/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" namespace cv { Stitcher Stitcher::createDefault(bool try_use_gpu) { Stitcher stitcher; stitcher.setRegistrationResol(0.6); stitcher.setSeamEstimationResol(0.1); stitcher.setCompositingResol(ORIG_RESOL); stitcher.setPanoConfidenceThresh(1); stitcher.setWaveCorrection(true); stitcher.setWaveCorrectKind(detail::WAVE_CORRECT_HORIZ); stitcher.setFeaturesMatcher(makePtr(try_use_gpu)); stitcher.setBundleAdjuster(makePtr()); #ifdef HAVE_OPENCV_CUDALEGACY if (try_use_gpu && cuda::getCudaEnabledDeviceCount() > 0) { stitcher.setFeaturesFinder(makePtr()); stitcher.setWarper(makePtr()); stitcher.setSeamFinder(makePtr()); } else #endif { stitcher.setFeaturesFinder(makePtr()); stitcher.setWarper(makePtr()); stitcher.setSeamFinder(makePtr(detail::GraphCutSeamFinderBase::COST_COLOR)); } stitcher.setExposureCompensator(makePtr()); stitcher.setBlender(makePtr(try_use_gpu)); stitcher.work_scale_ = 1; stitcher.seam_scale_ = 1; stitcher.seam_work_aspect_ = 1; stitcher.warped_image_scale_ = 1; return stitcher; } Ptr Stitcher::create(Mode mode, bool try_use_gpu) { Stitcher stit = createDefault(try_use_gpu); Ptr stitcher = makePtr(stit); switch (mode) { case PANORAMA: // PANORAMA is the default // already setup break; case SCANS: stitcher->setWaveCorrection(false); stitcher->setFeaturesMatcher(makePtr(false, try_use_gpu)); stitcher->setBundleAdjuster(makePtr()); stitcher->setWarper(makePtr()); stitcher->setExposureCompensator(makePtr()); break; default: CV_Error(Error::StsBadArg, "Invalid stitching mode. Must be one of Stitcher::Mode"); break; } return stitcher; } Stitcher::Status Stitcher::estimateTransform(InputArrayOfArrays images) { CV_INSTRUMENT_REGION(); return estimateTransform(images, std::vector >()); } Stitcher::Status Stitcher::estimateTransform(InputArrayOfArrays images, const std::vector > &rois) { CV_INSTRUMENT_REGION(); images.getUMatVector(imgs_); rois_ = rois; Status status; if ((status = matchImages()) != OK) return status; if ((status = estimateCameraParams()) != OK) return status; return OK; } Stitcher::Status Stitcher::composePanorama(OutputArray pano) { CV_INSTRUMENT_REGION(); return composePanorama(std::vector(), pano); } Stitcher::Status Stitcher::composePanorama(InputArrayOfArrays images, OutputArray pano) { CV_INSTRUMENT_REGION(); LOGLN("Warping images (auxiliary)... "); std::vector imgs; images.getUMatVector(imgs); if (!imgs.empty()) { CV_Assert(imgs.size() == imgs_.size()); UMat img; seam_est_imgs_.resize(imgs.size()); for (size_t i = 0; i < imgs.size(); ++i) { imgs_[i] = imgs[i]; resize(imgs[i], img, Size(), seam_scale_, seam_scale_, INTER_LINEAR_EXACT); seam_est_imgs_[i] = img.clone(); } std::vector seam_est_imgs_subset; std::vector imgs_subset; for (size_t i = 0; i < indices_.size(); ++i) { imgs_subset.push_back(imgs_[indices_[i]]); seam_est_imgs_subset.push_back(seam_est_imgs_[indices_[i]]); } seam_est_imgs_ = seam_est_imgs_subset; imgs_ = imgs_subset; } UMat pano_; #if ENABLE_LOG int64 t = getTickCount(); #endif std::vector corners(imgs_.size()); std::vector masks_warped(imgs_.size()); std::vector images_warped(imgs_.size()); std::vector sizes(imgs_.size()); std::vector masks(imgs_.size()); // Prepare image masks for (size_t i = 0; i < imgs_.size(); ++i) { masks[i].create(seam_est_imgs_[i].size(), CV_8U); masks[i].setTo(Scalar::all(255)); } // Warp images and their masks Ptr w = warper_->create(float(warped_image_scale_ * seam_work_aspect_)); for (size_t i = 0; i < imgs_.size(); ++i) { Mat_ K; cameras_[i].K().convertTo(K, CV_32F); K(0,0) *= (float)seam_work_aspect_; K(0,2) *= (float)seam_work_aspect_; K(1,1) *= (float)seam_work_aspect_; K(1,2) *= (float)seam_work_aspect_; corners[i] = w->warp(seam_est_imgs_[i], K, cameras_[i].R, INTER_LINEAR, BORDER_REFLECT, images_warped[i]); sizes[i] = images_warped[i].size(); w->warp(masks[i], K, cameras_[i].R, INTER_NEAREST, BORDER_CONSTANT, masks_warped[i]); } LOGLN("Warping images, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); // Compensate exposure before finding seams exposure_comp_->feed(corners, images_warped, masks_warped); for (size_t i = 0; i < imgs_.size(); ++i) exposure_comp_->apply(int(i), corners[i], images_warped[i], masks_warped[i]); // Find seams std::vector images_warped_f(imgs_.size()); for (size_t i = 0; i < imgs_.size(); ++i) images_warped[i].convertTo(images_warped_f[i], CV_32F); seam_finder_->find(images_warped_f, corners, masks_warped); // Release unused memory seam_est_imgs_.clear(); images_warped.clear(); images_warped_f.clear(); masks.clear(); LOGLN("Compositing..."); #if ENABLE_LOG t = getTickCount(); #endif UMat img_warped, img_warped_s; UMat dilated_mask, seam_mask, mask, mask_warped; //double compose_seam_aspect = 1; double compose_work_aspect = 1; bool is_blender_prepared = false; double compose_scale = 1; bool is_compose_scale_set = false; std::vector cameras_scaled(cameras_); UMat full_img, img; for (size_t img_idx = 0; img_idx < imgs_.size(); ++img_idx) { LOGLN("Compositing image #" << indices_[img_idx] + 1); #if ENABLE_LOG int64 compositing_t = getTickCount(); #endif // Read image and resize it if necessary full_img = imgs_[img_idx]; if (!is_compose_scale_set) { if (compose_resol_ > 0) compose_scale = std::min(1.0, std::sqrt(compose_resol_ * 1e6 / full_img.size().area())); is_compose_scale_set = true; // Compute relative scales //compose_seam_aspect = compose_scale / seam_scale_; compose_work_aspect = compose_scale / work_scale_; // Update warped image scale float warp_scale = static_cast(warped_image_scale_ * compose_work_aspect); w = warper_->create(warp_scale); // Update corners and sizes for (size_t i = 0; i < imgs_.size(); ++i) { // Update intrinsics cameras_scaled[i].ppx *= compose_work_aspect; cameras_scaled[i].ppy *= compose_work_aspect; cameras_scaled[i].focal *= compose_work_aspect; // Update corner and size Size sz = full_img_sizes_[i]; if (std::abs(compose_scale - 1) > 1e-1) { sz.width = cvRound(full_img_sizes_[i].width * compose_scale); sz.height = cvRound(full_img_sizes_[i].height * compose_scale); } Mat K; cameras_scaled[i].K().convertTo(K, CV_32F); Rect roi = w->warpRoi(sz, K, cameras_scaled[i].R); corners[i] = roi.tl(); sizes[i] = roi.size(); } } if (std::abs(compose_scale - 1) > 1e-1) { #if ENABLE_LOG int64 resize_t = getTickCount(); #endif resize(full_img, img, Size(), compose_scale, compose_scale, INTER_LINEAR_EXACT); LOGLN(" resize time: " << ((getTickCount() - resize_t) / getTickFrequency()) << " sec"); } else img = full_img; full_img.release(); Size img_size = img.size(); LOGLN(" after resize time: " << ((getTickCount() - compositing_t) / getTickFrequency()) << " sec"); Mat K; cameras_scaled[img_idx].K().convertTo(K, CV_32F); #if ENABLE_LOG int64 pt = getTickCount(); #endif // Warp the current image w->warp(img, K, cameras_[img_idx].R, INTER_LINEAR, BORDER_REFLECT, img_warped); LOGLN(" warp the current image: " << ((getTickCount() - pt) / getTickFrequency()) << " sec"); #if ENABLE_LOG pt = getTickCount(); #endif // Warp the current image mask