/********************************************************************* * Software License Agreement (BSD License) * * Copyright (c) 2009, Willow Garage, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the Willow Garage nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. *********************************************************************/ /** Authors: Ethan Rublee, Vincent Rabaud, Gary Bradski */ #include "precomp.hpp" #include "opencl_kernels_features2d.hpp" #include //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// namespace cv { const float HARRIS_K = 0.04f; template inline void copyVectorToUMat(const std::vector<_Tp>& v, OutputArray um) { if(v.empty()) um.release(); Mat(1, (int)(v.size()*sizeof(v[0])), CV_8U, (void*)&v[0]).copyTo(um); } static bool ocl_HarrisResponses(const UMat& imgbuf, const UMat& layerinfo, const UMat& keypoints, UMat& responses, int nkeypoints, int blockSize, float harris_k) { size_t globalSize[] = {nkeypoints}; float scale = 1.f/((1 << 2) * blockSize * 255.f); float scale_sq_sq = scale * scale * scale * scale; ocl::Kernel hr_ker("ORB_HarrisResponses", ocl::features2d::orb_oclsrc, format("-D ORB_RESPONSES -D blockSize=%d -D scale_sq_sq=%.12ef -D HARRIS_K=%.12ff", blockSize, scale_sq_sq, harris_k)); if( hr_ker.empty() ) return false; return hr_ker.args(ocl::KernelArg::ReadOnlyNoSize(imgbuf), ocl::KernelArg::PtrReadOnly(layerinfo), ocl::KernelArg::PtrReadOnly(keypoints), ocl::KernelArg::PtrWriteOnly(responses), nkeypoints).run(1, globalSize, 0, true); } static bool ocl_ICAngles(const UMat& imgbuf, const UMat& layerinfo, const UMat& keypoints, UMat& responses, const UMat& umax, int nkeypoints, int half_k) { size_t globalSize[] = {nkeypoints}; ocl::Kernel icangle_ker("ORB_ICAngle", ocl::features2d::orb_oclsrc, "-D ORB_ANGLES"); if( icangle_ker.empty() ) return false; return icangle_ker.args(ocl::KernelArg::ReadOnlyNoSize(imgbuf), ocl::KernelArg::PtrReadOnly(layerinfo), ocl::KernelArg::PtrReadOnly(keypoints), ocl::KernelArg::PtrWriteOnly(responses), ocl::KernelArg::PtrReadOnly(umax), nkeypoints, half_k).run(1, globalSize, 0, true); } static bool ocl_computeOrbDescriptors(const UMat& imgbuf, const UMat& layerInfo, const UMat& keypoints, UMat& desc, const UMat& pattern, int nkeypoints, int dsize, int WTA_K) { size_t globalSize[] = {nkeypoints}; ocl::Kernel desc_ker("ORB_computeDescriptor", ocl::features2d::orb_oclsrc, format("-D ORB_DESCRIPTORS -D WTA_K=%d", WTA_K)); if( desc_ker.empty() ) return false; return desc_ker.args(ocl::KernelArg::ReadOnlyNoSize(imgbuf), ocl::KernelArg::PtrReadOnly(layerInfo), ocl::KernelArg::PtrReadOnly(keypoints), ocl::KernelArg::PtrWriteOnly(desc), ocl::KernelArg::PtrReadOnly(pattern), nkeypoints, dsize).run(1, globalSize, 0, true); } /** * Function that computes the Harris responses in a * blockSize x blockSize patch at given points in the image */ static void HarrisResponses(const Mat& img, const std::vector& layerinfo, std::vector& pts, int blockSize, float harris_k) { CV_Assert( img.type() == CV_8UC1 && blockSize*blockSize <= 2048 ); size_t ptidx, ptsize = pts.size(); const uchar* ptr00 = img.ptr(); int step = (int)(img.step/img.elemSize1()); int r = blockSize/2; float scale = 1.f/((1 << 2) * blockSize * 255.f); float scale_sq_sq = scale * scale * scale * scale; AutoBuffer ofsbuf(blockSize*blockSize); int* ofs = ofsbuf; for( int i = 0; i < blockSize; i++ ) for( int j = 0; j < blockSize; j++ ) ofs[i*blockSize + j] = (int)(i*step + j); for( ptidx = 0; ptidx < ptsize; ptidx++ ) { int x0 = cvRound(pts[ptidx].pt.x); int y0 = cvRound(pts[ptidx].pt.y); int z = pts[ptidx].octave; const uchar* ptr0 = ptr00 + (y0 - r + layerinfo[z].y)*step + x0 - r + layerinfo[z].x; int a = 0, b = 0, c = 0; for( int k = 0; k < blockSize*blockSize; k++ ) { const uchar* ptr = ptr0 + ofs[k]; int Ix = (ptr[1] - ptr[-1])*2 + (ptr[-step+1] - ptr[-step-1]) + (ptr[step+1] - ptr[step-1]); int Iy = (ptr[step] - ptr[-step])*2 + (ptr[step-1] - ptr[-step-1]) + (ptr[step+1] - ptr[-step+1]); a += Ix*Ix; b += Iy*Iy; c += Ix*Iy; } pts[ptidx].response = ((float)a * b - (float)c * c - harris_k * ((float)a + b) * ((float)a + b))*scale_sq_sq; } } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// static void ICAngles(const Mat& img, const std::vector& layerinfo, std::vector& pts, const std::vector & u_max, int half_k) { int step = (int)img.step1(); size_t ptidx, ptsize = pts.size(); for( ptidx = 0; ptidx < ptsize; ptidx++ ) { const Rect& layer = layerinfo[pts[ptidx].octave]; const uchar* center = &img.at(cvRound(pts[ptidx].pt.y) + layer.y, cvRound(pts[ptidx].pt.x) + layer.x); int m_01 = 0, m_10 = 0; // Treat the center line differently, v=0 for (int u = -half_k; u <= half_k; ++u) m_10 += u * center[u]; // Go line by line in the circular patch for (int v = 1; v <= half_k; ++v) { // Proceed over the two lines int v_sum = 0; int d = u_max[v]; for (int u = -d; u <= d; ++u) { int val_plus = center[u + v*step], val_minus = center[u - v*step]; v_sum += (val_plus - val_minus); m_10 += u * (val_plus + val_minus); } m_01 += v * v_sum; } pts[ptidx].angle = fastAtan2((float)m_01, (float)m_10); } } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// static void computeOrbDescriptors( const Mat& imagePyramid, const std::vector& layerInfo, const std::vector& layerScale, std::vector& keypoints, Mat& descriptors, const std::vector& _pattern, int dsize, int WTA_K ) { int step = (int)imagePyramid.step; int j, i, nkeypoints = (int)keypoints.size(); for( j = 0; j < nkeypoints; j++ ) { const KeyPoint& kpt = keypoints[j]; const Rect& layer = layerInfo[kpt.octave]; float scale = 1.f/layerScale[kpt.octave]; float angle = kpt.angle; angle *= (float)(CV_PI/180.f); float a = (float)cos(angle), b = (float)sin(angle); const uchar* center = &imagePyramid.at(cvRound(kpt.pt.y*scale) + layer.y, cvRound(kpt.pt.x*scale) + layer.x); float x, y; int ix, iy; const Point* pattern = &_pattern[0]; uchar* desc = descriptors.ptr(j); #if 1 #define GET_VALUE(idx) \ (x = pattern[idx].x*a - pattern[idx].y*b, \ y = pattern[idx].x*b + pattern[idx].y*a, \ ix = cvRound(x), \ iy = cvRound(y), \ *(center + iy*step + ix) ) #else #define GET_VALUE(idx) \ (x = pattern[idx].x*a - pattern[idx].y*b, \ y = pattern[idx].x*b + pattern[idx].y*a, \ ix = cvFloor(x), iy = cvFloor(y), \ x -= ix, y -= iy, \ cvRound(center[iy*step + ix]*(1-x)*(1-y) + center[(iy+1)*step + ix]*(1-x)*y + \ center[iy*step + ix+1]*x*(1-y) + center[(iy+1)*step + ix+1]*x*y)) #endif if( WTA_K == 2 ) { for (i = 0; i < dsize; ++i, pattern += 16) { int t0, t1, val; t0 = GET_VALUE(0); t1 = GET_VALUE(1); val = t0 < t1; t0 = GET_VALUE(2); t1 = GET_VALUE(3); val |= (t0 < t1) << 1; t0 = GET_VALUE(4); t1 = GET_VALUE(5); val |= (t0 < t1) << 2; t0 = GET_VALUE(6); t1 = GET_VALUE(7); val |= (t0 < t1) << 3; t0 = GET_VALUE(8); t1 = GET_VALUE(9); val |= (t0 < t1) << 4; t0 = GET_VALUE(10); t1 = GET_VALUE(11); val |= (t0 < t1) << 5; t0 = GET_VALUE(12); t1 = GET_VALUE(13); val |= (t0 < t1) << 6; t0 = GET_VALUE(14); t1 = GET_VALUE(15); val |= (t0 < t1) << 7; desc[i] = (uchar)val; } } else if( WTA_K == 3 ) { for (i = 0; i < dsize; ++i, pattern += 12) { int t0, t1, t2, val; t0 = GET_VALUE(0); t1 = GET_VALUE(1); t2 = GET_VALUE(2); val = t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0); t0 = GET_VALUE(3); t1 = GET_VALUE(4); t2 = GET_VALUE(5); val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 2; t0 = GET_VALUE(6); t1 = GET_VALUE(7); t2 = GET_VALUE(8); val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 4; t0 = GET_VALUE(9); t1 = GET_VALUE(10); t2 = GET_VALUE(11); val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 6; desc[i] = (uchar)val; } } else if( WTA_K == 4 ) { for (i = 0; i < dsize; ++i, pattern += 16) { int t0, t1, t2, t3, u, v, k, val; t0 = GET_VALUE(0); t1 = GET_VALUE(1); t2 = GET_VALUE(2); t3 = GET_VALUE(3); u = 0, v = 2; if( t1 > t0 ) t0 = t1, u = 1; if( t3 > t2 ) t2 = t3, v = 3; k = t0 > t2 ? u : v; val = k; t0 = GET_VALUE(4); t1 = GET_VALUE(5); t2 = GET_VALUE(6); t3 = GET_VALUE(7); u = 0, v = 2; if( t1 > t0 ) t0 = t1, u = 1; if( t3 > t2 ) t2 = t3, v = 3; k = t0 > t2 ? u : v; val |= k << 2; t0 = GET_VALUE(8); t1 = GET_VALUE(9); t2 = GET_VALUE(10); t3 = GET_VALUE(11); u = 0, v = 2; if( t1 > t0 ) t0 = t1, u = 1; if( t3 > t2 ) t2 = t3, v = 3; k = t0 > t2 ? u : v; val |= k << 4; t0 = GET_VALUE(12); t1 = GET_VALUE(13); t2 = GET_VALUE(14); t3 = GET_VALUE(15); u = 0, v = 2; if( t1 > t0 ) t0 = t1, u = 1; if( t3 > t2 ) t2 = t3, v = 3; k = t0 > t2 ? u : v; val |= k << 6; desc[i] = (uchar)val; } } else CV_Error( Error::StsBadSize, "Wrong WTA_K. It can be only 2, 3 or 4." ); #undef GET_VALUE } } static void initializeOrbPattern( const Point* pattern0, std::vector& pattern, int ntuples, int tupleSize, int poolSize ) { RNG rng(0x12345678); int i, k, k1; pattern.resize(ntuples*tupleSize); for( i = 0; i < ntuples; i++ ) { for( k = 0; k < tupleSize; k++ ) { for(;;) { int idx = rng.uniform(0, poolSize); Point pt = pattern0[idx]; for( k1 = 0; k1 < k; k1++ ) if( pattern[tupleSize*i + k1] == pt ) break; if( k1 == k ) { pattern[tupleSize*i + k] = pt; break; } } } } } static int bit_pattern_31_[256*4] = { 8,-3, 9,5/*mean (0), correlation (0)*/, 4,2, 7,-12/*mean (1.12461e-05), correlation (0.0437584)*/, -11,9, -8,2/*mean (3.37382e-05), correlation (0.0617409)*/, 7,-12, 12,-13/*mean (5.62303e-05), correlation (0.0636977)*/, 2,-13, 2,12/*mean (0.000134953), correlation (0.085099)*/, 1,-7, 1,6/*mean (0.000528565), correlation (0.0857175)*/, -2,-10, -2,-4/*mean (0.0188821), correlation (0.0985774)*/, -13,-13, -11,-8/*mean (0.0363135), correlation (0.0899616)*/, -13,-3, -12,-9/*mean (0.121806), correlation (0.099849)*/, 10,4, 11,9/*mean (0.122065), correlation (0.093285)*/, -13,-8, -8,-9/*mean (0.162787), correlation (0.0942748)*/, -11,7, -9,12/*mean (0.21561), correlation (0.0974438)*/, 7,7, 12,6/*mean (0.160583), correlation (0.130064)*/, -4,-5, -3,0/*mean (0.228171), correlation (0.132998)*/, -13,2, -12,-3/*mean (0.00997526), correlation (0.145926)*/, -9,0, -7,5/*mean (0.198234), correlation (0.143636)*/, 12,-6, 12,-1/*mean (0.0676226), correlation (0.16689)*/, -3,6, -2,12/*mean (0.166847), correlation (0.171682)*/, -6,-13, -4,-8/*mean (0.101215), correlation (0.179716)*/, 11,-13, 12,-8/*mean (0.200641), correlation (0.192279)*/, 4,7, 5,1/*mean (0.205106), correlation (0.186848)*/, 5,-3, 10,-3/*mean (0.234908), correlation (0.192319)*/, 3,-7, 6,12/*mean (0.0709964), correlation (0.210872)*/, -8,-7, -6,-2/*mean (0.0939834), correlation (0.212589)*/, -2,11, -1,-10/*mean (0.127778), correlation (0.20866)*/, -13,12, -8,10/*mean (0.14783), correlation (0.206356)*/, -7,3, -5,-3/*mean (0.182141), correlation (0.198942)*/, -4,2, -3,7/*mean (0.188237), correlation (0.21384)*/, -10,-12, -6,11/*mean (0.14865), correlation (0.23571)*/, 5,-12, 6,-7/*mean (0.222312), correlation (0.23324)*/, 5,-6, 7,-1/*mean (0.229082), correlation (0.23389)*/, 1,0, 4,-5/*mean (0.241577), correlation (0.215286)*/, 9,11, 11,-13/*mean (0.00338507), correlation (0.251373)*/, 4,7, 4,12/*mean (0.131005), correlation (0.257622)*/, 2,-1, 4,4/*mean (0.152755), correlation (0.255205)*/, -4,-12, -2,7/*mean (0.182771), correlation (0.244867)*/, -8,-5, -7,-10/*mean (0.186898), correlation (0.23901)*/, 4,11, 9,12/*mean (0.226226), correlation (0.258255)*/, 0,-8, 1,-13/*mean (0.0897886), correlation (0.274827)*/, -13,-2, -8,2/*mean (0.148774), correlation (0.28065)*/, -3,-2, -2,3/*mean (0.153048), correlation (0.283063)*/, -6,9, -4,-9/*mean (0.169523), correlation (0.278248)*/, 8,12, 10,7/*mean (0.225337), correlation (0.282851)*/, 0,9, 1,3/*mean (0.226687), correlation (0.278734)*/, 7,-5, 11,-10/*mean (0.00693882), correlation (0.305161)*/, -13,-6, -11,0/*mean (0.0227283), correlation (0.300181)*/, 10,7, 12,1/*mean (0.125517), correlation (0.31089)*/, -6,-3, -6,12/*mean (0.131748), correlation (0.312779)*/, 10,-9, 12,-4/*mean (0.144827), correlation (0.292797)*/, -13,8, -8,-12/*mean (0.149202), correlation (0.308918)*/, -13,0, -8,-4/*mean (0.160909), correlation (0.310013)*/, 3,3, 7,8/*mean (0.177755), correlation (0.309394)*/, 5,7, 10,-7/*mean (0.212337), correlation (0.310315)*/, -1,7, 1,-12/*mean (0.214429), correlation (0.311933)*/, 3,-10, 5,6/*mean (0.235807), correlation (0.313104)*/, 2,-4, 3,-10/*mean (0.00494827), correlation (0.344948)*/, -13,0, -13,5/*mean (0.0549145), correlation (0.344675)*/, -13,-7, -12,12/*mean (0.103385), correlation (0.342715)*/, -13,3, -11,8/*mean (0.134222), correlation (0.322922)*/, -7,12, -4,7/*mean (0.153284), correlation (0.337061)*/, 6,-10, 12,8/*mean (0.154881), correlation (0.329257)*/, -9,-1, -7,-6/*mean (0.200967), correlation (0.33312)*/, -2,-5, 0,12/*mean (0.201518), correlation (0.340635)*/, -12,5, -7,5/*mean (0.207805), correlation (0.335631)*/, 3,-10, 8,-13/*mean (0.224438), correlation (0.34504)*/, -7,-7, -4,5/*mean (0.239361), correlation (0.338053)*/, -3,-2, -1,-7/*mean (0.240744), correlation (0.344322)*/, 2,9, 5,-11/*mean (0.242949), correlation (0.34145)*/, -11,-13, -5,-13/*mean (0.244028), correlation (0.336861)*/, -1,6, 0,-1/*mean (0.247571), correlation (0.343684)*/, 5,-3, 5,2/*mean (0.000697256), correlation (0.357265)*/, -4,-13, -4,12/*mean (0.00213675), correlation (0.373827)*/, -9,-6, -9,6/*mean (0.0126856), correlation (0.373938)*/, -12,-10, -8,-4/*mean (0.0152497), correlation (0.364237)*/, 10,2, 12,-3/*mean (0.0299933), correlation (0.345292)*/, 7,12, 12,12/*mean (0.0307242), correlation (0.366299)*/, -7,-13, -6,5/*mean (0.0534975), correlation (0.368357)*/, -4,9, -3,4/*mean (0.099865), correlation (0.372276)*/, 7,-1, 12,2/*mean (0.117083), correlation (0.364529)*/, -7,6, -5,1/*mean (0.126125), correlation (0.369606)*/, -13,11, -12,5/*mean (0.130364), correlation (0.358502)*/, -3,7, -2,-6/*mean (0.131691), correlation (0.375531)*/, 7,-8, 12,-7/*mean (0.160166), correlation (0.379508)*/, -13,-7, -11,-12/*mean (0.167848), correlation (0.353343)*/, 1,-3, 12,12/*mean (0.183378), correlation (0.371916)*/, 2,-6, 3,0/*mean (0.228711), correlation (0.371761)*/, -4,3, -2,-13/*mean (0.247211), correlation (0.364063)*/, -1,-13, 