/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include #include using namespace cv; namespace { ///////////////////////////////////// // Common template void releaseVector(std::vector& v) { std::vector empty; empty.swap(v); } double toRad(double a) { return a * CV_PI / 180.0; } bool notNull(float v) { return fabs(v) > std::numeric_limits::epsilon(); } class GHT_Pos : public GeneralizedHough { public: GHT_Pos(); protected: void setTemplateImpl(const Mat& edges, const Mat& dx, const Mat& dy, Point templCenter); void detectImpl(const Mat& edges, const Mat& dx, const Mat& dy, OutputArray positions, OutputArray votes); void releaseImpl(); virtual void processTempl() = 0; virtual void processImage() = 0; void filterMinDist(); void convertTo(OutputArray positions, OutputArray votes); double minDist; Size templSize; Point templCenter; Mat templEdges; Mat templDx; Mat templDy; Size imageSize; Mat imageEdges; Mat imageDx; Mat imageDy; std::vector posOutBuf; std::vector voteOutBuf; }; GHT_Pos::GHT_Pos() { minDist = 1.0; } void GHT_Pos::setTemplateImpl(const Mat& edges, const Mat& dx, const Mat& dy, Point templCenter_) { templSize = edges.size(); templCenter = templCenter_; edges.copyTo(templEdges); dx.copyTo(templDx); dy.copyTo(templDy); processTempl(); } void GHT_Pos::detectImpl(const Mat& edges, const Mat& dx, const Mat& dy, OutputArray positions, OutputArray votes) { imageSize = edges.size(); edges.copyTo(imageEdges); dx.copyTo(imageDx); dy.copyTo(imageDy); posOutBuf.clear(); voteOutBuf.clear(); processImage(); if (!posOutBuf.empty()) { if (minDist > 1) filterMinDist(); convertTo(positions, votes); } else { positions.release(); if (votes.needed()) votes.release(); } } void GHT_Pos::releaseImpl() { templSize = Size(); templCenter = Point(-1, -1); templEdges.release(); templDx.release(); templDy.release(); imageSize = Size(); imageEdges.release(); imageDx.release(); imageDy.release(); releaseVector(posOutBuf); releaseVector(voteOutBuf); } class Vec3iGreaterThanIdx { public: Vec3iGreaterThanIdx( const Vec3i* _arr ) : arr(_arr) {} bool operator()(size_t a, size_t b) const { return arr[a][0] > arr[b][0]; } const Vec3i* arr; }; void GHT_Pos::filterMinDist() { size_t oldSize = posOutBuf.size(); const bool hasVotes = !voteOutBuf.empty(); CV_Assert(!hasVotes || voteOutBuf.size() == oldSize); std::vector oldPosBuf(posOutBuf); std::vector oldVoteBuf(voteOutBuf); std::vector indexies(oldSize); for (size_t i = 0; i < oldSize; ++i) indexies[i] = i; std::sort(indexies.begin(), indexies.end(), Vec3iGreaterThanIdx(&oldVoteBuf[0])); posOutBuf.clear(); voteOutBuf.clear(); const int cellSize = cvRound(minDist); const int gridWidth = (imageSize.width + cellSize - 1) / cellSize; const int gridHeight = (imageSize.height + cellSize - 1) / cellSize; std::vector< std::vector > grid(gridWidth * gridHeight); const double minDist2 = minDist * minDist; for (size_t i = 0; i < oldSize; ++i) { const size_t ind = indexies[i]; Point2f p(oldPosBuf[ind][0], oldPosBuf[ind][1]); bool good = true; const int xCell = static_cast(p.x / cellSize); const int yCell = static_cast(p.y / cellSize); int x1 = xCell - 1; int y1 = yCell - 1; int x2 = xCell + 1; int y2 = yCell + 1; // boundary check x1 = std::max(0, x1); y1 = std::max(0, y1); x2 = std::min(gridWidth - 1, x2); y2 = std::min(gridHeight - 1, y2); for (int yy = y1; yy <= y2; ++yy) { for (int xx = x1; xx <= x2; ++xx) { const std::vector& m = grid[yy * gridWidth + xx]; for(size_t j = 0; j < m.size(); ++j) { const Point2f d = p - m[j]; if (d.ddot(d) < minDist2) { good = false; goto break_out; } } } } break_out: if(good) { grid[yCell * gridWidth + xCell].push_back(p); posOutBuf.push_back(oldPosBuf[ind]); if (hasVotes) voteOutBuf.push_back(oldVoteBuf[ind]); } } } void GHT_Pos::convertTo(OutputArray _positions, OutputArray _votes) { const int total = static_cast(posOutBuf.size()); const bool hasVotes = !voteOutBuf.empty(); CV_Assert(!hasVotes || voteOutBuf.size() == posOutBuf.size()); _positions.create(1, total, CV_32FC4); Mat positions = _positions.getMat(); Mat(1, total, CV_32FC4, &posOutBuf[0]).copyTo(positions); if (_votes.needed()) { if (!hasVotes) _votes.release(); else { _votes.create(1, total, CV_32SC3); Mat votes = _votes.getMat(); Mat(1, total, CV_32SC3, &voteOutBuf[0]).copyTo(votes); } } } ///////////////////////////////////// // POSITION Ballard class GHT_Ballard_Pos : public GHT_Pos { public: AlgorithmInfo* info() const; GHT_Ballard_Pos(); protected: void releaseImpl(); void processTempl(); void processImage(); virtual void calcHist(); virtual void findPosInHist(); int levels; int votesThreshold; double dp; std::vector< std::vector > r_table; Mat hist; }; CV_INIT_ALGORITHM(GHT_Ballard_Pos, "GeneralizedHough.POSITION", obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0, "Minimum distance between the centers of the detected objects."); obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0, "R-Table levels."); obj.info()->addParam(obj, "votesThreshold", obj.votesThreshold, false, 0, 0, "The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected."); obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0, "Inverse ratio of the accumulator resolution to the image resolution.")); GHT_Ballard_Pos::GHT_Ballard_Pos() { levels = 360; votesThreshold = 100; dp = 1.0; } void GHT_Ballard_Pos::releaseImpl() { GHT_Pos::releaseImpl(); releaseVector(r_table); hist.release(); } void GHT_Ballard_Pos::processTempl() { CV_Assert(templEdges.type() == CV_8UC1); CV_Assert(templDx.type() == CV_32FC1 && templDx.size() == templSize); CV_Assert(templDy.type() == templDx.type() && templDy.size() == templSize); CV_Assert(levels > 0); const double thetaScale = levels / 360.0; r_table.resize(levels + 1); for_each(r_table.begin(), r_table.end(), mem_fun_ref(&std::vector::clear)); for (int y = 0; y < templSize.height; ++y) { const uchar* edgesRow = templEdges.ptr(y); const float* dxRow = templDx.ptr(y); const float* dyRow = templDy.ptr(y); for (int x = 0; x < templSize.width; ++x) { const Point p(x, y); if (edgesRow[x] && (notNull(dyRow[x]) || notNull(dxRow[x]))) { const float theta = fastAtan2(dyRow[x], dxRow[x]); const int n = cvRound(theta * thetaScale); r_table[n].push_back(p - templCenter); } } } } void GHT_Ballard_Pos::processImage() { calcHist(); findPosInHist(); } void GHT_Ballard_Pos::calcHist() { CV_Assert(imageEdges.type() == CV_8UC1); CV_Assert(imageDx.type() == CV_32FC1 && imageDx.size() == imageSize); CV_Assert(imageDy.type() == imageDx.type() && imageDy.size() == imageSize); CV_Assert(levels > 0 && r_table.size() == static_cast(levels + 1)); CV_Assert(dp > 0.0); const double thetaScale = levels / 360.0; const double idp = 1.0 / dp; hist.create(cvCeil(imageSize.height * idp) + 2, cvCeil(imageSize.width * idp) + 2, CV_32SC1); hist.setTo(0); const int rows = hist.rows - 2; const int cols = hist.cols - 2; for (int y = 0; y < imageSize.height; ++y) { const uchar* edgesRow = imageEdges.ptr(y); const float* dxRow = imageDx.ptr(y); const float* dyRow = imageDy.ptr(y); for (int x = 0; x < imageSize.width; ++x) { const Point p(x, y); if (edgesRow[x] && (notNull(dyRow[x]) || notNull(dxRow[x]))) { const float theta = fastAtan2(dyRow[x], dxRow[x]); const int n = cvRound(theta * thetaScale); const std::vector& r_row = r_table[n]; for (size_t j = 0; j < r_row.size(); ++j) { Point c = p - r_row[j]; c.x = cvRound(c.x * idp); c.y = cvRound(c.y * idp); if (c.x >= 0 && c.x < cols && c.y >= 0 && c.y < rows) ++hist.at(c.y + 1, c.x + 1); } } } } } void GHT_Ballard_Pos::findPosInHist() { CV_Assert(votesThreshold > 0); const int histRows = hist.rows - 2; const int histCols = hist.cols - 2; for(int y = 0; y < histRows; ++y) { const int* prevRow = hist.ptr(y); const int* curRow = hist.ptr(y + 1); const int* nextRow = hist.ptr(y + 2); for(int x = 0; x < histCols; ++x) { const int votes = curRow[x + 1]; if (votes > votesThreshold && votes > curRow[x] && votes >= curRow[x + 2] && votes > prevRow[x + 1] && votes >= nextRow[x + 1]) { posOutBuf.push_back(Vec4f(static_cast(x * dp), static_cast(y * dp), 1.0f, 0.0f)); voteOutBuf.push_back(Vec3i(votes, 0, 0)); } } } } ///////////////////////////////////// // POSITION & SCALE class GHT_Ballard_PosScale : public GHT_Ballard_Pos { public: AlgorithmInfo* info() const; GHT_Ballard_PosScale(); protected: void calcHist(); void findPosInHist(); double minScale; double maxScale; double scaleStep; class Worker; friend class Worker; }; CV_INIT_ALGORITHM(GHT_Ballard_PosScale, "GeneralizedHough.POSITION_SCALE", obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0, "Minimum distance between the centers of the detected objects."); obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0, "R-Table levels."); obj.info()->addParam(obj, "votesThreshold", obj.votesThreshold, false, 0, 0, "The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected."); obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0, "Inverse ratio of the accumulator resolution to the image resolution."); obj.info()->addParam(obj, "minScale", obj.minScale, false, 0, 0, "Minimal scale to detect."); obj.info()->addParam(obj, "maxScale", obj.maxScale, false, 0, 0, "Maximal scale to detect."); obj.info()->addParam(obj, "scaleStep", obj.scaleStep, false, 0, 0, "Scale step.")); GHT_Ballard_PosScale::GHT_Ballard_PosScale() { minScale = 0.5; maxScale = 2.0; scaleStep = 0.05; } class GHT_Ballard_PosScale::Worker : public ParallelLoopBody { public: explicit Worker(GHT_Ballard_PosScale* base_) : base(base_) {} void operator ()(const Range& range) const; private: GHT_Ballard_PosScale* base; }; void GHT_Ballard_PosScale::Worker::operator ()(const Range& range) const { const double thetaScale = base->levels / 360.0; const double idp = 1.0 / base->dp; for (int s = range.start; s < range.end; ++s) { const double scale = base->minScale + s * base->scaleStep; Mat curHist(base->hist.size[1], base->hist.size[2], CV_32SC1, base->hist.ptr(s + 1), base->hist.step[1]); for (int y = 0; y < base->imageSize.height; ++y) { const uchar* edgesRow = base->imageEdges.ptr(y); const float* dxRow = base->imageDx.ptr(y); const float* dyRow = base->imageDy.ptr(y); for (int x = 0; x < base->imageSize.width; ++x) { const Point2d p(x, y); if (edgesRow[x] && (notNull(dyRow[x]) || notNull(dxRow[x]))) { const float theta = fastAtan2(dyRow[x], dxRow[x]); const int n = cvRound(theta * thetaScale); const std::vector& r_row = base->r_table[n]; for (size_t j = 0; j < r_row.size(); ++j) { Point2d d = r_row[j]; Point2d c = p - d * scale; c.x *= idp; c.y *= idp; if (c.x >= 0 && c.x < base->hist.size[2] - 2 && c.y >= 0 && c.y < base->hist.size[1] - 2) ++curHist.at(cvRound(c.y + 1), cvRound(c.x + 1)); } } } } } } void GHT_Ballard_PosScale::calcHist() { CV_Assert(imageEdges.type() == CV_8UC1); CV_Assert(imageDx.type() == CV_32FC1 && imageDx.size() == imageSize); CV_Assert(imageDy.type() == imageDx.type() && imageDy.size() == imageSize); CV_Assert(levels > 0 && r_table.size() == static_cast(levels + 1)); CV_Assert(dp > 0.0); CV_Assert(minScale > 0.0 && minScale < maxScale); CV_Assert(scaleStep > 0.0); const double idp = 1.0 / dp; const int scaleRange = cvCeil((maxScale - minScale) / scaleStep); const int sizes[] = {scaleRange + 2, cvCeil(imageSize.height * idp) + 2, cvCeil(imageSize.width * idp) + 2}; hist.create(3, sizes, CV_32SC1); hist.setTo(0); parallel_for_(Range(0, scaleRange), Worker(this)); } void GHT_Ballard_PosScale::findPosInHist() { CV_Assert(votesThreshold > 0); const int scaleRange = hist.size[0] - 2; const int histRows = hist.size[1] - 2; const int histCols = hist.size[2] - 2; for (int s = 0; s < scaleRange; ++s) { const float scale = static_cast(minScale + s * scaleStep); const Mat prevHist(histRows + 2, histCols + 2, CV_32SC1, hist.ptr(s), hist.step[1]); const Mat curHist(histRows + 2, histCols + 2, CV_32SC1, hist.ptr(s + 1), hist.step[1]); const Mat nextHist(histRows + 2, histCols + 2, CV_32SC1, hist.ptr(s + 2), hist.step[1]); for(int y = 0; y < histRows; ++y) { const int* prevHistRow = prevHist.ptr(y + 1); const int* prevRow = curHist.ptr(y); const int* curRow = curHist.ptr(y + 1); const int* nextRow = curHist.ptr(y + 2); const int* nextHistRow = nextHist.ptr(y + 1); for(int x = 0; x < histCols; ++x) { const int votes = curRow[x + 1]; if (votes > votesThreshold && votes > curRow[x] && votes >= curRow[x + 2] && votes > prevRow[x + 1] && votes >= nextRow[x + 1] && votes > prevHistRow[x + 1] && votes >= nextHistRow[x + 1]) { posOutBuf.push_back(Vec4f(static_cast(x * dp), static_cast(y * dp), scale, 0.0f)); voteOutBuf.push_back(Vec3i(votes, votes, 0)); } } } } } ///////////////////////////////////// // POSITION & ROTATION class GHT_Ballard_PosRotation : public GHT_Ballard_Pos { public: AlgorithmInfo* info() const; GHT_Ballard_PosRotation(); protected: void calcHist(); void findPosInHist(); double minAngle; double maxAngle; double angleStep; class Worker; friend class Worker; }; CV_INIT_ALGORITHM(GHT_Ballard_PosRotation, "GeneralizedHough.POSITION_ROTATION", obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0, "Minimum distance between the centers of the detected objects."); obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0, "R-Table levels."); obj.info()->addParam(obj, "votesThreshold", obj.votesThreshold, false, 0, 0, "The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected."); obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0, "Inverse ratio of the accumulator resolution to the image resolution."); obj.info()->addParam(obj, "minAngle", obj.minAngle, false, 0, 0, "Minimal rotation angle to detect in degrees."); obj.info()->addParam(obj, "maxAngle", obj.maxAngle, false, 0, 0, "Maximal rotation angle to detect in degrees."); obj.info()->addParam(obj, "angleStep", obj.angleStep, false, 0, 0, "Angle step in degrees.")); GHT_Ballard_PosRotation::GHT_Ballard_PosRotation() { minAngle = 0.0; maxAngle = 360.0; angleStep = 1.0; } class GHT_Ballard_PosRotation::Worker : public ParallelLoopBody { public: explicit Worker(GHT_Ballard_PosRotation* base_) : base(base_) {} void operator ()(const Range& range) const; private: GHT_Ballard_PosRotation* base; }; void GHT_Ballard_PosRotation::Worker::operator ()(const Range& range) const { const double thetaScale = base->levels / 360.0; const double idp = 1.0 / base->dp; for (int a = range.start; a < range.end; ++a) { const double angle = base->minAngle + a * base->angleStep; const double sinA = ::sin(toRad(angle)); const double cosA = ::cos(toRad(angle)); Mat curHist(base->hist.size[1], base->hist.size[2], CV_32SC1, base->hist.ptr(a + 1), base->hist.step[1]); for (int y = 0; y < base->imageSize.height; ++y) { const uchar* edgesRow = base->imageEdges.ptr(y); const float* dxRow = base->imageDx.ptr(y); const float* dyRow = base->imageDy.ptr(y); for (int x = 0; x < base->imageSize.width; ++x) { const Point2d p(x, y); if (edgesRow[x] && (notNull(dyRow[x]) || notNull(dxRow[x]))) { double theta = fastAtan2(dyRow[x], dxRow[x]) - angle; if (theta < 0) theta += 360.0; const int n = cvRound(theta * thetaScale); const std::vector& r_row = base->r_table[n]; for (size_t j = 0; j < r_row.size(); ++j) { Point2d d = r_row[j]; Point2d c = p - Point2d(d.x * cosA - d.y * sinA, d.x * sinA + d.y * cosA); c.x *= idp; c.y *= idp; if (c.x >= 0 && c.x < base->hist.size[2] - 2 && c.y >= 0 && c.y < base->hist.size[1] - 2) ++curHist.at(cvRound(c.y + 1), cvRound(c.x + 1)); } } } } } } void GHT_Ballard_PosRotation::calcHist() { CV_Assert(imageEdges.type() == CV_8UC1); CV_Assert(imageDx.type() == CV_32FC1 && imageDx.size() == imageSize); CV_Assert(imageDy.type() == imageDx.type() && imageDy.size() == imageSize); CV_Assert(levels > 0 && r_table.size() == static_cast(levels + 1)); CV_Assert(dp > 0.0); CV_Assert(minAngle >= 0.0 && minAngle < maxAngle && maxAngle <= 360.0); CV_Assert(angleStep > 0.0 && angleStep < 360.0); const double idp = 1.0 / dp; const int angleRange = cvCeil((maxAngle - minAngle) / angleStep); const int sizes[] = {angleRange + 2, cvCeil(imageSize.height * idp) + 2, cvCeil(imageSize.width * idp) + 2}; hist.create(3, sizes, CV_32SC1); hist.setTo(0); parallel_for_(Range(0, angleRange), Worker(this)); } void GHT_Ballard_PosRotation::findPosInHist() { CV_Assert(votesThreshold > 0); const int angleRange = hist.size[0] - 2; const int histRows = hist.size[1] - 2; const int histCols = hist.size[2] - 2; for (int a = 0; a < angleRange; ++a) { const float angle = static_cast(minAngle + a * angleStep); const Mat prevHist(histRows + 2, histCols + 2, CV_32SC1, hist.ptr(a), hist.step[1]); const Mat curHist(histRows + 2, histCols + 2, CV_32SC1, hist.ptr(a + 1), hist.step[1]); const Mat nextHist(histRows + 2, histCols + 2, CV_32SC1, hist.ptr(a + 2), hist.step[1]); for(int y = 0; y < histRows; ++y) { const int* prevHistRow = prevHist.ptr(y + 1); const int* prevRow = curHist.ptr(y); const int* curRow = curHist.ptr(y + 1); const int* nextRow = curHist.ptr(y + 2); const int* nextHistRow = nextHist.ptr(y + 1); for(int x = 0; x < histCols; ++x) { const int votes = curRow[x + 1]; if (votes > votesThreshold && votes > curRow[x] && votes >= curRow[x + 2] && votes > prevRow[x + 1] && votes >= nextRow[x + 1] && votes > prevHistRow[x + 1] && votes >= nextHistRow[x + 1]) { posOutBuf.push_back(Vec4f(static_cast(x * dp), static_cast(y * dp), 1.0f, angle)); voteOutBuf.push_back(Vec3i(votes, 0, votes)); } } } } } ///////////////////////////////////////// // POSITION & SCALE & ROTATION double clampAngle(double a) { double res = a; while (res > 360.0) res -= 360.0; while (res < 0) res += 360.0; return res; } bool angleEq(double a, double b, double eps = 1.0) { return (fabs(clampAngle(a - b)) <= eps); } class GHT_Guil_Full : public GHT_Pos { public: AlgorithmInfo* info() const; GHT_Guil_Full(); protected: void releaseImpl(); void processTempl(); void processImage(); struct ContourPoint { Point2d pos; double theta; }; struct Feature { ContourPoint p1; ContourPoint p2; double alpha12; double d12; Point2d r1; Point2d r2; }; void buildFeatureList(const Mat& edges, const Mat& dx, const Mat& dy, std::vector< std::vector >& features, Point2d center = Point2d()); void getContourPoints(const Mat& edges, const Mat& dx, const Mat& dy, std::vector& points); void calcOrientation(); void calcScale(double angle); void calcPosition(double angle, int angleVotes, double scale, int scaleVotes); int maxSize; double xi; int levels; double angleEpsilon; double minAngle; double maxAngle; double angleStep; int angleThresh; double minScale; double maxScale; double scaleStep; int scaleThresh; double dp; int