/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "../precomp.hpp" #include "layers_common.hpp" namespace cv { namespace dnn { namespace util { std::string makeName(const std::string& str1, const std::string& str2) { return str1 + str2; } bool getParameter(const LayerParams ¶ms, const std::string& nameBase, const std::string& nameAll, std::vector& parameter, bool hasDefault = false, const std::vector& defaultValue = std::vector(2, 0)) { std::string nameH = makeName(nameBase, std::string("_h")); std::string nameW = makeName(nameBase, std::string("_w")); std::string nameAll_ = nameAll; if (nameAll_ == "") nameAll_ = nameBase; if (params.has(nameH) && params.has(nameW)) { CV_Assert(params.get(nameH) >= 0 && params.get(nameW) >= 0); parameter.push_back(params.get(nameH)); parameter.push_back(params.get(nameW)); return true; } else { if (params.has(nameAll_)) { DictValue param = params.get(nameAll_); for (int i = 0; i < param.size(); i++) { CV_Assert(param.get(i) >= 0); parameter.push_back(param.get(i)); } if (parameter.size() == 1) parameter.resize(2, parameter[0]); return true; } else { if (hasDefault) { parameter = defaultValue; return true; } else { return false; } } } } void getKernelSize(const LayerParams ¶ms, std::vector& kernel) { if (!util::getParameter(params, "kernel", "kernel_size", kernel)) CV_Error(cv::Error::StsBadArg, "kernel_size (or kernel_h and kernel_w) not specified"); for (int i = 0; i < kernel.size(); i++) CV_Assert(kernel[i] > 0); } void getStrideAndPadding(const LayerParams ¶ms, std::vector& pads_begin, std::vector& pads_end, std::vector& strides, cv::String& padMode, size_t kernel_size = 2) { if (params.has("pad_l") && params.has("pad_t") && params.has("pad_r") && params.has("pad_b")) { CV_Assert(params.get("pad_t") >= 0 && params.get("pad_l") >= 0 && params.get("pad_b") >= 0 && params.get("pad_r") >= 0); pads_begin.push_back(params.get("pad_t")); pads_begin.push_back(params.get("pad_l")); pads_end.push_back(params.get("pad_b")); pads_end.push_back(params.get("pad_r")); } else { util::getParameter(params, "pad", "pad", pads_begin, true, std::vector(kernel_size, 0)); if (pads_begin.size() < 4) pads_end = pads_begin; else { pads_end = std::vector(pads_begin.begin() + pads_begin.size() / 2, pads_begin.end()); pads_begin.resize(pads_begin.size() / 2); } CV_Assert(pads_begin.size() == pads_end.size()); } util::getParameter(params, "stride", "stride", strides, true, std::vector(kernel_size, 1)); padMode = ""; if (params.has("pad_mode")) { padMode = params.get("pad_mode"); } for (int i = 0; i < strides.size(); i++) CV_Assert(strides[i] > 0); } } void getPoolingKernelParams(const LayerParams ¶ms, std::vector& kernel, std::vector& globalPooling, std::vector& pads_begin, std::vector& pads_end, std::vector& strides, cv::String &padMode) { bool is_global = params.get("global_pooling", false); globalPooling.resize(3); globalPooling[0] = params.get("global_pooling_d", is_global); globalPooling[1] = params.get("global_pooling_h", is_global); globalPooling[2] = params.get("global_pooling_w", is_global); if (globalPooling[0] || globalPooling[1] || globalPooling[2]) { util::getStrideAndPadding(params, pads_begin, pads_end, strides, padMode); if ((globalPooling[0] && params.has("kernel_d")) || (globalPooling[1] && params.has("kernel_h")) || (globalPooling[2] && params.has("kernel_w")) || params.has("kernel_size")) { CV_Error(cv::Error::StsBadArg, "In global_pooling mode, kernel_size (or kernel_h and kernel_w) cannot be specified"); } kernel.resize(3); kernel[0] = params.get("kernel_d", 1); kernel[1] = params.get("kernel_h", 1); kernel[2] = params.get("kernel_w", 1); for (int i = 0, j = globalPooling.size() - pads_begin.size(); i < pads_begin.size(); i++, j++) { if ((pads_begin[i] != 0 || pads_end[i] != 0) && globalPooling[j]) CV_Error(cv::Error::StsBadArg, "In global_pooling mode, pads must be = 0"); } for (int i = 0, j = globalPooling.size() - strides.size(); i < strides.size(); i++, j++) { if (strides[i] != 1 && globalPooling[j]) CV_Error(cv::Error::StsBadArg, "In global_pooling mode, strides must be = 1"); } } else { util::getKernelSize(params, kernel); util::getStrideAndPadding(params, pads_begin, pads_end, strides, padMode, kernel.size()); } } void getConvolutionKernelParams(const LayerParams ¶ms, std::vector& kernel, std::vector& pads_begin, std::vector& pads_end, std::vector& strides, std::vector& dilations, cv::String &padMode, std::vector& adjust_pads, bool& useWinograd) { util::getKernelSize(params, kernel); util::getStrideAndPadding(params, pads_begin, pads_end, strides, padMode, kernel.size()); util::getParameter(params, "dilation", "dilation", dilations, true, std::vector(kernel.size(), 1)); util::getParameter(params, "adj", "adj", adjust_pads, true, std::vector(kernel.size(), 0)); useWinograd = params.get("use_winograd", true); for (int i = 0; i < dilations.size(); i++) CV_Assert(dilations[i] > 0); } // From TensorFlow code: // Total padding on rows and cols is // Pr = (R' - 1) * S + Kr - R // Pc = (C' - 1) * S + Kc - C // where (R', C') are output dimensions, (R, C) are input dimensions, S // is stride, (Kr, Kc) are filter dimensions. // We pad Pr/2 on the left and Pr - Pr/2 on the right, Pc/2 on the top // and Pc - Pc/2 on the bottom. When Pr or Pc is odd, this means // we pad more on the right and bottom than on the top and left. void getConvPoolOutParams(const std::vector& inp, const std::vector& kernel, const std::vector& stride, const String &padMode, const std::vector& dilation, std::vector& out) { if (padMode == "VALID") { for (int i = 0; i < inp.size(); i++) out.push_back((inp[i] - dilation[i] * (kernel[i] - 1) - 1 + stride[i]) / stride[i]); } else if (padMode == "SAME") { for (int i = 0; i < inp.size(); i++) out.push_back((inp[i] - 1 + stride[i]) / stride[i]); } else { CV_Error(Error::StsError, "Unsupported padding mode"); } } void getConvPoolPaddings(const std::vector& inp, const std::vector& kernel, const std::vector& strides, const String &padMode, std::vector& pads_begin, std::vector& pads_end) { if (padMode == "SAME" || padMode == "VALID") { pads_begin.assign(kernel.size(), 0); pads_end.assign(kernel.size(), 0); } if (padMode == "SAME") { CV_Assert_N(kernel.size() == strides.size(), kernel.size() == inp.size()); for (int i = 0; i < pads_begin.size(); i++) { // There are test cases with stride > kernel. if (strides[i] <= kernel[i]) { int pad = (kernel[i] - 1 - (inp[i] - 1 + strides[i]) % strides[i]) / 2; pads_begin[i] = pads_end[i] = pad; } } } } double getWeightScale(const Mat& weightsMat) { double realMin, realMax; cv::minMaxIdx(weightsMat, &realMin, &realMax); realMin = std::min(realMin, 0.0); realMax = std::max(realMax, 0.0); return (realMax == realMin) ? 1.0 : std::max(-realMin, realMax)/127; } } }