/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other GpuMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or bpied warranties, including, but not limited to, the bpied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include #define MIN_SIZE 32 #define S(x) StreamAccessor::getStream(x) // GPU resize() is fast, but it differs from the CPU analog. Disabling this flag // leads to an inefficient code. It's for debug purposes only. #define ENABLE_GPU_RESIZE 1 using namespace std; using namespace cv; using namespace cv::gpu; #if !defined(HAVE_CUDA) void cv::gpu::FarnebackOpticalFlow::operator ()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } #else namespace cv { namespace gpu { namespace device { namespace optflow_farneback { void setPolynomialExpansionConsts( int polyN, const float *g, const float *xg, const float *xxg, float ig11, float ig03, float ig33, float ig55); void polynomialExpansionGpu(const DevMem2Df &src, int polyN, DevMem2Df dst, cudaStream_t stream); void setUpdateMatricesConsts(); void updateMatricesGpu( const DevMem2Df flowx, const DevMem2Df flowy, const DevMem2Df R0, const DevMem2Df R1, DevMem2Df M, cudaStream_t stream); void updateFlowGpu( const DevMem2Df M, DevMem2Df flowx, DevMem2Df flowy, cudaStream_t stream); /*void boxFilterGpu(const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream);*/ void boxFilter5Gpu(const DevMem2Df src, int ksizeHalf, DevMem2Df dst, cudaStream_t stream); void setGaussianBlurKernel(const float *gKer, int ksizeHalf); void gaussianBlurGpu( const DevMem2Df src, int ksizeHalf, DevMem2Df dst, int borderType, cudaStream_t stream); void gaussianBlur5Gpu( const DevMem2Df src, int ksizeHalf, DevMem2Df dst, int borderType, cudaStream_t stream); }}}} // namespace cv { namespace gpu { namespace device { namespace optflow_farneback void cv::gpu::FarnebackOpticalFlow::prepareGaussian( int n, double sigma, float *g, float *xg, float *xxg, double &ig11, double &ig03, double &ig33, double &ig55) { double s = 0.; for (int x = -n; x <= n; x++) { g[x] = (float)std::exp(-x*x/(2*sigma*sigma)); s += g[x]; } s = 1./s; for (int x = -n; x <= n; x++) { g[x] = (float)(g[x]*s); xg[x] = (float)(x*g[x]); xxg[x] = (float)(x*x*g[x]); } Mat_ G(6, 6); G.setTo(0); for (int y = -n; y <= n; y++) { for (int x = -n; x <= n; x++) { G(0,0) += g[y]*g[x]; G(1,1) += g[y]*g[x]*x*x; G(3,3) += g[y]*g[x]*x*x*x*x; G(5,5) += g[y]*g[x]*x*x*y*y; } } //G[0][0] = 1.; G(2,2) = G(0,3) = G(0,4) = G(3,0) = G(4,0) = G(1,1); G(4,4) = G(3,3); G(3,4) = G(4,3) = G(5,5); // invG: // [ x e e ] // [ y ] // [ y ] // [ e z ] // [ e z ] // [ u ] Mat_ invG = G.inv(DECOMP_CHOLESKY); ig11 = invG(1,1); ig03 = invG(0,3); ig33 = invG(3,3); ig55 = invG(5,5); } void cv::gpu::FarnebackOpticalFlow::setPolynomialExpansionConsts(int n, double sigma) { vector buf(n*6 + 3); float* g = &buf[0] + n; float* xg = g + n*2 + 1; float* xxg = xg + n*2 + 1; if (sigma < FLT_EPSILON) sigma = n*0.3; double ig11, ig03, ig33, ig55; prepareGaussian(n, sigma, g, xg, xxg, ig11, ig03, ig33, ig55); device::optflow_farneback::setPolynomialExpansionConsts(n, g, xg, xxg, static_cast(ig11), static_cast(ig03), static_cast(ig33), static_cast(ig55)); } void cv::gpu::FarnebackOpticalFlow::updateFlow_boxFilter( const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy, GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]) { device::optflow_farneback::boxFilter5Gpu(M, blockSize/2, bufM, S(streams[0])); swap(M, bufM); for (int i = 1; i < 5; ++i) streams[i].waitForCompletion(); device::optflow_farneback::updateFlowGpu(M, flowx, flowy, S(streams[0])); if (updateMatrices) device::optflow_farneback::updateMatricesGpu(flowx, flowy, R0, R1, M, S(streams[0])); } void cv::gpu::FarnebackOpticalFlow::updateFlow_gaussianBlur( const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy, GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]) { device::optflow_farneback::gaussianBlur5Gpu( M, blockSize/2, bufM, BORDER_REPLICATE_GPU, S(streams[0])); swap(M, bufM); device::optflow_farneback::updateFlowGpu(M, flowx, flowy, S(streams[0])); if (updateMatrices) device::optflow_farneback::updateMatricesGpu(flowx, flowy, R0, R1, M, S(streams[0])); } void cv::gpu::FarnebackOpticalFlow::operator ()( const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &s) { CV_Assert(frame0.type() == CV_8U && frame1.type() == CV_8U); CV_Assert(frame0.size() == frame1.size()); CV_Assert(polyN == 5 || polyN == 7); CV_Assert(!fastPyramids || std::abs(pyrScale - 0.5) < 1e-6); Stream streams[5]; if (S(s)) streams[0] = s; Size size = frame0.size(); GpuMat prevFlowX, prevFlowY, curFlowX, curFlowY; flowx.create(size, CV_32F); flowy.create(size, CV_32F); GpuMat flowx0 = flowx; GpuMat flowy0 = flowy; // Crop unnecessary levels double scale = 1; int