posThresh; std::vector< std::vector > templFeatures; std::vector< std::vector > imageFeatures; std::vector< std::pair > angles; std::vector< std::pair > scales; }; CV_INIT_ALGORITHM(GHT_Guil_Full, "GeneralizedHough.POSITION_SCALE_ROTATION", obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0, "Minimum distance between the centers of the detected objects."); obj.info()->addParam(obj, "maxSize", obj.maxSize, false, 0, 0, "Maximal size of inner buffers."); obj.info()->addParam(obj, "xi", obj.xi, false, 0, 0, "Angle difference in degrees between two points in feature."); obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0, "Feature table levels."); obj.info()->addParam(obj, "angleEpsilon", obj.angleEpsilon, false, 0, 0, "Maximal difference between angles that treated as equal."); obj.info()->addParam(obj, "minAngle", obj.minAngle, false, 0, 0, "Minimal rotation angle to detect in degrees."); obj.info()->addParam(obj, "maxAngle", obj.maxAngle, false, 0, 0, "Maximal rotation angle to detect in degrees."); obj.info()->addParam(obj, "angleStep", obj.angleStep, false, 0, 0, "Angle step in degrees."); obj.info()->addParam(obj, "angleThresh", obj.angleThresh, false, 0, 0, "Angle threshold."); obj.info()->addParam(obj, "minScale", obj.minScale, false, 0, 0, "Minimal scale to detect."); obj.info()->addParam(obj, "maxScale", obj.maxScale, false, 0, 0, "Maximal scale to detect."); obj.info()->addParam(obj, "scaleStep", obj.scaleStep, false, 0, 0, "Scale step."); obj.info()->addParam(obj, "scaleThresh", obj.scaleThresh, false, 0, 0, "Scale threshold."); obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0, "Inverse ratio of the accumulator resolution to the image resolution."); obj.info()->addParam(obj, "posThresh", obj.posThresh, false, 0, 0, "Position threshold.")); GHT_Guil_Full::GHT_Guil_Full() { maxSize = 1000; xi = 90.0; levels = 360; angleEpsilon = 1.0; minAngle = 0.0; maxAngle = 360.0; angleStep = 1.0; angleThresh = 15000; minScale = 0.5; maxScale = 2.0; scaleStep = 0.05; scaleThresh = 1000; dp = 1.0; posThresh = 100; } void GHT_Guil_Full::releaseImpl() { GHT_Pos::releaseImpl(); releaseVector(templFeatures); releaseVector(imageFeatures); releaseVector(angles); releaseVector(scales); } void GHT_Guil_Full::processTempl() { buildFeatureList(templEdges, templDx, templDy, templFeatures, templCenter); } void GHT_Guil_Full::processImage() { buildFeatureList(imageEdges, imageDx, imageDy, imageFeatures); calcOrientation(); for (size_t i = 0; i < angles.size(); ++i) { const double angle = angles[i].first; const int angleVotes = angles[i].second; calcScale(angle); for (size_t j = 0; j < scales.size(); ++j) { const double scale = scales[j].first; const int scaleVotes = scales[j].second; calcPosition(angle, angleVotes, scale, scaleVotes); } } } void GHT_Guil_Full::buildFeatureList(const Mat& edges, const Mat& dx, const Mat& dy, std::vector< std::vector >& features, Point2d center) { CV_Assert(levels > 0); const double maxDist = sqrt((double) templSize.width * templSize.width + templSize.height * templSize.height) * maxScale; const double alphaScale = levels / 360.0; std::vector points; getContourPoints(edges, dx, dy, points); features.resize(levels + 1); for_each(features.begin(), features.end(), mem_fun_ref(&std::vector::clear)); for_each(features.begin(), features.end(), bind2nd(mem_fun_ref(&std::vector::reserve), maxSize)); for (size_t i = 0; i < points.size(); ++i) { ContourPoint p1 = points[i]; for (size_t j = 0; j < points.size(); ++j) { ContourPoint p2 = points[j]; if (angleEq(p1.theta - p2.theta, xi, angleEpsilon)) { const Point2d d = p1.pos - p2.pos; Feature f; f.p1 = p1; f.p2 = p2; f.alpha12 = clampAngle(fastAtan2((float)d.y, (float)d.x) - p1.theta); f.d12 = norm(d); if (f.d12 > maxDist) continue; f.r1 = p1.pos - center; f.r2 = p2.pos - center; const int n = cvRound(f.alpha12 * alphaScale); if (features[n].size() < static_cast(maxSize)) features[n].push_back(f); } } } } void GHT_Guil_Full::getContourPoints(const Mat& edges, const Mat& dx, const Mat& dy, std::vector& points) { CV_Assert(edges.type() == CV_8UC1); CV_Assert(dx.type() == CV_32FC1 && dx.size == edges.size); CV_Assert(dy.type() == dx.type() && dy.size == edges.size); points.clear(); points.reserve(edges.size().area()); for (int y = 0; y < edges.rows; ++y) { const uchar* edgesRow = edges.ptr(y); const float* dxRow = dx.ptr(y); const float* dyRow = dy.ptr(y); for (int x = 0; x < edges.cols; ++x) { if (edgesRow[x] && (notNull(dyRow[x]) || notNull(dxRow[x]))) { ContourPoint p; p.pos = Point2d(x, y); p.theta = fastAtan2(dyRow[x], dxRow[x]); points.push_back(p); } } } } void GHT_Guil_Full::calcOrientation() { CV_Assert(levels > 0); CV_Assert(templFeatures.size() == static_cast(levels + 1)); CV_Assert(imageFeatures.size() == templFeatures.size()); CV_Assert(minAngle >= 0.0 && minAngle < maxAngle && maxAngle <= 360.0); CV_Assert(angleStep > 0.0 && angleStep < 360.0); CV_Assert(angleThresh > 0); const double iAngleStep = 1.0 / angleStep; const int angleRange = cvCeil((maxAngle - minAngle) * iAngleStep); std::vector OHist(angleRange + 1, 0); for (int i = 0; i <= levels; ++i) { const std::vector& templRow = templFeatures[i]; const std::vector& imageRow = imageFeatures[i]; for (size_t j = 0; j < templRow.size(); ++j) { Feature templF = templRow[j]; for (size_t k = 0; k < imageRow.size(); ++k) { Feature imF = imageRow[k]; const double angle = clampAngle(imF.p1.theta - templF.p1.theta); if (angle >= minAngle && angle <= maxAngle) { const int n = cvRound((angle - minAngle) * iAngleStep); ++OHist[n]; } } } } angles.clear(); for (int n = 0; n < angleRange; ++n) { if (OHist[n] >= angleThresh) { const double angle = minAngle + n * angleStep; angles.push_back(std::make_pair(angle, OHist[n])); } } } void GHT_Guil_Full::calcScale(double angle) { CV_Assert(levels > 0); CV_Assert(templFeatures.size() == static_cast(levels + 1)); CV_Assert(imageFeatures.size() == templFeatures.size()); CV_Assert(minScale > 0.0 && minScale < maxScale); CV_Assert(scaleStep > 0.0); CV_Assert(scaleThresh > 0); const double iScaleStep = 1.0 / scaleStep; const int scaleRange = cvCeil((maxScale - minScale) * iScaleStep); std::vector SHist(scaleRange + 1, 0); for (int i = 0; i <= levels; ++i) { const std::vector& templRow = templFeatures[i]; const std::vector& imageRow = imageFeatures[i]; for (size_t j = 0; j < templRow.size(); ++j) { Feature templF = templRow[j]; templF.p1.theta += angle; for (size_t k = 0; k < imageRow.size(); ++k) { Feature imF = imageRow[k]; if (angleEq(imF.p1.theta, templF.p1.theta, angleEpsilon)) { const double scale = imF.d12 / templF.d12; if (scale >= minScale && scale <= maxScale) { const int s = cvRound((scale - minScale) * iScaleStep); ++SHist[s]; } } } } } scales.clear(); for (int s = 0; s < scaleRange; ++s) { if (SHist[s] >= scaleThresh) { const double scale = minScale + s * scaleStep; scales.push_back(std::make_pair(scale, SHist[s])); } } } void GHT_Guil_Full::calcPosition(double angle, int angleVotes, double scale, int scaleVotes) { CV_Assert(levels > 0); CV_Assert(templFeatures.size() == static_cast(levels + 1)); CV_Assert(imageFeatures.size() == templFeatures.size()); CV_Assert(dp > 0.0); CV_Assert(posThresh > 0); const double sinVal = sin(toRad(angle)); const double cosVal = cos(toRad(angle)); const double idp = 1.0 / dp; const int histRows = cvCeil(imageSize.height * idp); const int histCols = cvCeil(imageSize.width * idp); Mat