// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include #include #include "math.hpp" #include "grid_stride_range.hpp" #include "execution.hpp" #include "vector_traits.hpp" #include "../cuda4dnn/csl/stream.hpp" #include "../cuda4dnn/csl/span.hpp" #include using namespace cv::dnn::cuda4dnn::csl; using namespace cv::dnn::cuda4dnn::csl::device; namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels { namespace raw { template __global__ void eltwise_max_2_vec(Span output, View x, View y) { using vector_type = get_vector_type_t; auto output_vPtr = vector_type::get_pointer(output.data()); auto x_vPtr = vector_type::get_pointer(x.data()); auto y_vPtr = vector_type::get_pointer(y.data()); for (auto i : grid_stride_range(output.size() / vector_type::size())) { vector_type vec_x, vec_y; v_load(vec_x, x_vPtr[i]); v_load(vec_y, y_vPtr[i]); for (int j = 0; j < vector_type::size(); j++) { using device::max; vec_x.data[j] = max(vec_x.data[j], vec_y.data[j]); } v_store(output_vPtr[i], vec_x); } } template __global__ void eltwise_sum_2_vec(Span output, View x, View y) { using vector_type = get_vector_type_t; auto output_vPtr = vector_type::get_pointer(output.data()); auto x_vPtr = vector_type::get_pointer(x.data()); auto y_vPtr = vector_type::get_pointer(y.data()); for (auto i : grid_stride_range(output.size() / vector_type::size())) { vector_type vec_x, vec_y; v_load(vec_x, x_vPtr[i]); v_load(vec_y, y_vPtr[i]); for (int j = 0; j < vector_type::size(); j++) vec_x.data[j] = vec_x.data[j] + vec_y.data[j]; v_store(output_vPtr[i], vec_x); } } template __global__ void eltwise_sum_coeff_2_vec(Span output, T coeff_x, View x, T coeff_y, View y) { using vector_type = get_vector_type_t; auto output_vPtr = vector_type::get_pointer(output.data()); auto x_vPtr = vector_type::get_pointer(x.data()); auto y_vPtr = vector_type::get_pointer(y.data()); for (auto i : grid_stride_range(output.size() / vector_type::size())) { vector_type vec_x, vec_y; v_load(vec_x, x_vPtr[i]); v_load(vec_y, y_vPtr[i]); for (int j = 0; j < vector_type::size(); j++) vec_x.data[j] = coeff_x * vec_x.data[j] + coeff_y * vec_y.data[j]; v_store(output_vPtr[i], vec_x); } } template __global__ void eltwise_prod_2_vec(Span output, View x, View y) { using vector_type = get_vector_type_t; auto output_vPtr = vector_type::get_pointer(output.data()); auto x_vPtr = vector_type::get_pointer(x.data()); auto y_vPtr = vector_type::get_pointer(y.data()); for (auto i : grid_stride_range(output.size() / vector_type::size())) { vector_type vec_x, vec_y; v_load(vec_x, x_vPtr[i]); v_load(vec_y, y_vPtr[i]); for (int j = 0; j < vector_type::size(); j++) vec_x.data[j] = vec_x.data[j] * vec_y.data[j]; v_store(output_vPtr[i], vec_x); } } } template void launch_vectorized_eltwise_max_2(const Stream& stream, Span output, View x, View y) { CV_Assert(is_fully_aligned(output, N)); CV_Assert(is_fully_aligned(x, N)); CV_Assert(is_fully_aligned(y, N)); auto kernel = raw::eltwise_max_2_vec; auto policy = make_policy(kernel, output.size() / N, 0, stream); launch_kernel(kernel, policy, output, x, y); } template void eltwise_max_2(const Stream& stream, Span output, View x, View y) { CV_Assert(x.size() == y.size()); CV_Assert(x.size() == output.size()); if (is_fully_aligned(output, 4) && is_fully_aligned(x, 4) && is_fully_aligned(y, 4)) { launch_vectorized_eltwise_max_2(stream, output, x, y); } else if (is_fully_aligned(output, 2) && is_fully_aligned(x, 2) && is_fully_aligned(y, 2)) { launch_vectorized_eltwise_max_2(stream, output, x, y); } else { launch_vectorized_eltwise_max_2(stream, output, x, y); } } template void eltwise_max_2(const