1,9/*mean (0.249325), correlation (0.378139)*/, 7,1, 8,-6/*mean (0.000652272), correlation (0.411682)*/, 1,-1, 3,12/*mean (0.00248538), correlation (0.392988)*/, 9,1, 12,6/*mean (0.0206815), correlation (0.386106)*/, -1,-9, -1,3/*mean (0.0364485), correlation (0.410752)*/, -13,-13, -10,5/*mean (0.0376068), correlation (0.398374)*/, 7,7, 10,12/*mean (0.0424202), correlation (0.405663)*/, 12,-5, 12,9/*mean (0.0942645), correlation (0.410422)*/, 6,3, 7,11/*mean (0.1074), correlation (0.413224)*/, 5,-13, 6,10/*mean (0.109256), correlation (0.408646)*/, 2,-12, 2,3/*mean (0.131691), correlation (0.416076)*/, 3,8, 4,-6/*mean (0.165081), correlation (0.417569)*/, 2,6, 12,-13/*mean (0.171874), correlation (0.408471)*/, 9,-12, 10,3/*mean (0.175146), correlation (0.41296)*/, -8,4, -7,9/*mean (0.183682), correlation (0.402956)*/, -11,12, -4,-6/*mean (0.184672), correlation (0.416125)*/, 1,12, 2,-8/*mean (0.191487), correlation (0.386696)*/, 6,-9, 7,-4/*mean (0.192668), correlation (0.394771)*/, 2,3, 3,-2/*mean (0.200157), correlation (0.408303)*/, 6,3, 11,0/*mean (0.204588), correlation (0.411762)*/, 3,-3, 8,-8/*mean (0.205904), correlation (0.416294)*/, 7,8, 9,3/*mean (0.213237), correlation (0.409306)*/, -11,-5, -6,-4/*mean (0.243444), correlation (0.395069)*/, -10,11, -5,10/*mean (0.247672), correlation (0.413392)*/, -5,-8, -3,12/*mean (0.24774), correlation (0.411416)*/, -10,5, -9,0/*mean (0.00213675), correlation (0.454003)*/, 8,-1, 12,-6/*mean (0.0293635), correlation (0.455368)*/, 4,-6, 6,-11/*mean (0.0404971), correlation (0.457393)*/, -10,12, -8,7/*mean (0.0481107), correlation (0.448364)*/, 4,-2, 6,7/*mean (0.050641), correlation (0.455019)*/, -2,0, -2,12/*mean (0.0525978), correlation (0.44338)*/, -5,-8, -5,2/*mean (0.0629667), correlation (0.457096)*/, 7,-6, 10,12/*mean (0.0653846), correlation (0.445623)*/, -9,-13, -8,-8/*mean (0.0858749), correlation (0.449789)*/, -5,-13, -5,-2/*mean (0.122402), correlation (0.450201)*/, 8,-8, 9,-13/*mean (0.125416), correlation (0.453224)*/, -9,-11, -9,0/*mean (0.130128), correlation (0.458724)*/, 1,-8, 1,-2/*mean (0.132467), correlation (0.440133)*/, 7,-4, 9,1/*mean (0.132692), correlation (0.454)*/, -2,1, -1,-4/*mean (0.135695), correlation (0.455739)*/, 11,-6, 12,-11/*mean (0.142904), correlation (0.446114)*/, -12,-9, -6,4/*mean (0.146165), correlation (0.451473)*/, 3,7, 7,12/*mean (0.147627), correlation (0.456643)*/, 5,5, 10,8/*mean (0.152901), correlation (0.455036)*/, 0,-4, 2,8/*mean (0.167083), correlation (0.459315)*/, -9,12, -5,-13/*mean (0.173234), correlation (0.454706)*/, 0,7, 2,12/*mean (0.18312), correlation (0.433855)*/, -1,2, 1,7/*mean (0.185504), correlation (0.443838)*/, 5,11, 7,-9/*mean (0.185706), correlation (0.451123)*/, 3,5, 6,-8/*mean (0.188968), correlation (0.455808)*/, -13,-4, -8,9/*mean (0.191667), correlation (0.459128)*/, -5,9, -3,-3/*mean (0.193196), correlation (0.458364)*/, -4,-7, -3,-12/*mean (0.196536), correlation (0.455782)*/, 6,5, 8,0/*mean (0.1972), correlation (0.450481)*/, -7,6, -6,12/*mean (0.199438), correlation (0.458156)*/, -13,6, -5,-2/*mean (0.211224), correlation (0.449548)*/, 1,-10, 3,10/*mean (0.211718), correlation (0.440606)*/, 4,1, 8,-4/*mean (0.213034), correlation (0.443177)*/, -2,-2, 2,-13/*mean (0.234334), correlation (0.455304)*/, 2,-12, 12,12/*mean (0.235684), correlation (0.443436)*/, -2,-13, 0,-6/*mean (0.237674), correlation (0.452525)*/, 4,1, 9,3/*mean (0.23962), correlation (0.444824)*/, -6,-10, -3,-5/*mean (0.248459), correlation (0.439621)*/, -3,-13, -1,1/*mean (0.249505), correlation (0.456666)*/, 7,5, 12,-11/*mean (0.00119208), correlation (0.495466)*/, 4,-2, 5,-7/*mean (0.00372245), correlation (0.484214)*/, -13,9, -9,-5/*mean (0.00741116), correlation (0.499854)*/, 7,1, 8,6/*mean (0.0208952), correlation (0.499773)*/, 7,-8, 7,6/*mean (0.0220085), correlation (0.501609)*/, -7,-4, -7,1/*mean (0.0233806), correlation (0.496568)*/, -8,11, -7,-8/*mean (0.0236505), correlation (0.489719)*/, -13,6, -12,-8/*mean (0.0268781), correlation (0.503487)*/, 2,4, 3,9/*mean (0.0323324), correlation (0.501938)*/, 10,-5, 12,3/*mean (0.0399235), correlation (0.494029)*/, -6,-5, -6,7/*mean (0.0420153), correlation (0.486579)*/, 8,-3, 9,-8/*mean (0.0548021), correlation (0.484237)*/, 2,-12, 2,8/*mean (0.0616622), correlation (0.496642)*/, -11,-2, -10,3/*mean (0.0627755), correlation (0.498563)*/, -12,-13, -7,-9/*mean (0.0829622), correlation (0.495491)*/, -11,0, -10,-5/*mean (0.0843342), correlation (0.487146)*/, 5,-3, 11,8/*mean (0.0929937), correlation (0.502315)*/, -2,-13, -1,12/*mean (0.113327), correlation (0.48941)*/, -1,-8, 0,9/*mean (0.132119), correlation (0.467268)*/, -13,-11, -12,-5/*mean (0.136269), correlation (0.498771)*/, -10,-2, -10,11/*mean (0.142173), correlation (0.498714)*/, -3,9, -2,-13/*mean (0.144141), correlation (0.491973)*/, 2,-3, 3,2/*mean (0.14892), correlation (0.500782)*/, -9,-13, -4,0/*mean (0.150371), correlation (0.498211)*/, -4,6, -3,-10/*mean (0.152159), correlation (0.495547)*/, -4,12, -2,-7/*mean (0.156152), correlation (0.496925)*/, -6,-11, -4,9/*mean (0.15749), correlation (0.499222)*/, 6,-3, 6,11/*mean (0.159211), correlation (0.503821)*/, -13,11, -5,5/*mean (0.162427), correlation (0.501907)*/, 11,11, 12,6/*mean (0.16652), correlation (0.497632)*/, 7,-5, 12,-2/*mean (0.169141), correlation (0.484474)*/, -1,12, 0,7/*mean (0.169456), correlation (0.495339)*/, -4,-8, -3,-2/*mean (0.171457), correlation (0.487251)*/, -7,1, -6,7/*mean (0.175), correlation (0.500024)*/, -13,-12, -8,-13/*mean (0.175866), correlation (0.497523)*/, -7,-2, -6,-8/*mean (0.178273), correlation (0.501854)*/, -8,5, -6,-9/*mean (0.181107), correlation (0.494888)*/, -5,-1, -4,5/*mean (0.190227), correlation (0.482557)*/, -13,7, -8,10/*mean (0.196739), correlation (0.496503)*/, 1,5, 5,-13/*mean (0.19973), correlation (0.499759)*/, 1,0, 10,-13/*mean (0.204465), correlation (0.49873)*/, 9,12, 10,-1/*mean (0.209334), correlation (0.49063)*/, 5,-8, 10,-9/*mean (0.211134), correlation (0.503011)*/, -1,11, 1,-13/*mean (0.212), correlation (0.499414)*/, -9,-3, -6,2/*mean (0.212168), correlation (0.480739)*/, -1,-10, 1,12/*mean (0.212731), correlation (0.502523)*/, -13,1, -8,-10/*mean (0.21327), correlation (0.489786)*/, 8,-11, 10,-6/*mean (0.214159), correlation (0.488246)*/, 2,-13, 3,-6/*mean (0.216993), correlation (0.50287)*/, 7,-13, 12,-9/*mean (0.223639), correlation (0.470502)*/, -10,-10, -5,-7/*mean (0.224089), correlation (0.500852)*/, -10,-8, -8,-13/*mean (0.228666), correlation (0.502629)*/, 4,-6, 8,5/*mean (0.22906), correlation (0.498305)*/, 3,12, 8,-13/*mean (0.233378), correlation (0.503825)*/, -4,2, -3,-3/*mean (0.234323), correlation (0.476692)*/, 5,-13, 10,-12/*mean (0.236392), correlation (0.475462)*/, 4,-13, 5,-1/*mean (0.236842), correlation (0.504132)*/, -9,9, -4,3/*mean (0.236977), correlation (0.497739)*/, 0,3, 3,-9/*mean (0.24314), correlation (0.499398)*/, -12,1, -6,1/*mean (0.243297), correlation (0.489447)*/, 3,2, 4,-8/*mean (0.00155196), correlation (0.553496)*/, -10,-10, -10,9/*mean (0.00239541), correlation (0.54297)*/, 8,-13, 12,12/*mean (0.0034413), correlation (0.544361)*/, -8,-12, -6,-5/*mean (0.003565), correlation (0.551225)*/, 2,2, 3,7/*mean (0.00835583), correlation (0.55285)*/, 10,6, 11,-8/*mean (0.00885065), correlation (0.540913)*/, 6,8, 8,-12/*mean (0.0101552), correlation (0.551085)*/, -7,10, -6,5/*mean (0.0102227), correlation (0.533635)*/, -3,-9, -3,9/*mean (0.0110211), correlation (0.543121)*/, -1,-13, -1,5/*mean (0.0113473), correlation (0.550173)*/, -3,-7, -3,4/*mean (0.0140913), correlation (0.554774)*/, -8,-2, -8,3/*mean (0.017049), correlation (0.55461)*/, 4,2, 12,12/*mean (0.01778), correlation (0.546921)*/, 2,-5, 3,11/*mean (0.0224022), correlation (0.549667)*/, 6,-9, 11,-13/*mean (0.029161), correlation (0.546295)*/, 3,-1, 7,12/*mean (0.0303081), correlation (0.548599)*/, 11,-1, 12,4/*mean (0.0355151), correlation (0.523943)*/, -3,0, -3,6/*mean (0.0417904), correlation (0.543395)*/, 4,-11, 4,12/*mean (0.0487292), correlation (0.542818)*/, 2,-4, 2,1/*mean (0.0575124), correlation (0.554888)*/, -10,-6, -8,1/*mean (0.0594242), correlation (0.544026)*/, -13,7, -11,1/*mean (0.0597391), correlation (0.550524)*/, -13,12, -11,-13/*mean (0.0608974), correlation (0.55383)*/, 6,0, 11,-13/*mean (0.065126), correlation (0.552006)*/, 0,-1, 1,4/*mean (0.074224), correlation (0.546372)*/, -13,3, -9,-2/*mean (0.0808592), correlation (0.554875)*/, -9,8, -6,-3/*mean (0.0883378), correlation (0.551178)*/, -13,-6, -8,-2/*mean (0.0901035), correlation (0.548446)*/, 5,-9, 8,10/*mean (0.0949843), correlation (0.554694)*/, 2,7, 3,-9/*mean (0.0994152), correlation (0.550979)*/, -1,-6, -1,-1/*mean (0.10045), correlation (0.552714)*/, 9,5, 11,-2/*mean (0.100686), correlation (0.552594)*/, 11,-3, 12,-8/*mean (0.101091), correlation (0.532394)*/, 3,0, 3,5/*mean (0.101147), correlation (0.525576)*/, -1,4, 0,10/*mean (0.105263), correlation (0.531498)*/, 3,-6, 4,5/*mean (0.110785), correlation (0.540491)*/, -13,0, -10,5/*mean (0.112798), correlation (0.536582)*/, 5,8, 12,11/*mean (0.114181), correlation (0.555793)*/, 8,9, 9,-6/*mean (0.117431), correlation (0.553763)*/, 7,-4, 8,-12/*mean (0.118522), correlation (0.553452)*/, -10,4, -10,9/*mean (0.12094), correlation (0.554785)*/, 7,3, 12,4/*mean (0.122582), correlation (0.555825)*/, 9,-7, 10,-2/*mean (0.124978), correlation (0.549846)*/, 7,0, 12,-2/*mean (0.127002), correlation (0.537452)*/, -1,-6, 0,-11/*mean (0.127148), correlation (0.547401)*/ }; static void makeRandomPattern(int patchSize, Point* pattern, int npoints) { RNG rng(0x34985739); // we always start with a fixed seed, // to make patterns the same on each run for( int i = 0; i < npoints; i++ ) { pattern[i].x = rng.uniform(-patchSize/2, patchSize/2+1); pattern[i].y = rng.uniform(-patchSize/2, patchSize/2+1); } } static inline float getScale(int level, int firstLevel, double scaleFactor) { return (float)std::pow(scaleFactor, (double)(level - firstLevel)); } /** Constructor * @param detector_params parameters to use */ ORB::ORB(int _nfeatures, float _scaleFactor, int _nlevels, int _edgeThreshold, int _firstLevel, int _WTA_K, int _scoreType, int _patchSize) : nfeatures(_nfeatures), scaleFactor(_scaleFactor), nlevels(_nlevels), edgeThreshold(_edgeThreshold), firstLevel(_firstLevel), WTA_K(_WTA_K), scoreType(_scoreType), patchSize(_patchSize) {} int ORB::descriptorSize() const { return kBytes; } int ORB::descriptorType() const { return CV_8U; } int ORB::defaultNorm() const { return NORM_HAMMING; } /** Compute the ORB features and descriptors on an image * @param img the image to compute the features and descriptors on * @param mask the mask to apply * @param keypoints the resulting keypoints */ void ORB::operator()(InputArray image, InputArray mask, std::vector& keypoints) const { (*this)(image, mask, keypoints, noArray(), false); } static void uploadORBKeypoints(const std::vector& src, std::vector& buf, OutputArray dst) { size_t i, n = src.size(); buf.resize(std::max(buf.size(), n)); for( i = 0; i < n; i++ ) buf[i] = Vec3i(cvRound(src[i].pt.x), cvRound(src[i].pt.y), src[i].octave); copyVectorToUMat(buf, dst); } typedef union if32_t { int i; float f; } if32_t; static void uploadORBKeypoints(const std::vector& src, const std::vector& layerScale, std::vector& buf, OutputArray dst) { size_t i, n = src.size(); buf.resize(std::max(buf.size(), n)); for( i = 0; i < n; i++ ) { int z = src[i].octave; float scale = 1.f/layerScale[z]; if32_t angle; angle.f = src[i].angle; buf[i] = Vec4i(cvRound(src[i].pt.x*scale), cvRound(src[i].pt.y*scale), z, angle.i); } copyVectorToUMat(buf, dst); } /** Compute the ORB keypoints on an image * @param image_pyramid the image pyramid to compute the features and descriptors on * @param mask_pyramid the masks to apply at every level * @param keypoints the resulting keypoints, clustered per level */ static void computeKeyPoints(const Mat& imagePyramid, const UMat& uimagePyramid, const Mat& maskPyramid, const std::vector& layerInfo, const UMat& ulayerInfo, const std::vector& layerScale, std::vector& allKeypoints, int nfeatures, double scaleFactor, int edgeThreshold, int patchSize, int scoreType, bool useOCL ) { int i, nkeypoints, level, nlevels = (int)layerInfo.size(); std::vector nfeaturesPerLevel(nlevels); // fill the extractors and descriptors for the corresponding scales float factor = (float)(1.0 / scaleFactor); float ndesiredFeaturesPerScale = nfeatures*(1 - factor)/(1 - (float)std::pow((double)factor, (double)nlevels)); int sumFeatures = 0; for( level = 0; level < nlevels-1; level++ ) { nfeaturesPerLevel[level] = cvRound(ndesiredFeaturesPerScale); sumFeatures += nfeaturesPerLevel[level]; ndesiredFeaturesPerScale *= factor; } nfeaturesPerLevel[nlevels-1] = std::max(nfeatures - sumFeatures, 0); // Make sure we forget about what is too close to the boundary //edge_threshold_ = std::max(edge_threshold_, patch_size_/2 + kKernelWidth / 2 + 2); // pre-compute the end of a row in a circular patch int halfPatchSize = patchSize / 2; std::vector umax(halfPatchSize + 2); int v, v0, vmax = cvFloor(halfPatchSize * std::sqrt(2.f) / 2 + 1); int vmin = cvCeil(halfPatchSize * std::sqrt(2.f) / 2); for (v = 0; v <= vmax; ++v) umax[v] = cvRound(std::sqrt((double)halfPatchSize * halfPatchSize - v * v)); // Make sure we are symmetric for (v = halfPatchSize, v0 = 0; v >= vmin; --v) { while (umax[v0] == umax[v0 + 1]) ++v0; umax[v] = v0; ++v0; } allKeypoints.clear(); std::vector keypoints; std::vector counters(nlevels); keypoints.reserve(nfeaturesPerLevel[0]*2); for( level = 0; level < nlevels; level++ ) { int featuresNum = nfeaturesPerLevel[level]; Mat img = imagePyramid(layerInfo[level]); Mat mask = maskPyramid.empty() ? Mat() : maskPyramid(layerInfo[level]); // Detect FAST features, 20 is a good threshold FastFeatureDetector fd(20, true); fd.detect(img, keypoints, mask); // Remove keypoints very close to the border KeyPointsFilter::runByImageBorder(keypoints, img.size(), edgeThreshold); // Keep more points than necessary as FAST does not give amazing corners KeyPointsFilter::retainBest(keypoints, scoreType == ORB::HARRIS_SCORE ? 