DHist(histRows + 2, histCols + 2, CV_32SC1, Scalar::all(0)); for (int i = 0; i <= levels; ++i) { const std::vector& templRow = templFeatures[i]; const std::vector& imageRow = imageFeatures[i]; for (size_t j = 0; j < templRow.size(); ++j) { Feature templF = templRow[j]; templF.p1.theta += angle; templF.r1 *= scale; templF.r2 *= scale; templF.r1 = Point2d(cosVal * templF.r1.x - sinVal * templF.r1.y, sinVal * templF.r1.x + cosVal * templF.r1.y); templF.r2 = Point2d(cosVal * templF.r2.x - sinVal * templF.r2.y, sinVal * templF.r2.x + cosVal * templF.r2.y); for (size_t k = 0; k < imageRow.size(); ++k) { Feature imF = imageRow[k]; if (angleEq(imF.p1.theta, templF.p1.theta, angleEpsilon)) { Point2d c1, c2; c1 = imF.p1.pos - templF.r1; c1 *= idp; c2 = imF.p2.pos - templF.r2; c2 *= idp; if (fabs(c1.x - c2.x) > 1 || fabs(c1.y - c2.y) > 1) continue; if (c1.y >= 0 && c1.y < histRows && c1.x >= 0 && c1.x < histCols) ++DHist.at(cvRound(c1.y) + 1, cvRound(c1.x) + 1); } } } } for(int y = 0; y < histRows; ++y) { const int* prevRow = DHist.ptr(y); const int* curRow = DHist.ptr(y + 1); const int* nextRow = DHist.ptr(y + 2); for(int x = 0; x < histCols; ++x) { const int votes = curRow[x + 1]; if (votes > posThresh && votes > curRow[x] && votes >= curRow[x + 2] && votes > prevRow[x + 1] && votes >= nextRow[x + 1]) { posOutBuf.push_back(Vec4f(static_cast(x * dp), static_cast(y * dp), static_cast(scale), static_cast(angle))); voteOutBuf.push_back(Vec3i(votes, scaleVotes, angleVotes)); } } } } } Ptr cv::GeneralizedHough::create(int method) { switch (method) { case GHT_POSITION: CV_Assert( !GHT_Ballard_Pos_info_auto.name().empty() ); return new GHT_Ballard_Pos(); case (GHT_POSITION | GHT_SCALE): CV_Assert( !GHT_Ballard_PosScale_info_auto.name().empty() ); return new GHT_Ballard_PosScale(); case (GHT_POSITION | GHT_ROTATION): CV_Assert( !GHT_Ballard_PosRotation_info_auto.name().empty() ); return new GHT_Ballard_PosRotation(); case (GHT_POSITION | GHT_SCALE | GHT_ROTATION): CV_Assert( !GHT_Guil_Full_info_auto.name().empty() ); return new GHT_Guil_Full(); } CV_Error(CV_StsBadArg, "Unsupported method"); return Ptr(); } cv::GeneralizedHough::~GeneralizedHough() { } void cv::GeneralizedHough::setTemplate(InputArray _templ, int cannyThreshold, Point templCenter) { Mat templ = _templ.getMat(); CV_Assert(templ.type() == CV_8UC1); CV_Assert(cannyThreshold > 0); Canny(templ, edges_, cannyThreshold / 2, cannyThreshold); Sobel(templ, dx_, CV_32F, 1, 0); Sobel(templ, dy_, CV_32F, 0, 1); if (templCenter == Point(-1, -1)) templCenter = Point(templ.cols / 2, templ.rows / 2); setTemplateImpl(edges_, dx_, dy_, templCenter); } void cv::GeneralizedHough::setTemplate(InputArray _edges, InputArray _dx, InputArray _dy, Point templCenter) { Mat edges = _edges.getMat(); Mat dx = _dx.getMat(); Mat dy = _dy.getMat(); if (templCenter == Point(-1, -1)) templCenter = Point(edges.cols / 2, edges.rows / 2); setTemplateImpl(edges, dx, dy, templCenter); } void cv::GeneralizedHough::detect(InputArray _image, OutputArray positions, OutputArray votes, int cannyThreshold) { Mat image = _image.getMat(); CV_Assert(image.type() == CV_8UC1); CV_Assert(cannyThreshold > 0); Canny(image, edges_, cannyThreshold / 2, cannyThreshold); Sobel(image, dx_, CV_32F, 1, 0); Sobel(image, dy_, CV_32F, 0, 1); detectImpl(edges_, dx_, dy_, positions, votes); } void cv::GeneralizedHough::detect(InputArray _edges, InputArray _dx, InputArray _dy, OutputArray positions, OutputArray votes) { cv::Mat edges = _edges.getMat(); cv::Mat dx = _dx.getMat(); cv::Mat dy = _dy.getMat(); detectImpl(edges, dx, dy, positions, votes); } void cv::GeneralizedHough::release() { edges_.release(); dx_.release(); dy_.release(); releaseImpl(); }