmpbuf); bufofs = 0; } return ok; } void puts( const char* str ) { CV_Assert( write_mode ); if( mem_mode ) std::copy(str, str + strlen(str), std::back_inserter(outbuf)); else if( file ) fputs( str, file ); #if USE_ZLIB else if( gzfile ) gzputs( gzfile, str ); #endif else CV_Error( CV_StsError, "The storage is not opened" ); } char* gets( char* str, int maxCount ) { if( strbuf ) { size_t i = strbufpos, len = strbufsize; int j = 0; const char* instr = strbuf; while( i < len && j < maxCount-1 ) { char c = instr[i++]; if( c == '\0' ) break; str[j++] = c; if( c == '\n' ) break; } str[j++] = '\0'; strbufpos = i; if (maxCount > 256 && !(flags & cv::FileStorage::BASE64)) CV_Assert(j < maxCount - 1 && "OpenCV persistence doesn't support very long lines"); return j > 1 ? str : 0; } if( file ) { char* ptr = fgets( str, maxCount, file ); if (ptr && maxCount > 256 && !(flags & cv::FileStorage::BASE64)) { size_t sz = strnlen(ptr, maxCount); CV_Assert(sz < (size_t)(maxCount - 1) && "OpenCV persistence doesn't support very long lines"); } return ptr; } #if USE_ZLIB if( gzfile ) { char* ptr = gzgets( gzfile, str, maxCount ); if (ptr && maxCount > 256 && !(flags & cv::FileStorage::BASE64)) { size_t sz = strnlen(ptr, maxCount); CV_Assert(sz < (size_t)(maxCount - 1) && "OpenCV persistence doesn't support very long lines"); } return ptr; } #endif CV_Error(CV_StsError, "The storage is not opened"); } char* gets() { char* ptr = this->gets(bufferStart(), (int)(bufferEnd() - bufferStart())); if( !ptr ) { ptr = bufferStart(); // FIXIT Why do we need this hack? What is about other parsers JSON/YAML? *ptr = '\0'; setEof(); return 0; } else { FileStorage_API* fs = this; int l = (int)strlen(ptr); if( l > 0 && ptr[l-1] != '\n' && ptr[l-1] != '\r' && !eof() ) CV_PARSE_ERROR_CPP("Too long string or a last string w/o newline"); } lineno++; return ptr; } bool eof() { if( dummy_eof ) return true; if( strbuf ) return strbufpos >= strbufsize; if( file ) return feof(file) != 0; #if USE_ZLIB if( gzfile ) return gzeof(gzfile) != 0; #endif return false; } void setEof() { dummy_eof = true; } void closeFile() { if( file ) fclose( file ); #if USE_ZLIB else if( gzfile ) gzclose( gzfile ); #endif file = 0; gzfile = 0; strbuf = 0; strbufpos = 0; is_opened = false; } void rewind() { if( file ) ::rewind(file); #if USE_ZLIB else if( gzfile ) gzrewind(gzfile); #endif strbufpos = 0; } char* resizeWriteBuffer( char* ptr, int len ) { const char* buffer_end = &buffer[0] + buffer.size(); if( ptr + len < buffer_end ) return ptr; const char* buffer_start = &buffer[0]; int written_len = (int)(ptr - buffer_start); CV_Assert(written_len <= (int)buffer.size()); int new_size = (int)((buffer_end - buffer_start)*3/2); new_size = MAX( written_len + len, new_size ); buffer.reserve( new_size + 256 ); buffer.resize( new_size ); bufofs = written_len; return &buffer[0] + bufofs; } char* flush() { char* buffer_start = &buffer[0]; char* ptr = buffer_start + bufofs; if( ptr > buffer_start + space ) { ptr[0] = '\n'; ptr[1] = '\0'; puts( buffer_start ); bufofs = 0; } int indent = write_stack.back().indent; if( space != indent ) { memset( buffer_start, ' ', indent ); space = indent; } bufofs = space; ptr = buffer_start + bufofs; return ptr; } void endWriteStruct() { CV_Assert( write_mode ); CV_Assert( !write_stack.empty() ); FStructData& current_struct = write_stack.back(); if( fmt == FileStorage::FORMAT_JSON && !FileNode::isFlow(current_struct.flags) && write_stack.size() > 1 ) current_struct.indent = write_stack[write_stack.size() - 2].indent; emitter->endWriteStruct(current_struct); write_stack.pop_back(); if( !write_stack.empty() ) write_stack.back().flags &= ~FileNode::EMPTY; } void startWriteStruct( const char* key, int struct_flags, const char* type_name ) { CV_Assert( write_mode ); struct_flags = (struct_flags & (FileNode::TYPE_MASK|FileNode::FLOW)) | FileNode::EMPTY; if( !FileNode::isCollection(struct_flags)) CV_Error( CV_StsBadArg, "Some collection type: FileNode::SEQ or FileNode::MAP must be specified" ); if( type_name && type_name[0] == '\0' ) type_name = 0; FStructData s = emitter->startWriteStruct( write_stack.back(), key, struct_flags, type_name ); write_stack.push_back(s); size_t write_stack_size = write_stack.size(); if( write_stack_size > 1 ) write_stack[write_stack_size-2].flags &= ~FileNode::EMPTY; if( !FileNode::isFlow(s.flags) ) flush(); if( fmt == FileStorage::FORMAT_JSON && type_name && type_name[0] && FileNode::isMap(struct_flags)) { emitter->write("type_id", type_name, false); } } void writeComment( const char* comment, bool eol_comment ) { CV_Assert(write_mode); emitter->writeComment( comment, eol_comment ); } void startNextStream() { CV_Assert(write_mode); if( !empty_stream ) { while( !write_stack.empty() ) endWriteStruct(); flush(); emitter->startNextStream(); empty_stream = true; write_stack.push_back(FStructData("", FileNode::EMPTY, 0)); bufofs = 0; } } void write( const String& key, int value ) { CV_Assert(write_mode); emitter->write(key.c_str(), value); } void write( const String& key, double value ) { CV_Assert(write_mode); emitter->write(key.c_str(), value); } void write( const String& key, const String& value ) { CV_Assert(write_mode); emitter->write(key.c_str(), value.c_str(), false); } void writeRawData( const std::string& dt, const void* _data, size_t len ) { CV_Assert(write_mode); size_t elemSize = fs::calcStructSize(dt.c_str(), 0); CV_Assert( len % elemSize == 0 ); len /= elemSize; bool explicitZero = fmt == FileStorage::FORMAT_JSON; const uchar* data0 = (const uchar*)_data; int fmt_pairs[CV_FS_MAX_FMT_PAIRS*2], k, fmt_pair_count; char buf[256] = ""; fmt_pair_count = fs::decodeFormat( dt.c_str(), fmt_pairs, CV_FS_MAX_FMT_PAIRS ); if( !len ) return; if( !data0 ) CV_Error( CV_StsNullPtr, "Null data pointer" ); if( fmt_pair_count == 1 ) { fmt_pairs[0] *= (int)len; len = 1; } for(;len--; data0 += elemSize) { int offset = 0; for( k = 0; k < fmt_pair_count; k++ ) { int i, count = fmt_pairs[k*2]; int elem_type = fmt_pairs[k*2+1]; int elem_size = CV_ELEM_SIZE(elem_type); const char *ptr; offset = cvAlign( offset, elem_size ); const uchar* data = data0 + offset; for( i = 0; i < count; i++ ) { switch( elem_type ) { case CV_8U: ptr = fs::itoa( *(uchar*)data, buf, 10 ); data++; break; case CV_8S: ptr = fs::itoa( *(char*)data, buf, 10 ); data++; break; case CV_16U: ptr = fs::itoa( *(ushort*)data, buf, 10 ); data += sizeof(ushort); break; case CV_16S: ptr = fs::itoa( *(short*)data, buf, 10 ); data += sizeof(short); break; case CV_32S: ptr = fs::itoa( *(int*)data, buf, 10 ); data += sizeof(int); break; case CV_32F: ptr = fs::floatToString( buf, *(float*)data, false, explicitZero ); data += sizeof(float); break; case CV_64F: ptr = fs::doubleToString( buf, *(double*)data, explicitZero ); data += sizeof(double); break; case CV_16F: /* reference */ ptr = fs::floatToString( buf, (float)*(float16_t*)data, true, explicitZero ); data += sizeof(float16_t); break; default: CV_Error( CV_StsUnsupportedFormat, "Unsupported type" ); return; } emitter->writeScalar(0, ptr); } offset = (int)(data - data0); } } } void writeRawDataBase64(const void* /*data*/, int /*len*/, const char* /*dt*/ ) { } String releaseAndGetString(); FileNode getFirstTopLevelNode() const { return roots.empty() ? FileNode() : roots[0]; } FileNode root(int streamIdx=0) const { return streamIdx >= 0 && streamIdx < (int)roots.size() ? roots[streamIdx] : FileNode(); } FileNode operator[](const String& nodename) const { return this->operator[](nodename.c_str()); } FileNode operator[](const char* /*nodename*/) const { return FileNode(); } int getFormat() const { return fmt; } char* bufferPtr() const { return (char*)(&buffer[0] + bufofs); } char* bufferStart() const { return (char*)&buffer[0]; } char* bufferEnd() const { return (char*)(&buffer[0] + buffer.size()); } void setBufferPtr(char* ptr) { char* bufferstart = bufferStart(); CV_Assert( ptr >= bufferstart && ptr <= bufferEnd() ); bufofs = ptr - bufferstart; } int wrapMargin() const { return wrap_margin; } FStructData& getCurrentStruct() { CV_Assert(!write_stack.empty()); return write_stack.back(); } void setNonEmpty() { empty_stream = false; } void processSpecialDouble( char* buf, double* value, char** endptr ) { FileStorage_API* fs = this; char c = buf[0]; int inf_hi = 0x7ff00000; if( c == '-' || c == '+' ) { inf_hi = c == '-' ? 0xfff00000 : 0x7ff00000; c = *++buf; } if( c != '.' ) CV_PARSE_ERROR_CPP( "Bad format of floating-point constant" ); Cv64suf v; v.f = 0.; if( toupper(buf[1]) == 'I' && toupper(buf[2]) == 'N' && toupper(buf[3]) == 'F' ) v.u = (uint64)inf_hi << 32; else if( toupper(buf[1]) == 'N' && toupper(buf[2]) == 'A' && toupper(buf[3]) == 'N' ) v.u = (uint64)-1; else CV_PARSE_ERROR_CPP( "Bad format of floating-point constant" ); *value = v.f; *endptr = buf + 4; } double strtod( char* ptr, char** endptr ) { double fval = ::strtod( ptr, endptr ); if( **endptr == '.' ) { char* dot_pos = *endptr; *dot_pos = ','; double fval2 = ::strtod( ptr, endptr ); *dot_pos = '.'; if( *endptr > dot_pos ) fval = fval2; else *endptr = dot_pos; } if( *endptr == ptr || cv_isalpha(**endptr) ) processSpecialDouble( ptr, &fval, endptr ); return fval; } void convertToCollection(int type, FileNode& node) { CV_Assert( type == FileNode::SEQ || type == FileNode::MAP ); int node_type = node.type(); if( node_type == type ) return; bool named = node.isNamed(); uchar* ptr = node.ptr() + 1 + (named ? 