/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include "npy_blob.hpp" #include #include #include namespace opencv_test { namespace { template static std::string _tf(TString filename) { return (getOpenCVExtraDir() + "/dnn/") + filename; } TEST(Test_Caffe, memory_read) { const string proto = findDataFile("dnn/bvlc_googlenet.prototxt", false); const string model = findDataFile("dnn/bvlc_googlenet.caffemodel", false); string dataProto; ASSERT_TRUE(readFileInMemory(proto, dataProto)); string dataModel; ASSERT_TRUE(readFileInMemory(model, dataModel)); Net net = readNetFromCaffe(dataProto.c_str(), dataProto.size()); ASSERT_FALSE(net.empty()); Net net2 = readNetFromCaffe(dataProto.c_str(), dataProto.size(), dataModel.c_str(), dataModel.size()); ASSERT_FALSE(net2.empty()); } TEST(Test_Caffe, read_gtsrb) { Net net = readNetFromCaffe(_tf("gtsrb.prototxt")); ASSERT_FALSE(net.empty()); } TEST(Test_Caffe, read_googlenet) { Net net = readNetFromCaffe(_tf("bvlc_googlenet.prototxt")); ASSERT_FALSE(net.empty()); } typedef testing::TestWithParam Reproducibility_AlexNet; TEST_P(Reproducibility_AlexNet, Accuracy) { bool readFromMemory = GetParam(); Net net; { const string proto = findDataFile("dnn/bvlc_alexnet.prototxt", false); const string model = findDataFile("dnn/bvlc_alexnet.caffemodel", false); if (readFromMemory) { string dataProto; ASSERT_TRUE(readFileInMemory(proto, dataProto)); string dataModel; ASSERT_TRUE(readFileInMemory(model, dataModel)); net = readNetFromCaffe(dataProto.c_str(), dataProto.size(), dataModel.c_str(), dataModel.size()); } else net = readNetFromCaffe(proto, model); ASSERT_FALSE(net.empty()); } Mat sample = imread(_tf("grace_hopper_227.png")); ASSERT_TRUE(!sample.empty()); net.setInput(blobFromImage(sample, 1.0f, Size(227, 227), Scalar(), false), "data"); Mat out = net.forward("prob"); Mat ref = blobFromNPY(_tf("caffe_alexnet_prob.npy")); normAssert(ref, out); } INSTANTIATE_TEST_CASE_P(Test_Caffe, Reproducibility_AlexNet, testing::Bool()); typedef testing::TestWithParam Reproducibility_OCL_AlexNet; OCL_TEST_P(Reproducibility_OCL_AlexNet, Accuracy) { bool readFromMemory = GetParam(); Net net; { const string proto = findDataFile("dnn/bvlc_alexnet.prototxt", false); const string model = findDataFile("dnn/bvlc_alexnet.caffemodel", false); if (readFromMemory) { string dataProto; ASSERT_TRUE(readFileInMemory(proto, dataProto)); string dataModel; ASSERT_TRUE(readFileInMemory(model, dataModel)); net = readNetFromCaffe(dataProto.c_str(), dataProto.size(), dataModel.c_str(), dataModel.size()); } else net = readNetFromCaffe(proto, model); ASSERT_FALSE(net.empty()); } net.setPreferableBackend(DNN_BACKEND_DEFAULT); net.setPreferableTarget(DNN_TARGET_OPENCL); Mat sample = imread(_tf("grace_hopper_227.png")); ASSERT_TRUE(!sample.empty()); net.setInput(blobFromImage(sample, 1.0f, Size(227, 227), Scalar(), false), "data"); Mat out = net.forward("prob"); Mat ref = blobFromNPY(_tf("caffe_alexnet_prob.npy")); normAssert(ref, out); } OCL_INSTANTIATE_TEST_CASE_P(Test_Caffe, Reproducibility_OCL_AlexNet, testing::Bool()); #if !defined(_WIN32) || defined(_WIN64) TEST(Reproducibility_FCN, Accuracy) { Net net; { const string proto = findDataFile("dnn/fcn8s-heavy-pascal.prototxt", false); const string model = findDataFile("dnn/fcn8s-heavy-pascal.caffemodel", false); net = readNetFromCaffe(proto, model); ASSERT_FALSE(net.empty()); } Mat sample = imread(_tf("street.png")); ASSERT_TRUE(!sample.empty()); std::vector layerIds; std::vector weights, blobs; net.getMemoryConsumption(shape(1,3,227,227), layerIds, weights, blobs); net.setInput(blobFromImage(sample, 1.0f, Size(500, 500), Scalar(), false), "data"); Mat out = net.forward("score"); Mat refData = imread(_tf("caffe_fcn8s_prob.png"), IMREAD_ANYDEPTH); int