Stream& stream, Span<__half> output, View<__half> x, View<__half> y); template void eltwise_max_2(const Stream& stream, Span output, View x, View y); template void launch_vectorized_eltwise_sum_2(const Stream& stream, Span output, View x, View y) { CV_Assert(is_fully_aligned(output, N)); CV_Assert(is_fully_aligned(x, N)); CV_Assert(is_fully_aligned(y, N)); auto kernel = raw::eltwise_sum_2_vec; auto policy = make_policy(kernel, output.size() / N, 0, stream); launch_kernel(kernel, policy, output, x, y); } template void eltwise_sum_2(const Stream& stream, Span output, View x, View y) { CV_Assert(x.size() == y.size()); CV_Assert(x.size() == output.size()); if (is_fully_aligned(output, 4) && is_fully_aligned(x, 4) && is_fully_aligned(y, 4)) { launch_vectorized_eltwise_sum_2(stream, output, x, y); } else if (is_fully_aligned(output, 2) && is_fully_aligned(x, 2) && is_fully_aligned(y, 2)) { launch_vectorized_eltwise_sum_2(stream, output, x, y); } else { launch_vectorized_eltwise_sum_2(stream, output, x, y); } } template void eltwise_sum_2(const Stream& stream, Span<__half> output, View<__half> x, View<__half> y); template void eltwise_sum_2(const Stream& stream, Span output, View x, View y); template void launch_vectorized_eltwise_sum_coeff_2(const Stream& stream, Span output, T coeff_x, View x, T coeff_y, View y) { CV_Assert(is_fully_aligned(output, N)); CV_Assert(is_fully_aligned(x, N)); CV_Assert(is_fully_aligned(y, N)); auto kernel = raw::eltwise_sum_coeff_2_vec; auto policy = make_policy(kernel, output.size() / N, 0, stream); launch_kernel(kernel, policy, output, coeff_x, x, coeff_y, y); } template void eltwise_sum_coeff_2(const Stream& stream, Span output, T coeff_x, View x, T coeff_y, View y) { CV_Assert(x.size() == y.size()); CV_Assert(x.size() == output.size()); if (static_cast(coeff_x) == 1.0f && static_cast(coeff_y) == 1.0f) { eltwise_sum_2(stream, output, x, y); return; } if (is_fully_aligned(output, 4) && is_fully_aligned(x, 4) && is_fully_aligned(y, 4)) { launch_vectorized_eltwise_sum_coeff_2(stream, output, coeff_x, x, coeff_y, y); } else if (is_fully_aligned(output, 2) && is_fully_aligned(x, 2) && is_fully_aligned(y, 2)) { launch_vectorized_eltwise_sum_coeff_2(stream, output, coeff_x, x, coeff_y, y); } else { launch_vectorized_eltwise_sum_coeff_2(stream, output, coeff_x, x, coeff_y, y); } } template void eltwise_sum_coeff_2(const Stream&, Span<__half>, __half, View<__half>, __half, View<__half>); template void eltwise_sum_coeff_2(const Stream&, Span, float, View, float, View); template void launch_vectorized_eltwise_prod_2(const Stream& stream, Span output, View x, View y) { CV_Assert(is_fully_aligned(output, N)); CV_Assert(is_fully_aligned(x, N)); CV_Assert(is_fully_aligned(y, N)); auto kernel = raw::eltwise_prod_2_vec; auto policy = make_policy(kernel, output.size() / N, 0, stream); launch_kernel(kernel, policy, output, x, y); } template void eltwise_prod_2(const Stream& stream, Span output, View x, View y) { CV_Assert(x.size() == y.size()); CV_Assert(x.size() == output.size()); if (is_fully_aligned(output, 4) && is_fully_aligned(x, 4) && is_fully_aligned(y, 4)) { launch_vectorized_eltwise_prod_2(stream, output, x, y); } else if (is_fully_aligned(output, 2) && is_fully_aligned(x, 2) && is_fully_aligned(y, 2)) { launch_vectorized_eltwise_prod_2(stream, output, x, y); } else { launch_vectorized_eltwise_prod_2(stream, output, x, y); } } template void eltwise_prod_2(const Stream& stream, Span<__half> output, View<__half> x, View<__half> y); template void eltwise_prod_2(const Stream& stream, Span output, View x, View y); }}}} /* namespace cv::dnn::cuda4dnn::kernels */