mask.create(img_size, CV_8U); mask.setTo(Scalar::all(255)); w->warp(mask, K, cameras_[img_idx].R, INTER_NEAREST, BORDER_CONSTANT, mask_warped); LOGLN(" warp the current image mask: " << ((getTickCount() - pt) / getTickFrequency()) << " sec"); #if ENABLE_LOG pt = getTickCount(); #endif // Compensate exposure exposure_comp_->apply((int)img_idx, corners[img_idx], img_warped, mask_warped); LOGLN(" compensate exposure: " << ((getTickCount() - pt) / getTickFrequency()) << " sec"); #if ENABLE_LOG pt = getTickCount(); #endif img_warped.convertTo(img_warped_s, CV_16S); img_warped.release(); img.release(); mask.release(); // Make sure seam mask has proper size dilate(masks_warped[img_idx], dilated_mask, Mat()); resize(dilated_mask, seam_mask, mask_warped.size(), 0, 0, INTER_LINEAR_EXACT); bitwise_and(seam_mask, mask_warped, mask_warped); LOGLN(" other: " << ((getTickCount() - pt) / getTickFrequency()) << " sec"); #if ENABLE_LOG pt = getTickCount(); #endif if (!is_blender_prepared) { blender_->prepare(corners, sizes); is_blender_prepared = true; } LOGLN(" other2: " << ((getTickCount() - pt) / getTickFrequency()) << " sec"); LOGLN(" feed..."); #if ENABLE_LOG int64 feed_t = getTickCount(); #endif // Blend the current image blender_->feed(img_warped_s, mask_warped, corners[img_idx]); LOGLN(" feed time: " << ((getTickCount() - feed_t) / getTickFrequency()) << " sec"); LOGLN("Compositing ## time: " << ((getTickCount() - compositing_t) / getTickFrequency()) << " sec"); } #if ENABLE_LOG int64 blend_t = getTickCount(); #endif UMat result, result_mask; blender_->blend(result, result_mask); LOGLN("blend time: " << ((getTickCount() - blend_t) / getTickFrequency()) << " sec"); LOGLN("Compositing, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); // Preliminary result is in CV_16SC3 format, but all values are in [0,255] range, // so convert it to avoid user confusing result.convertTo(pano, CV_8U); return OK; } Stitcher::Status Stitcher::stitch(InputArrayOfArrays images, OutputArray pano) { CV_INSTRUMENT_REGION(); Status status = estimateTransform(images); if (status != OK) return status; return composePanorama(pano); } Stitcher::Status Stitcher::stitch(InputArrayOfArrays images, const std::vector > &rois, OutputArray pano) { CV_INSTRUMENT_REGION(); Status status = estimateTransform(images, rois); if (status != OK) return status; return composePanorama(pano); } Stitcher::Status Stitcher::matchImages() { if ((int)imgs_.size() < 2) { LOGLN("Need more images"); return ERR_NEED_MORE_IMGS; } work_scale_ = 1; seam_work_aspect_ = 1; seam_scale_ = 1; bool is_work_scale_set = false; bool is_seam_scale_set = false; UMat full_img, img; features_.resize(imgs_.size()); seam_est_imgs_.resize(imgs_.size()); full_img_sizes_.resize(imgs_.size()); LOGLN("Finding features..."); #if ENABLE_LOG int64 t = getTickCount(); #endif std::vector feature_find_imgs(imgs_.size()); std::vector > feature_find_rois(rois_.size()); for (size_t i = 0; i < imgs_.size(); ++i) { full_img = imgs_[i]; full_img_sizes_[i] = full_img.size(); if (registr_resol_ < 0) { img = full_img; work_scale_ = 1; is_work_scale_set = true; } else { if (!is_work_scale_set) { work_scale_ = std::min(1.0, std::sqrt(registr_resol_ * 1e6 / full_img.size().area())); is_work_scale_set = true; } resize(full_img, img, Size(), work_scale_, work_scale_, INTER_LINEAR_EXACT); } if (!is_seam_scale_set) { seam_scale_ = std::min(1.0, std::sqrt(seam_est_resol_ * 1e6 / full_img.size().area())); seam_work_aspect_ = seam_scale_ / work_scale_; is_seam_scale_set = true; } if (rois_.empty()) feature_find_imgs[i] = img; else { feature_find_rois[i].resize(rois_[i].size()); for (size_t j = 0; j < rois_[i].size(); ++j) { Point tl(cvRound(rois_[i][j].x * work_scale_), cvRound(rois_[i][j].y * work_scale_)); Point br(cvRound(rois_[i][j].br().x * work_scale_), cvRound(rois_[i][j].br().y * work_scale_)); feature_find_rois[i][j] = Rect(tl, br); } feature_find_imgs[i] = img; } features_[i].img_idx = (int)i; LOGLN("Features in image #" << i+1 << ": " << features_[i].keypoints.size()); resize(full_img, img, Size(), seam_scale_, seam_scale_, INTER_LINEAR_EXACT); seam_est_imgs_[i] = img.clone(); } // find features possibly in parallel if (rois_.empty()) (*features_finder_)(feature_find_imgs, features_); else (*features_finder_)(feature_find_imgs, features_, feature_find_rois); // Do it to save memory features_finder_->collectGarbage(); full_img.release(); img.release(); feature_find_imgs.clear(); feature_find_rois.clear(); LOGLN("Finding features, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); LOG("Pairwise matching"); #if ENABLE_LOG t = getTickCount(); #endif (*features_matcher_)(features_, pairwise_matches_, matching_mask_); features_matcher_->collectGarbage(); LOGLN("Pairwise matching, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); // Leave only images we are sure are from the same panorama indices_ = detail::leaveBiggestComponent(features_, pairwise_matches_, (float)conf_thresh_); std::vector seam_est_imgs_subset; std::vector imgs_subset; std::vector full_img_sizes_subset; for (size_t i = 0; i < indices_.size(); ++i) { imgs_subset.push_back(imgs_[indices_[i]]); seam_est_imgs_subset.push_back(seam_est_imgs_[indices_[i]]); full_img_sizes_subset.push_back(full_img_sizes_[indices_[i]]); } seam_est_imgs_ = seam_est_imgs_subset; imgs_ = imgs_subset; full_img_sizes_ = full_img_sizes_subset; if ((int)imgs_.size() < 2) { LOGLN("Need more images"); return ERR_NEED_MORE_IMGS; } return OK; } Stitcher::Status Stitcher::estimateCameraParams() { /* TODO OpenCV ABI 4.x get rid of this dynamic_cast hack and use estimator_ */ Ptr estimator; if (dynamic_cast(features_matcher_.get())) estimator = makePtr(); else estimator = makePtr(); if (!(*estimator)(features_, pairwise_matches_, cameras_)) return ERR_HOMOGRAPHY_EST_FAIL; for (size_t i = 0; i < cameras_.size(); ++i) { Mat R; cameras_[i].R.convertTo(R, CV_32F); cameras_[i].R = R; //LOGLN("Initial intrinsic parameters #" << indices_[i] + 1 << ":\n " << cameras_[i].K()); } bundle_adjuster_->setConfThresh(conf_thresh_); if (!(*bundle_adjuster_)(features_, pairwise_matches_, cameras_)) return ERR_CAMERA_PARAMS_ADJUST_FAIL; // Find median focal length and use it as final image scale std::vector focals; for (size_t i = 0; i < cameras_.size(); ++i) { //LOGLN("Camera #" << indices_[i] + 1 << ":\n" << cameras_[i].K()); focals.push_back(cameras_[i].focal); } std::sort(focals.begin(), focals.end()); if (focals.size() % 2 == 1) warped_image_scale_ = static_cast(focals[focals.size() / 2]); else warped_image_scale_ = static_cast(focals[focals.size() / 2 - 1] + focals[focals.size() / 2]) * 0.5f; if (do_wave_correct_) { std::vector rmats; for (size_t i = 0; i < cameras_.size(); ++i) rmats.push_back(cameras_[i].R.clone()); detail::waveCorrect(rmats, wave_correct_kind_); for (size_t i = 0; i < cameras_.size(); ++i) cameras_[i].R = rmats[i]; } return OK; } Ptr createStitcher(bool try_use_gpu) { CV_INSTRUMENT_REGION(); return Stitcher::create(Stitcher::PANORAMA, try_use_gpu); } Ptr createStitcherScans(bool try_use_gpu) { CV_INSTRUMENT_REGION(); return Stitcher::create(Stitcher::SCANS, try_use_gpu); } } // namespace cv