shape[] = {1, 21, 500, 500}; Mat ref(4, shape, CV_32FC1, refData.data); normAssert(ref, out); } #endif TEST(Reproducibility_SSD, Accuracy) { Net net; { const string proto = findDataFile("dnn/ssd_vgg16.prototxt", false); const string model = findDataFile("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", false); net = readNetFromCaffe(proto, model); ASSERT_FALSE(net.empty()); } Mat sample = imread(_tf("street.png")); ASSERT_TRUE(!sample.empty()); if (sample.channels() == 4) cvtColor(sample, sample, COLOR_BGRA2BGR); Mat in_blob = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false); net.setInput(in_blob, "data"); Mat out = net.forward("detection_out"); Mat ref = blobFromNPY(_tf("ssd_out.npy")); normAssert(ref, out); } TEST(Reproducibility_MobileNet_SSD, Accuracy) { const string proto = findDataFile("dnn/MobileNetSSD_deploy.prototxt", false); const string model = findDataFile("dnn/MobileNetSSD_deploy.caffemodel", false); Net net = readNetFromCaffe(proto, model); Mat sample = imread(_tf("street.png")); Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); net.setInput(inp); Mat out = net.forward(); Mat ref = blobFromNPY(_tf("mobilenet_ssd_caffe_out.npy")); normAssert(ref, out); // Check that detections aren't preserved. inp.setTo(0.0f); net.setInput(inp); out = net.forward(); const int numDetections = out.size[2]; ASSERT_NE(numDetections, 0); for (int i = 0; i < numDetections; ++i) { float confidence = out.ptr(0, 0, i)[2]; ASSERT_EQ(confidence, 0); } } OCL_TEST(Reproducibility_MobileNet_SSD, Accuracy) { const string proto = findDataFile("dnn/MobileNetSSD_deploy.prototxt", false); const string model = findDataFile("dnn/MobileNetSSD_deploy.caffemodel", false); Net net = readNetFromCaffe(proto, model); net.setPreferableBackend(DNN_BACKEND_DEFAULT); net.setPreferableTarget(DNN_TARGET_OPENCL); Mat sample = imread(_tf("street.png")); Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); net.setInput(inp); Mat out = net.forward(); Mat ref = blobFromNPY(_tf("mobilenet_ssd_caffe_out.npy")); normAssert(ref, out); // Check that detections aren't preserved. inp.setTo(0.0f); net.setInput(inp); out = net.forward(); const int numDetections = out.size[2]; ASSERT_NE(numDetections, 0); for (int i = 0; i < numDetections; ++i) { float confidence = out.ptr(0, 0, i)[2]; ASSERT_EQ(confidence, 0); } } TEST(Reproducibility_ResNet50, Accuracy) { Net net = readNetFromCaffe(findDataFile("dnn/ResNet-50-deploy.prototxt", false), findDataFile("dnn/ResNet-50-model.caffemodel", false)); Mat input = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(224,224), Scalar(), false); ASSERT_TRUE(!input.empty()); net.setInput(input); Mat out = net.forward(); Mat ref = blobFromNPY(_tf("resnet50_prob.npy")); normAssert(ref, out); } OCL_TEST(Reproducibility_ResNet50, Accuracy) { Net net = readNetFromCaffe(findDataFile("dnn/ResNet-50-deploy.prototxt", false), findDataFile("dnn/ResNet-50-model.caffemodel", false)); net.setPreferableBackend(DNN_BACKEND_DEFAULT); net.setPreferableTarget(DNN_TARGET_OPENCL); Mat input = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(224,224), Scalar(), false); ASSERT_TRUE(!input.empty()); net.setInput(input); Mat out = net.forward(); Mat ref = blobFromNPY(_tf("resnet50_prob.npy")); normAssert(ref, out); UMat out_umat; net.forward(out_umat); normAssert(ref, out_umat, "out_umat"); std::vector out_umats; net.forward(out_umats); normAssert(ref, out_umats[0], "out_umat_vector"); } TEST(Reproducibility_SqueezeNet_v1_1, Accuracy) { Net net = readNetFromCaffe(findDataFile("dnn/squeezenet_v1.1.prototxt", false), findDataFile("dnn/squeezenet_v1.1.caffemodel", false)); Mat input = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(227,227), Scalar(), false); ASSERT_TRUE(!input.empty()); net.setInput(input); Mat