numLevelsCropped = 0; for (; numLevelsCropped < numLevels; numLevelsCropped++) { scale *= pyrScale; if (size.width*scale < MIN_SIZE || size.height*scale < MIN_SIZE) break; } streams[0].enqueueConvert(frame0, frames_[0], CV_32F); streams[1].enqueueConvert(frame1, frames_[1], CV_32F); if (fastPyramids) { // Build Gaussian pyramids using pyrDown() pyramid0_.resize(numLevelsCropped + 1); pyramid1_.resize(numLevelsCropped + 1); pyramid0_[0] = frames_[0]; pyramid1_[0] = frames_[1]; for (int i = 1; i <= numLevelsCropped; ++i) { pyrDown(pyramid0_[i - 1], pyramid0_[i], streams[0]); pyrDown(pyramid1_[i - 1], pyramid1_[i], streams[1]); } } setPolynomialExpansionConsts(polyN, polySigma); device::optflow_farneback::setUpdateMatricesConsts(); for (int k = numLevelsCropped; k >= 0; k--) { streams[0].waitForCompletion(); scale = 1; for (int i = 0; i < k; i++) scale *= pyrScale; double sigma = (1./scale - 1) * 0.5; int smoothSize = cvRound(sigma*5) | 1; smoothSize = std::max(smoothSize, 3); int width = cvRound(size.width*scale); int height = cvRound(size.height*scale); if (fastPyramids) { width = pyramid0_[k].cols; height = pyramid0_[k].rows; } if (k > 0) { curFlowX.create(height, width, CV_32F); curFlowY.create(height, width, CV_32F); } else { curFlowX = flowx0; curFlowY = flowy0; } if (!prevFlowX.data) { if (flags & OPTFLOW_USE_INITIAL_FLOW) { #if ENABLE_GPU_RESIZE resize(flowx0, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]); resize(flowy0, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]); streams[0].enqueueConvert(curFlowX, curFlowX, curFlowX.depth(), scale); streams[1].enqueueConvert(curFlowY, curFlowY, curFlowY.depth(), scale); #else Mat tmp1, tmp2; flowx0.download(tmp1); resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_AREA); tmp2 *= scale; curFlowX.upload(tmp2); flowy0.download(tmp1); resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_AREA); tmp2 *= scale; curFlowY.upload(tmp2); #endif } else { streams[0].enqueueMemSet(curFlowX, 0); streams[1].enqueueMemSet(curFlowY, 0); } } else { #if ENABLE_GPU_RESIZE resize(prevFlowX, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]); resize(prevFlowY, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]); streams[0].enqueueConvert(curFlowX, curFlowX, curFlowX.depth(), 1./pyrScale); streams[1].enqueueConvert(curFlowY, curFlowY, curFlowY.depth(), 1./pyrScale); #else Mat tmp1, tmp2; prevFlowX.download(tmp1); resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_LINEAR); tmp2 *= 1./pyrScale; curFlowX.upload(tmp2); prevFlowY.download(tmp1); resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_LINEAR); tmp2 *= 1./pyrScale; curFlowY.upload(tmp2); #endif } GpuMat M = allocMatFromBuf(5*height, width, CV_32F, M_); GpuMat bufM = allocMatFromBuf(5*height, width, CV_32F, bufM_); GpuMat R[2] = { allocMatFromBuf(5*height, width, CV_32F, R_[0]), allocMatFromBuf(5*height, width, CV_32F, R_[1]) }; if (fastPyramids) { device::optflow_farneback::polynomialExpansionGpu(pyramid0_[k], polyN, R[0], S(streams[0])); device::optflow_farneback::polynomialExpansionGpu(pyramid1_[k], polyN, R[1], S(streams[1])); } else { GpuMat blurredFrame[2] = { allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[0]), allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[1]) }; GpuMat pyrLevel[2] = { allocMatFromBuf(height, width, CV_32F, pyrLevel_[0]), allocMatFromBuf(height, width, CV_32F, pyrLevel_[1]) }; Mat g = getGaussianKernel(smoothSize, sigma, CV_32F); device::optflow_farneback::setGaussianBlurKernel(g.ptr(smoothSize/2), smoothSize/2); for (int i = 0; i < 2; i++) { device::optflow_farneback::gaussianBlurGpu( frames_[i], smoothSize/2, blurredFrame[i], BORDER_REFLECT101_GPU, S(streams[i])); #if ENABLE_GPU_RESIZE resize(blurredFrame[i], pyrLevel[i], Size(width, height), INTER_LINEAR, streams[i]); #else Mat tmp1, tmp2; tmp[i].download(tmp1); resize(tmp1, tmp2, Size(width, height), INTER_LINEAR); I[i].upload(tmp2); #endif device::optflow_farneback::polynomialExpansionGpu(pyrLevel[i], polyN, R[i], S(streams[i])); } } streams[1].waitForCompletion(); device::optflow_farneback::updateMatricesGpu(curFlowX, curFlowY, R[0], R[1], M, S(streams[0])); if (flags & OPTFLOW_FARNEBACK_GAUSSIAN) { Mat g = getGaussianKernel(winSize, winSize/2*0.3f, CV_32F); device::optflow_farneback::setGaussianBlurKernel(g.ptr(winSize/2), winSize/2); } for (int i = 0; i < numIters; i++) { if (flags & OPTFLOW_FARNEBACK_GAUSSIAN) updateFlow_gaussianBlur(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize, i < numIters-1, streams); else updateFlow_boxFilter(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize, i < numIters-1, streams); } prevFlowX = curFlowX; prevFlowY = curFlowY; } flowx = curFlowX; flowy = curFlowY; if (!S(s)) streams[0].waitForCompletion(); } #endif