4 : 0); int ival = 0; double fval = 0; std::string sval; bool add_first_scalar = false; if( node_type != FileNode::NONE ) { // scalar nodes can only be converted to sequences, e.g. in XML: // 5[parser_position]... => create 5 with name "a" // 5 6[parser_position]... => 5 is converted to [5] and then 6 is added to it // // otherwise we don't know where to get the element names from CV_Assert( type == FileNode::SEQ ); if( node_type == FileNode::INT ) { ival = readInt(ptr); add_first_scalar = true; } else if( node_type == FileNode::REAL ) { fval = readReal(ptr); add_first_scalar = true; } else if( node_type == FileNode::STRING ) { sval = std::string(node); add_first_scalar = true; } else CV_Error_(Error::StsError, ("The node of type %d cannot be converted to collection", node_type)); } ptr = reserveNodeSpace(node, 1 + (named ? 4 : 0) + 4 + 4); *ptr++ = (uchar)(type | (named ? FileNode::NAMED : 0)); // name has been copied automatically if( named ) ptr += 4; // set raw_size(collection)==4, nelems(collection)==1 writeInt(ptr, 4); writeInt(ptr + 4, 0); if( add_first_scalar ) addNode(node, std::string(), node_type, node_type == FileNode::INT ? (const void*)&ival : node_type == FileNode::REAL ? (const void*)&fval : node_type == FileNode::STRING ? (const void*)sval.c_str() : 0, -1); } // a) allocates new FileNode (for that just set blockIdx to the last block and ofs to freeSpaceOfs) or // b) reallocates just created new node (blockIdx and ofs must be taken from FileNode). // If there is no enough space in the current block (it should be the last block added so far), // the last block is shrunk so that it ends immediately before the reallocated node. Then, // a new block of sufficient size is allocated and the FileNode is placed in the beginning of it. // The case (a) can be used to allocate the very first node by setting blockIdx == ofs == 0. // In the case (b) the existing tag and the name are copied automatically. uchar* reserveNodeSpace(FileNode& node, size_t sz) { uchar *ptr = 0, *blockEnd = 0; if( !fs_data_ptrs.empty() ) { size_t blockIdx = node.blockIdx; size_t ofs = node.ofs; CV_Assert( blockIdx == fs_data_ptrs.size()-1 ); CV_Assert( ofs <= fs_data_blksz[blockIdx] ); //CV_Assert( freeSpaceOfs <= ofs + sz ); ptr = fs_data_ptrs[blockIdx] + ofs; blockEnd = fs_data_ptrs[blockIdx] + fs_data_blksz[blockIdx]; if( ptr + sz <= blockEnd ) { freeSpaceOfs = ofs + sz; return ptr; } fs_data[blockIdx]->resize(ofs); fs_data_blksz[blockIdx] = ofs; } size_t blockSize = std::max((size_t)CV_FS_MAX_LEN*4 - 256, sz) + 256; Ptr > pv = makePtr >(blockSize); fs_data.push_back(pv); uchar* new_ptr = &pv->at(0); fs_data_ptrs.push_back(new_ptr); fs_data_blksz.push_back(blockSize); node.blockIdx = fs_data_ptrs.size()-1; node.ofs = 0; freeSpaceOfs = sz; if( ptr && ptr + 5 <= blockEnd ) { new_ptr[0] = ptr[0]; if( ptr[0] & FileNode::NAMED ) { new_ptr[1] = ptr[1]; new_ptr[2] = ptr[2]; new_ptr[3] = ptr[3]; new_ptr[4] = ptr[4]; } } return new_ptr; } unsigned getStringOfs( const std::string& key ) { str_hash_t::iterator it = str_hash.find(key); return it != str_hash.end() ? it->second : 0; } FileNode addNode( FileNode& collection, const std::string& key, int elem_type, const void* value, int len ) { FileStorage_API* fs = this; bool noname = key.empty() || (fmt == FileStorage::FORMAT_XML && strcmp(key.c_str(), "_") == 0); convertToCollection( noname ? FileNode::SEQ : FileNode::MAP, collection ); bool isseq = collection.empty() ? false : collection.isSeq(); if( noname != isseq ) CV_PARSE_ERROR_CPP( noname ? "Map element should have a name" : "Sequence element should not have name (use <_>)" ); unsigned strofs = 0; if( !noname ) { strofs = getStringOfs(key); if( !strofs ) { strofs = (unsigned)str_hash_data.size(); size_t keysize = key.size() + 1; str_hash_data.resize(strofs + keysize); memcpy(&str_hash_data[0] + strofs, &key[0], keysize); str_hash.insert(std::make_pair(key, strofs)); } } uchar* cp = collection.ptr(); size_t blockIdx = fs_data_ptrs.size() - 1; size_t ofs = freeSpaceOfs; FileNode node(fs_ext, blockIdx, ofs); size_t sz0 = 1 + (noname ? 0 : 4) + 8; uchar* ptr = reserveNodeSpace(node, sz0); *ptr++ = (uchar)(elem_type | (noname ? 