import cv2 as cv import argparse import numpy as np parser = argparse.ArgumentParser(description= 'Use this script to run Mask-RCNN object detection and semantic ' 'segmentation network from TensorFlow Object Detection API.') parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.') parser.add_argument('--model', required=True, help='Path to a .pb file with weights.') parser.add_argument('--config', required=True, help='Path to a .pxtxt file contains network configuration.') parser.add_argument('--classes', help='Optional path to a text file with names of classes.') parser.add_argument('--colors', help='Optional path to a text file with colors for an every class. ' 'An every color is represented with three values from 0 to 255 in BGR channels order.') parser.add_argument('--width', type=int, default=800, help='Preprocess input image by resizing to a specific width.') parser.add_argument('--height', type=int, default=800, help='Preprocess input image by resizing to a specific height.') parser.add_argument('--thr', type=float, default=0.5, help='Confidence threshold') args = parser.parse_args() np.random.seed(324) # Load names of classes classes = None if args.classes: with open(args.classes, 'rt') as f: classes = f.read().rstrip('\n').split('\n') # Load colors colors = None if args.colors: with open(args.colors, 'rt') as f: colors = [np.array(color.split(' '), np.uint8) for color in f.read().rstrip('\n').split('\n')] legend = None def showLegend(classes): global legend if not classes is None and legend is None: blockHeight = 30 assert(len(classes) == len(colors)) legend = np.zeros((blockHeight * len(colors), 200, 3), np.uint8) for i in range(len(classes)): block = legend[i * blockHeight:(i + 1) * blockHeight] block[:,:] = colors[i] cv.putText(block, classes[i], (0, blockHeight/2), cv.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255)) cv.namedWindow('Legend', cv.WINDOW_NORMAL) cv.imshow('Legend', legend) classes = None def drawBox(frame, classId, conf, left, top, right, bottom): # Draw a bounding box. cv.rectangle(frame, (left, top), (right, bottom), (0, 255, 0)) label = '%.2f' % conf # Print a label of class. if classes: assert(classId < len(classes)) label = '%s: %s' % (classes[classId], label) labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1) top = max(top, labelSize[1]) cv.rectangle(frame, (left, top - labelSize[1]), (left + labelSize[0], top + baseLine), (255, 255, 255), cv.FILLED) cv.putText(frame, label, (left, top), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0)) # Load a network net = cv.dnn.readNet(args.model, args.config) net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV) winName = 'Mask-RCNN in OpenCV' cv.namedWindow(winName, cv.WINDOW_NORMAL) cap = cv.VideoCapture(args.input if args.input else 0) legend = None while cv.waitKey(1) < 0: hasFrame, frame = cap.read() if not hasFrame: cv.waitKey() break frameH = frame.shape[0] frameW = frame.shape[1] # Create a 4D blob from a frame. blob = cv.dnn.blobFromImage(frame, size=(args.width, args.height), swapRB=True, crop=False) # Run a model net.setInput(blob) boxes, masks = net.forward(['detection_out_final', 'detection_masks']) numClasses = masks.shape[1] numDetections = boxes.shape[2] # Draw segmentation if not colors: # Generate colors colors = [np.array([0, 0, 0], np.uint8)] for i in range(1, numClasses + 1): colors.append((colors[i - 1] + np.random.randint(0, 256, [3], np.uint8)) / 2) del colors[0] boxesToDraw = [] for i in range(numDetections): box = boxes[0, 0, i] mask = masks[i] score = box[2] if score > args.thr: classId = int(box[1]) left = int(frameW * box[3]) top = int(frameH * box[4]) right = int(frameW * box[5]) bottom = int(frameH * box[6]) left = max(0, min(left, frameW - 1)) top = max(0, min(top, frameH - 1)) right = max(0, min(right, frameW - 1)) bottom = max(0, min(bottom, frameH - 1)) boxesToDraw.append([frame, classId, score, left, top, right, bottom]) classMask = mask[classId] classMask = cv.resize(classMask, (right - left + 1, bottom - top + 1)) mask = (classMask > 0.5) roi = frame[top:bottom+1, left:right+1][mask] frame[top:bottom+1, left:right+1][mask] = (0.7 * colors[classId] + 0.3 * roi).astype(np.uint8) for box in boxesToDraw: drawBox(*box) # Put efficiency information. t, _ = net.getPerfProfile() label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency()) cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0)) showLegend(classes) cv.imshow(winName, frame)