out = net.forward(); Mat ref = blobFromNPY(_tf("squeezenet_v1.1_prob.npy")); normAssert(ref, out); } OCL_TEST(Reproducibility_SqueezeNet_v1_1, Accuracy) { Net net = readNetFromCaffe(findDataFile("dnn/squeezenet_v1.1.prototxt", false), findDataFile("dnn/squeezenet_v1.1.caffemodel", false)); net.setPreferableBackend(DNN_BACKEND_DEFAULT); net.setPreferableTarget(DNN_TARGET_OPENCL); Mat input = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(227,227), Scalar(), false); ASSERT_TRUE(!input.empty()); // Firstly set a wrong input blob and run the model to receive a wrong output. net.setInput(input * 2.0f); Mat out = net.forward(); // Then set a correct input blob to check CPU->GPU synchronization is working well. net.setInput(input); out = net.forward(); Mat ref = blobFromNPY(_tf("squeezenet_v1.1_prob.npy")); normAssert(ref, out); } TEST(Reproducibility_AlexNet_fp16, Accuracy) { const float l1 = 1e-5; const float lInf = 3e-3; const string proto = findDataFile("dnn/bvlc_alexnet.prototxt", false); const string model = findDataFile("dnn/bvlc_alexnet.caffemodel", false); shrinkCaffeModel(model, "bvlc_alexnet.caffemodel_fp16"); Net net = readNetFromCaffe(proto, "bvlc_alexnet.caffemodel_fp16"); Mat sample = imread(findDataFile("dnn/grace_hopper_227.png", false)); net.setInput(blobFromImage(sample, 1.0f, Size(227, 227), Scalar(), false)); Mat out = net.forward(); Mat ref = blobFromNPY(findDataFile("dnn/caffe_alexnet_prob.npy", false)); normAssert(ref, out, "", l1, lInf); } TEST(Reproducibility_GoogLeNet_fp16, Accuracy) { const float l1 = 1e-5; const float lInf = 3e-3; const string proto = findDataFile("dnn/bvlc_googlenet.prototxt", false); const string model = findDataFile("dnn/bvlc_googlenet.caffemodel", false); shrinkCaffeModel(model, "bvlc_googlenet.caffemodel_fp16"); Net net = readNetFromCaffe(proto, "bvlc_googlenet.caffemodel_fp16"); std::vector inpMats; inpMats.push_back( imread(_tf("googlenet_0.png")) ); inpMats.push_back( imread(_tf("googlenet_1.png")) ); ASSERT_TRUE(!inpMats[0].empty() && !inpMats[1].empty()); net.setInput(blobFromImages(inpMats, 1.0f, Size(), Scalar(), false), "data"); Mat out = net.forward("prob"); Mat ref = blobFromNPY(_tf("googlenet_prob.npy")); normAssert(out, ref, "", l1, lInf); } // https://github.com/richzhang/colorization TEST(Reproducibility_Colorization, Accuracy) { const float l1 = 3e-5; const float lInf = 3e-3; Mat inp = blobFromNPY(_tf("colorization_inp.npy")); Mat ref = blobFromNPY(_tf("colorization_out.npy")); Mat kernel = blobFromNPY(_tf("colorization_pts_in_hull.npy")); const string proto = findDataFile("dnn/colorization_deploy_v2.prototxt", false); const string model = findDataFile("dnn/colorization_release_v2.caffemodel", false); Net net = readNetFromCaffe(proto, model); net.getLayer(net.getLayerId("class8_ab"))->blobs.push_back(kernel); net.getLayer(net.getLayerId("conv8_313_rh"))->blobs.push_back(Mat(1, 313, CV_32F, 2.606)); net.setInput(inp); Mat out = net.forward(); normAssert(out, ref, "", l1, lInf); } TEST(Reproducibility_DenseNet_121, Accuracy) { const string proto = findDataFile("dnn/DenseNet_121.prototxt", false); const string model = findDataFile("dnn/DenseNet_121.caffemodel", false); Mat inp = imread(_tf("dog416.png")); inp = blobFromImage(inp, 1.0 / 255, Size(224, 224)); Mat ref = blobFromNPY(_tf("densenet_121_output.npy")); Net net = readNetFromCaffe(proto, model); net.setInput(inp); Mat out = net.forward(); normAssert(out, ref); } TEST(Test_Caffe, multiple_inputs) { const string proto = findDataFile("dnn/layers/net_input.prototxt", false); Net net = readNetFromCaffe(proto); Mat first_image(10, 11, CV_32FC3); Mat second_image(10, 11, CV_32FC3); randu(first_image, -1, 1); randu(second_image, -1, 