0 : FileNode::NAMED)); if( elem_type == FileNode::NONE ) freeSpaceOfs -= 8; if( !noname ) { writeInt(ptr, (int)strofs); ptr += 4; } if( elem_type == FileNode::SEQ || elem_type == FileNode::MAP ) { writeInt(ptr, 4); writeInt(ptr, 0); } if( value ) node.setValue(elem_type, value, len); if( collection.isNamed() ) cp += 4; int nelems = readInt(cp + 5); writeInt(cp + 5, nelems + 1); return node; } void finalizeCollection( FileNode& collection ) { if( !collection.isSeq() && !collection.isMap() ) return; uchar* ptr0 = collection.ptr(), *ptr = ptr0 + 1; if( *ptr0 & FileNode::NAMED ) ptr += 4; size_t blockIdx = collection.blockIdx; size_t ofs = collection.ofs + (size_t)(ptr + 8 - ptr0); size_t rawSize = 4; unsigned sz = (unsigned)readInt(ptr + 4); if( sz > 0 ) { size_t lastBlockIdx = fs_data_ptrs.size() - 1; for( ; blockIdx < lastBlockIdx; blockIdx++ ) { rawSize += fs_data_blksz[blockIdx] - ofs; ofs = 0; } } rawSize += freeSpaceOfs - ofs; writeInt(ptr, (int)rawSize); } void normalizeNodeOfs(size_t& blockIdx, size_t& ofs) { while( ofs >= fs_data_blksz[blockIdx] ) { if( blockIdx == fs_data_blksz.size() - 1 ) { CV_Assert( ofs == fs_data_blksz[blockIdx] ); break; } ofs -= fs_data_blksz[blockIdx]; blockIdx++; } } class Base64Decoder { public: Base64Decoder() { ofs = 0; ptr = 0; indent = 0; totalchars = 0; eos = true; } void init(Ptr& _parser, char* _ptr, int _indent) { parser = _parser; ptr = _ptr; indent = _indent; encoded.clear(); decoded.clear(); ofs = 0; totalchars = 0; eos = false; } bool readMore(int needed) { static const uchar base64tab[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 62, 0, 0, 0, 63, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; if( eos ) return false; size_t sz = decoded.size(); CV_Assert( ofs <= sz ); sz -= ofs; for( size_t i = 0; i < sz; i++ ) decoded[i] = decoded[ofs + i]; decoded.resize(sz); ofs = 0; CV_Assert( !parser.empty() && ptr ); char *beg = 0, *end = 0; bool ok = parser->getBase64Row(ptr, indent, beg, end); ptr = end; std::copy(beg, end, std::back_inserter(encoded)); totalchars += end - beg; if( !ok || beg == end ) { // in the end of base64 sequence pad it with '=' characters so that // its total length is multiple of eos = true; size_t tc = totalchars; for( ; tc % 4 != 0; tc++ ) encoded.push_back('='); } int i = 0, j, n = (int)encoded.size(); if( n > 0 ) { const uchar* tab = base64tab; char* src = &encoded[0]; for( ; i <= n - 4; i += 4 ) { // dddddd cccccc bbbbbb aaaaaa => ddddddcc ccccbbbb bbaaaaaa uchar d = tab[(int)(uchar)src[i]], c = tab[(int)(uchar)src[i+1]]; uchar b = tab[(int)(uchar)src[i+2]], a = tab[(int)(uchar)src[i+3]]; decoded.push_back((uchar)((d << 2) | (c >> 4))); decoded.push_back((uchar)((c << 4) | (b >> 2))); decoded.push_back((uchar)((b << 6) | a)); } } if( i > 0 && encoded[i-1] == '=' ) { if( i > 1 && encoded[i-2] == '=' && !decoded.empty() ) decoded.pop_back(); if( !decoded.empty() ) decoded.pop_back(); } n -= i; for( j = 0; j < n; j++ ) encoded[j] = encoded[i + j]; encoded.resize(n); return (int)decoded.size() >= needed; } uchar getUInt8() { size_t sz = decoded.size(); if( ofs >= sz && !readMore(1) ) return (uchar)0; return decoded[ofs++]; } ushort getUInt16() { size_t sz = decoded.size(); if( ofs + 2 > sz && !readMore(2) ) return (ushort)0; ushort val = (decoded[ofs] + (decoded[ofs + 1] << 8)); ofs += 2; return val; } int getInt32() { size_t sz = decoded.size(); if( ofs + 4 > sz && !readMore(4) ) return 0; int ival = readInt(&decoded[ofs]); ofs += 4; return ival; } double getFloat64() { size_t sz = decoded.size(); if( ofs + 8 > sz && !readMore(8) ) return 0; double fval = readReal(&decoded[ofs]); ofs += 8; return fval; } bool endOfStream() const { return eos; } char* getPtr() const { return ptr; } protected: Ptr parser; char* ptr; int indent; std::vector encoded; std::vector decoded; size_t ofs; size_t totalchars; bool eos; }; char* parseBase64(char* ptr, int indent, FileNode& collection) { const int BASE64_HDR_SIZE = 24; char dt[BASE64_HDR_SIZE+1] = {0}; base64decoder.init(parser, ptr, indent); int i, k; for( i = 0; i < BASE64_HDR_SIZE; i++ ) dt[i] = (char)base64decoder.getUInt8(); for( i = 0; i < BASE64_HDR_SIZE; i++ ) if( isspace(dt[i])) break; dt[i] = '\0'; CV_Assert( !base64decoder.endOfStream() ); int fmt_pairs[CV_FS_MAX_FMT_PAIRS*2]; int fmt_pair_count = fs::decodeFormat( dt, fmt_pairs, CV_FS_MAX_FMT_PAIRS ); int ival = 0; double fval = 0; for(;;) { for( k = 0; k < fmt_pair_count; k++ ) { int elem_type = fmt_pairs[k*2+1]; int count = fmt_pairs[k*2]; for( i = 0; i < count; i++ ) { int node_type = FileNode::INT; switch( elem_type ) { case CV_8U: ival = base64decoder.getUInt8(); break; case CV_8S: ival = (char)base64decoder.getUInt8(); break; case CV_16U: ival = base64decoder.getUInt16(); break; case CV_16S: ival = (short)base64decoder.getUInt16(); break; case CV_32S: ival = base64decoder.getInt32(); break; case CV_32F: { Cv32suf v; v.i = base64decoder.getInt32(); fval = v.f; node_type = FileNode::REAL; } break; case CV_64F: fval = base64decoder.getFloat64(); node_type = FileNode::REAL; break; case CV_16F: fval = (float)float16_t::fromBits(base64decoder.getUInt16()); node_type = FileNode::REAL; break; default: CV_Error( Error::StsUnsupportedFormat, "Unsupported