2 * featuresNum : featuresNum); nkeypoints = (int)keypoints.size(); counters[level] = nkeypoints; float sf = layerScale[level]; for( i = 0; i < nkeypoints; i++ ) { keypoints[i].octave = level; keypoints[i].size = patchSize*sf; } std::copy(keypoints.begin(), keypoints.end(), std::back_inserter(allKeypoints)); } std::vector ukeypoints_buf; nkeypoints = (int)allKeypoints.size(); Mat responses; UMat ukeypoints, uresponses(1, nkeypoints, CV_32F); // Select best features using the Harris cornerness (better scoring than FAST) if( scoreType == ORB::HARRIS_SCORE ) { if( useOCL ) { uploadORBKeypoints(allKeypoints, ukeypoints_buf, ukeypoints); useOCL = ocl_HarrisResponses( uimagePyramid, ulayerInfo, ukeypoints, uresponses, nkeypoints, 7, HARRIS_K ); if( useOCL ) { uresponses.copyTo(responses); for( i = 0; i < nkeypoints; i++ ) allKeypoints[i].response = responses.at(i); } } if( !useOCL ) HarrisResponses(imagePyramid, layerInfo, allKeypoints, 7, HARRIS_K); std::vector newAllKeypoints; newAllKeypoints.reserve(nfeaturesPerLevel[0]*nlevels); int offset = 0; for( level = 0; level < nlevels; level++ ) { int featuresNum = nfeaturesPerLevel[level]; nkeypoints = counters[level]; keypoints.resize(nkeypoints); std::copy(allKeypoints.begin() + offset, allKeypoints.begin() + offset + nkeypoints, keypoints.begin()); offset += nkeypoints; //cull to the final desired level, using the new Harris scores. KeyPointsFilter::retainBest(keypoints, featuresNum); std::copy(keypoints.begin(), keypoints.end(), std::back_inserter(newAllKeypoints)); } std::swap(allKeypoints, newAllKeypoints); } nkeypoints = (int)allKeypoints.size(); if( useOCL ) { UMat uumax; if( useOCL ) copyVectorToUMat(umax, uumax); uploadORBKeypoints(allKeypoints, ukeypoints_buf, ukeypoints); useOCL = ocl_ICAngles(uimagePyramid, ulayerInfo, ukeypoints, uresponses, uumax, nkeypoints, halfPatchSize); if( useOCL ) { uresponses.copyTo(responses); for( i = 0; i < nkeypoints; i++ ) allKeypoints[i].angle = responses.at(i); } } if( !useOCL ) { ICAngles(imagePyramid, layerInfo, allKeypoints, umax, halfPatchSize); } for( i = 0; i < nkeypoints; i++ ) { float scale = layerScale[allKeypoints[i].octave]; allKeypoints[i].pt *= scale; } } /** Compute the ORB features and descriptors on an image * @param img the image to compute the features and descriptors on * @param mask the mask to apply * @param keypoints the resulting keypoints * @param descriptors the resulting descriptors * @param do_keypoints if true, the keypoints are computed, otherwise used as an input * @param do_descriptors if true, also computes the descriptors */ void ORB::operator()( InputArray _image, InputArray _mask, std::vector& keypoints, OutputArray _descriptors, bool useProvidedKeypoints ) const { CV_Assert(patchSize >= 2); bool do_keypoints = !useProvidedKeypoints; bool do_descriptors = _descriptors.needed(); if( (!do_keypoints && !do_descriptors) || _image.empty() ) return; //ROI handling const int HARRIS_BLOCK_SIZE = 9; int halfPatchSize = patchSize / 2; int border = std::max(edgeThreshold, std::max(halfPatchSize, HARRIS_BLOCK_SIZE/2))+1; bool useOCL = ocl::useOpenCL(); Mat image = _image.getMat(), mask = _mask.getMat(); if( image.type() != CV_8UC1 ) cvtColor(_image, image, COLOR_BGR2GRAY); int i, level, nLevels = this->nlevels, nkeypoints = (int)keypoints.size(); bool sortedByLevel = true; if( !do_keypoints ) { // if we have pre-computed keypoints, they may use more levels than it is set in parameters // !!!TODO!!! implement more correct method, independent from the used keypoint detector. // Namely, the detector should provide correct size of each keypoint. Based on the keypoint size // and the algorithm used (i.e. BRIEF, running on 31x31 patches) we should compute the approximate // scale-factor that we need to apply. Then we should cluster all the computed scale-factors and // for each cluster compute the corresponding image. // // In short, ultimately the descriptor should // ignore octave parameter and deal only with the keypoint size. nLevels = 0; for( i = 0; i < nkeypoints; i++ ) { level = keypoints[i].octave; CV_Assert(level >= 0); if( i > 0 && level < keypoints[i-1].octave ) sortedByLevel = false; nLevels = std::max(nLevels, level); } nLevels++; } std::vector layerInfo(nLevels); std::vector layerOfs(nLevels); std::vector layerScale(nLevels); Mat imagePyramid, maskPyramid; UMat uimagePyramid, ulayerInfo; int level_dy = image.rows + border*2; Point level_ofs(0,0); Size bufSize((image.cols + border*2 + 15) & -16, 0); for( level = 0; level < nLevels; level++ ) { float scale = getScale(level, firstLevel, scaleFactor); layerScale[level] = scale; Size sz(cvRound(image.cols/scale), cvRound(image.rows/scale)); Size wholeSize(sz.width + border*2, sz.height + border*2); if( level_ofs.x + wholeSize.width > bufSize.width ) { level_ofs = Point(0, level_ofs.y + level_dy); level_dy = wholeSize.height; } Rect linfo(level_ofs.x + border, level_ofs.y + border, sz.width, sz.height); layerInfo[level] = linfo; layerOfs[level] = linfo.y*bufSize.width + linfo.x; level_ofs.x += wholeSize.width; } bufSize.height = level_ofs.y + level_dy; imagePyramid.create(bufSize, CV_8U); if( !mask.empty() ) maskPyramid.create(bufSize, CV_8U); Mat prevImg = image, prevMask = mask; // Pre-compute the scale pyramids for (level = 0; level < nLevels; ++level) { Rect linfo = layerInfo[level]; Size sz(linfo.width, linfo.height); Size wholeSize(sz.width + border*2, sz.height + border*2); Rect wholeLinfo = Rect(linfo.x - border, linfo.y - border, wholeSize.width, wholeSize.height); Mat extImg = imagePyramid(wholeLinfo), extMask; Mat currImg = extImg(Rect(border, border, sz.width, sz.height)), currMask; if( !mask.empty() ) { extMask = maskPyramid(wholeLinfo); currMask = extMask(Rect(border, border, sz.width, sz.height)); } // Compute the resized image if( level != firstLevel ) { resize(prevImg, currImg, sz, 0, 0, INTER_LINEAR); if( !mask.empty() ) { resize(prevMask, currMask, sz, 0, 0, INTER_LINEAR); if( level > firstLevel ) threshold(currMask, currMask, 254, 0, THRESH_TOZERO); } copyMakeBorder(currImg, extImg, border, border, border, border, BORDER_REFLECT_101+BORDER_ISOLATED); if (!mask.empty()) copyMakeBorder(currMask, extMask, border, border, border, border, BORDER_CONSTANT+BORDER_ISOLATED); } else { copyMakeBorder(image, extImg, border, border, border, border, BORDER_REFLECT_101); if( !mask.empty() ) copyMakeBorder(mask, extMask, border, border, border, border, BORDER_CONSTANT+BORDER_ISOLATED); } prevImg = currImg; prevMask = currMask; } if( useOCL ) copyVectorToUMat(layerOfs, ulayerInfo); if( do_keypoints ) { if( useOCL ) imagePyramid.copyTo(uimagePyramid); // Get keypoints, those will be far enough from the border that no check will be required for the descriptor computeKeyPoints(imagePyramid, uimagePyramid, maskPyramid, layerInfo, ulayerInfo, layerScale, keypoints, nfeatures, scaleFactor, edgeThreshold, patchSize, scoreType, useOCL); } else { KeyPointsFilter::runByImageBorder(keypoints, image.size(), edgeThreshold); if( !sortedByLevel ) { std::vector > allKeypoints(nLevels); nkeypoints = (int)keypoints.size(); for( i = 0; i < nkeypoints; i++ ) { level = keypoints[i].octave; CV_Assert(0 <= level); allKeypoints[level].push_back(keypoints[i]); } keypoints.clear(); for( level = 0; level < nLevels; level++ ) std::copy(allKeypoints[level].begin(), allKeypoints[level].end(), std::back_inserter(keypoints)); } } if( do_descriptors ) { int dsize = descriptorSize(); nkeypoints = (int)keypoints.size(); if( nkeypoints == 0 ) { _descriptors.release(); return; } _descriptors.create(nkeypoints, dsize, CV_8U); std::vector pattern; const int npoints = 512; Point patternbuf[npoints]; const Point* pattern0 = (const Point*)bit_pattern_31_; if( patchSize != 31 ) { pattern0 = patternbuf; makeRandomPattern(patchSize, patternbuf, npoints); } CV_Assert( WTA_K == 2 || WTA_K == 3 || WTA_K == 4 ); if( WTA_K == 2 ) std::copy(pattern0, pattern0 + npoints, std::back_inserter(pattern)); else { int ntuples = descriptorSize()*4; initializeOrbPattern(pattern0, pattern, ntuples, WTA_K, npoints); } for( level = 0; level < nLevels; level++ ) { // preprocess the resized image Mat workingMat = imagePyramid(layerInfo[level]); //boxFilter(working_mat, working_mat, working_mat.depth(), Size(5,5), Point(-1,-1), true, BORDER_REFLECT_101); GaussianBlur(workingMat, workingMat, Size(7, 7), 2, 2, BORDER_REFLECT_101); } if( useOCL ) { imagePyramid.copyTo(uimagePyramid); std::vector kptbuf; UMat ukeypoints, upattern; copyVectorToUMat(pattern, upattern); uploadORBKeypoints(keypoints, layerScale, kptbuf, ukeypoints); UMat udescriptors = _descriptors.getUMat(); useOCL = ocl_computeOrbDescriptors(uimagePyramid, ulayerInfo, ukeypoints, udescriptors, upattern, nkeypoints, dsize, WTA_K); } if( !useOCL ) { Mat descriptors = _descriptors.getMat(); computeOrbDescriptors(imagePyramid, layerInfo, layerScale, keypoints, descriptors, pattern, dsize, WTA_K); } } } void ORB::detectImpl( InputArray image, std::vector& keypoints, InputArray mask) const { (*this)(image.getMat(), mask.getMat(), keypoints, noArray(), false); } void ORB::computeImpl( InputArray image, std::vector& keypoints, OutputArray descriptors) const { (*this)(image, Mat(), keypoints, descriptors, true); } }