1); first_image = blobFromImage(first_image); second_image = blobFromImage(second_image); Mat first_image_blue_green = slice(first_image, Range::all(), Range(0, 2), Range::all(), Range::all()); Mat first_image_red = slice(first_image, Range::all(), Range(2, 3), Range::all(), Range::all()); Mat second_image_blue_green = slice(second_image, Range::all(), Range(0, 2), Range::all(), Range::all()); Mat second_image_red = slice(second_image, Range::all(), Range(2, 3), Range::all(), Range::all()); net.setInput(first_image_blue_green, "old_style_input_blue_green"); net.setInput(first_image_red, "different_name_for_red"); net.setInput(second_image_blue_green, "input_layer_blue_green"); net.setInput(second_image_red, "old_style_input_red"); Mat out = net.forward(); normAssert(out, first_image + second_image); } typedef testing::TestWithParam opencv_face_detector; TEST_P(opencv_face_detector, Accuracy) { std::string proto = findDataFile("dnn/opencv_face_detector.prototxt", false); std::string model = findDataFile(GetParam(), false); Net net = readNetFromCaffe(proto, model); Mat img = imread(findDataFile("gpu/lbpcascade/er.png", false)); Mat blob = blobFromImage(img, 1.0, Size(), Scalar(104.0, 177.0, 123.0), false, false); net.setInput(blob); // Output has shape 1x1xNx7 where N - number of detections. // An every detection is a vector of values [id, classId, confidence, left, top, right, bottom] Mat out = net.forward(); Mat ref = (Mat_(6, 5) << 0.99520785, 0.80997437, 0.16379407, 0.87996572, 0.26685631, 0.9934696, 0.2831718, 0.50738752, 0.345781, 0.5985168, 0.99096733, 0.13629119, 0.24892329, 0.19756334, 0.3310290, 0.98977017, 0.23901358, 0.09084064, 0.29902688, 0.1769477, 0.97203469, 0.67965847, 0.06876482, 0.73999709, 0.1513494, 0.95097077, 0.51901293, 0.45863652, 0.5777427, 0.5347801); normAssert(out.reshape(1, out.total() / 7).rowRange(0, 6).colRange(2, 7), ref); } INSTANTIATE_TEST_CASE_P(Test_Caffe, opencv_face_detector, Values( "dnn/opencv_face_detector.caffemodel", "dnn/opencv_face_detector_fp16.caffemodel" )); TEST(Test_Caffe, FasterRCNN_and_RFCN) { std::string models[] = {"VGG16_faster_rcnn_final.caffemodel", "ZF_faster_rcnn_final.caffemodel", "resnet50_rfcn_final.caffemodel"}; std::string protos[] = {"faster_rcnn_vgg16.prototxt", "faster_rcnn_zf.prototxt", "rfcn_pascal_voc_resnet50.prototxt"}; Mat refs[] = {(Mat_(3, 6) << 2, 0.949398, 99.2454, 210.141, 601.205, 462.849, 7, 0.997022, 481.841, 92.3218, 722.685, 175.953, 12, 0.993028, 133.221, 189.377, 350.994, 563.166), (Mat_(3, 6) << 2, 0.90121, 120.407, 115.83, 570.586, 528.395, 7, 0.988779, 469.849, 75.1756, 718.64, 186.762, 12, 0.967198, 138.588, 206.843, 329.766, 553.176), (Mat_(2, 6) << 7, 0.991359, 491.822, 81.1668, 702.573, 178.234, 12, 0.94786, 132.093, 223.903, 338.077, 566.16)}; for (int i = 0; i < 3; ++i) { std::string proto = findDataFile("dnn/" + protos[i], false); std::string model = findDataFile("dnn/" + models[i], false); Net net = readNetFromCaffe(proto, model); Mat img = imread(findDataFile("dnn/dog416.png", false)); resize(img, img, Size(800, 600)); Mat blob = blobFromImage(img, 1.0, Size(), Scalar(102.9801, 115.9465, 122.7717), false, false); Mat imInfo = (Mat_(1, 3) << img.rows, img.cols, 1.6f); net.setInput(blob, "data"); net.setInput(imInfo, "im_info"); // Output has shape 1x1xNx7 where N - number of detections. // An every detection is a vector of values [id, classId, confidence, left, top, right, bottom] Mat out = net.forward(); out = out.reshape(1, out.total() / 7); Mat detections; for (int j = 0; j < out.rows; ++j) { if (out.at(j, 2) > 0.8) detections.push_back(out.row(j).colRange(1, 7)); } normAssert(detections, refs[i], ("model name: " + models[i]).c_str(), 2e-4, 6e-4); } } }} // namespace