type" ); } if( base64decoder.endOfStream() ) break; addNode(collection, std::string(), node_type, node_type == FileNode::INT ? (void*)&ival : (void*)&fval, -1); } } if( base64decoder.endOfStream() ) break; } finalizeCollection(collection); return base64decoder.getPtr(); } void parseError( const char* func_name, const std::string& err_msg, const char* source_file, int source_line ) { std::string msg = format("%s(%d): %s", filename.c_str(), lineno, err_msg.c_str()); error(Error::StsParseError, func_name, msg.c_str(), source_file, source_line ); } const uchar* getNodePtr(size_t blockIdx, size_t ofs) const { CV_Assert( blockIdx < fs_data_ptrs.size()); CV_Assert( ofs < fs_data_blksz[blockIdx]); return fs_data_ptrs[blockIdx] + ofs; } std::string getName( size_t nameofs ) const { CV_Assert( nameofs < str_hash_data.size() ); return std::string(&str_hash_data[nameofs]); } FileStorage* getFS() { return fs_ext; } FileStorage* fs_ext; std::string filename; int flags; bool empty_stream; FILE* file; gzFile gzfile; bool is_opened; bool dummy_eof; bool write_mode; bool mem_mode; int fmt; State state; //!< current state of the FileStorage (used only for writing) int space, wrap_margin; std::deque write_stack; std::vector buffer; size_t bufofs; std::deque outbuf; Ptr emitter; Ptr parser; Base64Decoder base64decoder; std::vector roots; std::vector > > fs_data; std::vector fs_data_ptrs; std::vector fs_data_blksz; size_t freeSpaceOfs; typedef std::unordered_map str_hash_t; str_hash_t str_hash; std::vector str_hash_data; std::vector strbufv; char* strbuf; size_t strbufsize; size_t strbufpos; int lineno; }; FileStorage::FileStorage() : state(0) { p = makePtr(this); } FileStorage::FileStorage(const String& filename, int flags, const String& encoding) : state(0) { p = makePtr(this); bool ok = p->open(filename.c_str(), flags, encoding.c_str()); if(ok) state = FileStorage::NAME_EXPECTED + FileStorage::INSIDE_MAP; } void FileStorage::startWriteStruct(const String& name, int struct_flags, const String& typeName) { p->startWriteStruct(name.c_str(), struct_flags, typeName.c_str()); elname = String(); if ((struct_flags & FileNode::TYPE_MASK) == FileNode::SEQ) state = FileStorage::VALUE_EXPECTED; else state = FileStorage::NAME_EXPECTED + FileStorage::INSIDE_MAP; } void FileStorage::endWriteStruct() { p->endWriteStruct(); state = p->write_stack.empty() || FileNode::isMap(p->write_stack.back().flags) ? FileStorage::NAME_EXPECTED + FileStorage::INSIDE_MAP : FileStorage::VALUE_EXPECTED; elname = String(); } FileStorage::~FileStorage() { p.release(); } bool FileStorage::open(const String& filename, int flags, const String& encoding) { bool ok = p->open(filename.c_str(), flags, encoding.c_str()); if(ok) state = FileStorage::NAME_EXPECTED + FileStorage::INSIDE_MAP; return ok; } bool FileStorage::isOpened() const { return p->is_opened; } void FileStorage::release() { p->release(); } FileNode FileStorage::root(int i) const { if( p.empty() || p->roots.empty() || i < 0 || i >= (int)p->roots.size() ) return FileNode(); return p->roots[i]; } FileNode FileStorage::getFirstTopLevelNode() const { FileNode r = root(); FileNodeIterator it = r.begin(); return it != r.end() ? *it : FileNode(); } std::string FileStorage::getDefaultObjectName(const std::string& _filename) { static const char* stubname = "unnamed"; const char* filename = _filename.c_str(); const char* ptr2 = filename + _filename.size(); const char* ptr = ptr2 - 1; cv::AutoBuffer name_buf(_filename.size()+1); while( ptr >= filename && *ptr != '\\' && *ptr != '/' && *ptr != ':' ) { if( *ptr == '.' && (!*ptr2 || strncmp(ptr2, ".gz", 3) == 0) ) ptr2 = ptr; ptr--; } ptr++; if( ptr == ptr2 ) CV_Error( CV_StsBadArg, "Invalid filename" ); char* name = name_buf.data(); // name must start with letter or '_' if( !cv_isalpha(*ptr) && *ptr!= '_' ){ *name++ = '_'; } while( ptr < ptr2 ) { char c = *ptr++; if( !cv_isalnum(c) && c != '-' && c != '_' ) c = '_'; *name++ = c; } *name = '\0'; name = name_buf.data(); if( strcmp( name, "_" ) == 0 ) strcpy( name, stubname ); return name; } int FileStorage::getFormat() const { return p->fmt; } FileNode FileStorage::operator [](const char* key) const { if( p->roots.empty() ) return FileNode(); return p->roots[0][key]; } FileNode FileStorage::operator [](const std::string& key) const { if( p->roots.empty() ) return FileNode(); return p->roots[0][key]; } String FileStorage::releaseAndGetString() { String buf; p->release(&buf); return buf; } void FileStorage::writeRaw( const String& fmt, const void* vec, size_t len ) { p->writeRawData(fmt, (const uchar*)vec, len); } void FileStorage::writeComment( const String& comment, bool eol_comment ) { p->writeComment(comment.c_str(), eol_comment); } void writeScalar( FileStorage& fs, int value ) { fs.p->write(String(), value); } void writeScalar( FileStorage& fs, float value ) { fs.p->write(String(), (double)value); } void writeScalar( FileStorage& fs, double value ) { fs.p->write(String(), value); } void writeScalar( FileStorage& fs, const String& value ) { fs.p->write(String(), value); } void write( FileStorage& fs, const String& name, int value ) { fs.p->write(name, value); } void write( FileStorage& fs, const String& name, float value ) { fs.p->write(name, (double)value); } void write( FileStorage& fs, const String& name, double value ) { fs.p->write(name, value); } void write( FileStorage& fs, const String& name, const String& value ) { fs.p->write(name, value); } void FileStorage::write(const String& name, int val) { p->write(name, val); } void FileStorage::write(const String& name, double val) { p->write(name, val); } void FileStorage::write(const String& name, const String& val) { p->write(name, val); } void FileStorage::write(const String& name, const Mat& val) { cv::write(*this, name, val); } void FileStorage::write(const String& name, const std::vector& val) { cv::write(*this, name, val); } FileStorage& operator << (FileStorage& fs, const String& str) { enum { NAME_EXPECTED = FileStorage::NAME_EXPECTED, VALUE_EXPECTED = FileStorage::VALUE_EXPECTED, INSIDE_MAP = FileStorage::INSIDE_MAP }; const char* _str = str.c_str(); if( !fs.isOpened() || !_str ) return fs; Ptr& fs_impl = fs.p; char c = *_str; if( c == '}' || c == ']' ) { if( fs_impl->write_stack.empty() ) CV_Error_( CV_StsError, ("Extra closing '%c'", *_str) ); int struct_flags = fs_impl->write_stack.back().flags; char expected_bracket = FileNode::isMap(struct_flags) ? '}' : ']'; if( c != expected_bracket ) CV_Error_( CV_StsError, ("The closing '%c' does not match the opening '%c'", c, expected_bracket)); fs_impl->endWriteStruct(); CV_Assert(!fs_impl->write_stack.empty()); struct_flags = fs_impl->write_stack.back().flags; fs.state = FileNode::isMap(struct_flags) ? INSIDE_MAP + NAME_EXPECTED : VALUE_EXPECTED; fs.elname = String(); } else if( fs.state == NAME_EXPECTED + INSIDE_MAP ) { if (!cv_isalpha(c) && c != '_') CV_Error_( CV_StsError, ("Incorrect element name %s; should start with a letter or '_'", _str) ); fs.elname = str; fs.state = VALUE_EXPECTED + INSIDE_MAP; } else if( (fs.state & 3) == VALUE_EXPECTED ) { if( c == '{' || c == '[' ) { int struct_flags = c == '{' ? FileNode::MAP : FileNode::SEQ; fs.state = struct_flags == FileNode::MAP ? INSIDE_MAP + NAME_EXPECTED : VALUE_EXPECTED; _str++; if( *_str == ':' ) { _str++; if( !*_str ) struct_flags |= FileNode::FLOW; } fs_impl->startWriteStruct(!fs.elname.empty() ? fs.elname.c_str() : 0, struct_flags, *_str ? _str : 0 ); fs.elname = String(); } else { write( fs, fs.elname, (c == '\\' && (_str[1] == '{' || _str[1] == '}' || _str[1] == '[' || _str[1] == ']')) ? String(_str+1) : str ); if( fs.state == INSIDE_MAP + VALUE_EXPECTED ) fs.state = INSIDE_MAP + NAME_EXPECTED; } } else CV_Error( CV_StsError, "Invalid fs.state" ); return fs; } FileNode::FileNode() { fs = 0; blockIdx = ofs = 0; } FileNode::FileNode(const FileStorage* _fs, size_t _blockIdx, size_t _ofs) { fs = _fs; blockIdx = _blockIdx; ofs = _ofs; } FileNode::FileNode(const FileNode& node) { fs = node.fs; blockIdx = node.blockIdx; ofs = node.ofs; } FileNode FileNode::operator[](const std::string& nodename) const { if(!fs) return FileNode(); CV_Assert( isMap() ); unsigned key = fs->p->getStringOfs(nodename); size_t i, sz = size(); FileNodeIterator it = begin(); for( i = 0; i < sz; i++, ++it ) { FileNode n = *it; const uchar* p = n.ptr(); unsigned key2 = (unsigned)readInt(p + 1); CV_Assert( key2 < fs->p->str_hash_data.size() ); if( key == key2 ) return n; } return FileNode(); } FileNode FileNode::operator[](const char* nodename) const { return this->operator[](std::string(nodename)); } FileNode FileNode::operator[](int i) const { if(!fs) return FileNode(); CV_Assert( isSeq() ); int sz = (int)size(); CV_Assert( 0 <= i && i < sz ); FileNodeIterator it = begin(); it += i; return *it; } std::vector FileNode::keys() const { CV_Assert(isMap()); std::vector res; res.reserve(size()); for (FileNodeIterator it = begin(); it != end(); ++it) { res.push_back((*it).name()); } return res; } int FileNode::type() const { const uchar* p = ptr(); if(!p) return NONE; return (*p & TYPE_MASK); } bool FileNode::isMap(int flags) { return (flags & TYPE_MASK) == MAP; } bool FileNode::isSeq(int flags) { return (flags & TYPE_MASK) == SEQ; } bool FileNode::isCollection(int flags) { return isMap(flags) || isSeq(flags); } bool FileNode::isFlow(int flags) { return (flags & FLOW) != 0; } bool FileNode::isEmptyCollection(int flags) { return (flags & EMPTY) != 0; } bool FileNode::empty() const { return fs == 0; } bool FileNode::isNone() const { return type() == NONE; } bool FileNode::isSeq() const { return type() == SEQ; } bool FileNode::isMap() const { return type() == MAP; } bool FileNode::isInt() const { return type() == INT; } bool FileNode::isReal() const { return type() == REAL; } bool FileNode::isString() const { return type() == STRING; } bool FileNode::isNamed() const { const uchar* p = ptr(); if(!p) return false; return (*p & NAMED) != 0; } std::string FileNode::name() const { const uchar* p = ptr(); if(!p) return std::string(); size_t nameofs = p[1] | (p[2]<<8) | (p[3]<<16) | (p[4]<<24); return fs->p->getName(nameofs); } FileNode::operator int() const { const uchar* p = ptr(); if(!p) return 0; int tag = *p; int type = (tag & TYPE_MASK); p += (tag & NAMED) ? 5 : 1; if( type == INT ) { return readInt(p); } else if( type == REAL ) { return cvRound(readReal(p)); } else return 0x7fffffff; } FileNode::operator float() const { const uchar* p = ptr(); if(!p) return 0.f; int tag = *p; int type = (tag & TYPE_MASK); p += (tag & NAMED) ? 5 : 1; if( type == INT ) { return (float)readInt(p); } else if( type == REAL ) { return (float)readReal(p); } else return FLT_MAX; } FileNode::operator double() const { const uchar* p = ptr(); if(!p) return 0.f; int tag = *p; int type = (tag & TYPE_MASK); p += (tag & NAMED) ? 5 : 1; if( type == INT ) { return (double)readInt(p); } else if( type == REAL ) { return readReal(p); } else return DBL_MAX; } double FileNode::real() const { return double(*this); } std::string FileNode::string() const { const uchar* p = ptr(); if( !p || (*p & TYPE_MASK) != STRING ) return std::string(); p += (*p & NAMED) ? 5 : 1; size_t sz = (size_t)(unsigned)readInt(p); return std::string((const char*)(p + 4), sz - 1); } Mat FileNode::mat() const { Mat value; read(*this, value, Mat()); return value; } FileNodeIterator FileNode::begin() const { return FileNodeIterator(*this, false); } FileNodeIterator FileNode::end() const { return FileNodeIterator(*this, true); } void FileNode::readRaw( const std::string& fmt, void* vec, size_t len ) const { FileNodeIterator it = begin(); it.readRaw( fmt, vec, len ); } size_t FileNode::size() const { const uchar* p = ptr(); if( !p ) return 0; int tag = *p; int tp = tag & TYPE_MASK; if( tp == MAP || tp == SEQ ) { if( tag & NAMED ) p += 4; return (size_t)(unsigned)readInt(p + 5); } return tp != NONE; } size_t FileNode::rawSize() const { const uchar* p0 = ptr(), *p = p0; if( !p ) return 0; int tag = *p++; int tp = tag & TYPE_MASK; if( tag & NAMED ) p += 4; size_t sz0 = (size_t)(p - p0); if( tp == INT ) return sz0 + 4; if( tp == REAL ) return sz0 + 8; if( tp == NONE ) return sz0; CV_Assert( tp == STRING || tp == SEQ || tp == MAP ); return sz0 + 4 + readInt(p); } uchar* FileNode::ptr() { return !fs ? 0 : (uchar*)fs->p->getNodePtr(blockIdx, ofs); } const uchar* FileNode::ptr() const { return !fs ? 0 : fs->p->getNodePtr(blockIdx, ofs); } void FileNode::setValue( int type, const void* value, int len ) { uchar *p = ptr(); CV_Assert(p != 0); int tag = *p; int current_type = tag & TYPE_MASK; CV_Assert( current_type == NONE || current_type == type ); int sz = 1; if( tag & NAMED ) sz += 4; if( type == INT ) sz += 4; else if( type == REAL ) sz += 8; else if( type == STRING ) { if( len < 0 ) len = (int)strlen((const char*)value); sz += 4 + len + 1; // besides the string content, // take the size (4 bytes) and the final '\0' into account } else CV_Error(Error::StsNotImplemented, "Only scalar types can be dynamically assigned to a file node"); p = fs->p->reserveNodeSpace(*this, sz); *p++ = (uchar)(type | (tag & NAMED)); if( tag & NAMED ) p += 4; if( type == INT ) { int ival = *(const int*)value; writeInt(p, ival); } else if( type == REAL ) { double dbval = *(const double*)value; writeReal(p, dbval); } else if( type == STRING ) { const char* str = (const char*)value; writeInt(p, len + 1); memcpy(p + 4, str, len); p[4 + len] = (uchar)'\0'; } } FileNodeIterator::FileNodeIterator() { fs = 0; blockIdx = 0; ofs = 0; blockSize = 0; nodeNElems = 0; idx = 0; } FileNodeIterator::FileNodeIterator( const FileNode& node, bool seekEnd ) { fs = node.fs; idx = 0; if( !fs ) blockIdx = ofs = blockSize = nodeNElems = 0; else { blockIdx = node.blockIdx; ofs = node.ofs; bool collection = node.isSeq() || node.isMap(); if( node.isNone() ) { nodeNElems = 0; } else if( !collection ) { nodeNElems = 1; if( seekEnd ) { idx = 1; ofs += node.rawSize(); } } else { nodeNElems = node.size(); const uchar* p0 = node.ptr(), *p = p0 + 1; if(*p0 & FileNode::NAMED ) p += 4; if( !seekEnd ) ofs += (p - p0) + 8; else { size_t rawsz = (size_t)(unsigned)readInt(p); ofs += (p - p0) + 4 + rawsz; idx = nodeNElems; } } fs->p->normalizeNodeOfs(blockIdx, ofs); blockSize = fs->p->fs_data_blksz[blockIdx]; } } FileNodeIterator::FileNodeIterator(const FileNodeIterator& it) { fs = it.fs; blockIdx = it.blockIdx; ofs = it.ofs; blockSize = it.blockSize; nodeNElems = it.nodeNElems; idx = it.idx; } FileNode FileNodeIterator::operator *() const { return FileNode(idx < nodeNElems ? fs : 0, blockIdx, ofs); } FileNodeIterator& FileNodeIterator::operator ++ () { if( idx == nodeNElems || !fs ) return *this; idx++; FileNode n(fs, blockIdx, ofs); ofs += n.rawSize(); if( ofs >= blockSize ) { fs->p->normalizeNodeOfs(blockIdx, ofs); blockSize = fs->p->fs_data_blksz[blockIdx]; } return *this; } FileNodeIterator FileNodeIterator::operator ++ (int) { FileNodeIterator it = *this; ++(*this); return it; } FileNodeIterator& FileNodeIterator::operator += (int _ofs) { CV_Assert( _ofs >= 0 ); for( ; _ofs > 0; _ofs-- ) this->operator ++(); return *this; } FileNodeIterator& FileNodeIterator::readRaw( const String& fmt, void* _data0, size_t maxsz) { if( fs && idx < nodeNElems ) { uchar* data0 = (uchar*)_data0; int fmt_pairs[CV_FS_MAX_FMT_PAIRS*2]; int fmt_pair_count = fs::decodeFormat( fmt.c_str(), fmt_pairs, CV_FS_MAX_FMT_PAIRS ); size_t esz = fs::calcStructSize( fmt.c_str(), 0 ); CV_Assert( maxsz % esz == 0 ); maxsz /= esz; for( ; maxsz > 0; maxsz--, data0 += esz ) { size_t offset = 0; for( int k = 0; k < fmt_pair_count; k++ ) { int elem_type = fmt_pairs[k*2+1]; int elem_size = CV_ELEM_SIZE(elem_type); int count = fmt_pairs[k*2]; offset = alignSize( offset, elem_size ); uchar* data = data0 + offset; for( int i = 0; i < count; i++, ++(*this) ) { FileNode node = *(*this); if( node.isInt() ) { int ival = (int)node; switch( elem_type ) { case CV_8U: *(uchar*)data = saturate_cast(ival); data++; break; case CV_8S: *(char*)data = saturate_cast(ival); data++; break; case CV_16U: *(ushort*)data = saturate_cast(ival); data += sizeof(ushort); break; case CV_16S: *(short*)data = saturate_cast(ival); data += sizeof(short); break; case CV_32S: *(int*)data = ival; data += sizeof(int); break; case CV_32F: *(float*)data = (float)ival; data += sizeof(float); break; case CV_64F: *(double*)data = (double)ival; data += sizeof(double); break; case CV_16F: *(float16_t*)data = float16_t((float)ival); data += sizeof(float16_t); break; default: CV_Error( Error::StsUnsupportedFormat, "Unsupported type" ); } } else if( node.isReal() ) { double fval = (double)node; switch( elem_type ) { case CV_8U: *(uchar*)data = saturate_cast(fval); data++; break; case CV_8S: *(char*)data = saturate_cast(fval); data++; break; case CV_16U: *(ushort*)data = saturate_cast(fval); data += sizeof(ushort); break; case CV_16S: *(short*)data = saturate_cast(fval); data += sizeof(short); break; case CV_32S: *(int*)data = saturate_cast(fval); data += sizeof(int); break; case CV_32F: *(float*)data = (float)fval; data += sizeof(float); break; case CV_64F: *(double*)data = fval; data += sizeof(double); break; case CV_16F: *(float16_t*)data = float16_t((float)fval); data += sizeof(float16_t); break; default: CV_Error( Error::StsUnsupportedFormat, "Unsupported type" ); } } else CV_Error( Error::StsError, "readRawData can only be used to read plain sequences of numbers" ); } offset = (int)(data - data0); } } } return *this; } bool FileNodeIterator::equalTo(const FileNodeIterator& it) const { return fs == it.fs && blockIdx == it.blockIdx && ofs == it.ofs && idx == it.idx && nodeNElems == it.nodeNElems; } size_t FileNodeIterator::remaining() const { return nodeNElems - idx; } bool operator == ( const FileNodeIterator& it1, const FileNodeIterator& it2 ) { return it1.equalTo(it2); } bool operator != ( const FileNodeIterator& it1, const FileNodeIterator& it2 ) { return !it1.equalTo(it2); } void read(const FileNode& node, int& val, int default_val) { val = default_val; if( !node.empty() ) { val = (int)node; } } void read(const FileNode& node, double& val, double default_val) { val = default_val; if( !node.empty() ) { val = (double)node; } } void read(const FileNode& node, float& val, float default_val) { val = default_val; if( !node.empty() ) { val = (float)node; } } void read(const FileNode& node, std::string& val, const std::string& default_val) { val = default_val; if( !node.empty() ) { val = (std::string)node; } } FileStorage_API::~FileStorage_API() {} namespace internal { WriteStructContext::WriteStructContext(FileStorage& _fs, const std::string& name, int flags, const std::string& typeName) { fs = &_fs; fs->startWriteStruct(name, flags, typeName); } WriteStructContext::~WriteStructContext() { fs->endWriteStruct(); } } }