/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::gpu; #if !defined (HAVE_CUDA) void cv::gpu::Stream::create() { throw_nogpu(); } void cv::gpu::Stream::release() { throw_nogpu(); } cv::gpu::Stream::Stream() : impl(0) { throw_nogpu(); } cv::gpu::Stream::~Stream() { throw_nogpu(); } cv::gpu::Stream::Stream(const Stream& /*stream*/) { throw_nogpu(); } Stream& cv::gpu::Stream::operator=(const Stream& /*stream*/) { throw_nogpu(); return *this; } bool cv::gpu::Stream::queryIfComplete() { throw_nogpu(); return true; } void cv::gpu::Stream::waitForCompletion() { throw_nogpu(); } void cv::gpu::Stream::enqueueDownload(const GpuMat& /*src*/, Mat& /*dst*/) { throw_nogpu(); } void cv::gpu::Stream::enqueueDownload(const GpuMat& /*src*/, CudaMem& /*dst*/) { throw_nogpu(); } void cv::gpu::Stream::enqueueUpload(const CudaMem& /*src*/, GpuMat& /*dst*/) { throw_nogpu(); } void cv::gpu::Stream::enqueueUpload(const Mat& /*src*/, GpuMat& /*dst*/) { throw_nogpu(); } void cv::gpu::Stream::enqueueCopy(const GpuMat& /*src*/, GpuMat& /*dst*/) { throw_nogpu(); } void cv::gpu::Stream::enqueueMemSet(const GpuMat& /*src*/, Scalar /*val*/) { throw_nogpu(); } void cv::gpu::Stream::enqueueMemSet(const GpuMat& /*src*/, Scalar /*val*/, const GpuMat& /*mask*/) { throw_nogpu(); } void cv::gpu::Stream::enqueueConvert(const GpuMat& /*src*/, GpuMat& /*dst*/, int /*type*/, double /*a*/, double /*b*/) { throw_nogpu(); } #else /* !defined (HAVE_CUDA) */ #include "opencv2/gpu/stream_accessor.hpp" namespace cv { namespace gpu { namespace matrix_operations { void copy_to_with_mask(const DevMem2D& src, DevMem2D dst, int depth, const DevMem2D& mask, int channels, const cudaStream_t & stream = 0); void set_to_without_mask (DevMem2D dst, int depth, const double *scalar, int channels, const cudaStream_t & stream = 0); void set_to_with_mask (DevMem2D dst, int depth, const double *scalar, const DevMem2D& mask, int channels, const cudaStream_t & stream = 0); void convert_to(const DevMem2D& src, int sdepth, DevMem2D dst, int ddepth, int channels, double alpha, double beta, const cudaStream_t & stream = 0); } } } struct Stream::Impl { cudaStream_t stream; int ref_counter; }; namespace { template void devcopy(const S& src, D& dst, cudaStream_t s, cudaMemcpyKind k) { dst.create(src.size(), src.type()); size_t bwidth = src.cols * src.elemSize(); cudaSafeCall( cudaMemcpy2DAsync(dst.data, dst.step, src.data, src.step, bwidth, src.rows, k, s) ); }; } CV_EXPORTS cudaStream_t cv::gpu::StreamAccessor::getStream(const Stream& stream) { return stream.impl->stream; }; void cv::gpu::Stream::create() { if (impl) release(); cudaStream_t stream; cudaSafeCall( cudaStreamCreate( &stream ) ); impl = (Stream::Impl*)fastMalloc(sizeof(Stream::Impl)); impl->stream = stream; impl->ref_counter = 1; } void cv::gpu::Stream::release() { if( impl && CV_XADD(&impl->ref_counter, -1) == 1 ) { cudaSafeCall( cudaStreamDestroy( impl->stream ) ); cv::fastFree( impl ); } } cv::gpu::Stream::Stream() : impl(0) { create(); } cv::gpu::Stream::~Stream() { release(); } cv::gpu::Stream::Stream(const Stream& stream) : impl(stream.impl) { if( impl ) CV_XADD(&impl->ref_counter, 1); } Stream& cv::gpu::Stream::operator=(const Stream& stream) { if( this != &stream ) { if( stream.impl ) CV_XADD(&stream.impl->ref_counter, 1); release(); impl = stream.impl; } return *this; } bool cv::gpu::Stream::queryIfComplete() { cudaError_t err = cudaStreamQuery( impl->stream ); if (err == cudaErrorNotReady || err == cudaSuccess) return err == cudaSuccess; cudaSafeCall(err); return false; } void cv::gpu::Stream::waitForCompletion() { cudaSafeCall( cudaStreamSynchronize( impl->stream ) ); } void cv::gpu::Stream::enqueueDownload(const GpuMat& src, Mat& dst) { // if not -> allocation will be done, but after that dst will not point to page locked memory CV_Assert(src.cols == dst.cols && src.rows == dst.rows && src.type() == dst.type() ); devcopy(src, dst, impl->stream, cudaMemcpyDeviceToHost); } void cv::gpu::Stream::enqueueDownload(const GpuMat& src, CudaMem& dst) { devcopy(src, dst, impl->stream, cudaMemcpyDeviceToHost); } void cv::gpu::Stream::enqueueUpload(const CudaMem& src, GpuMat& dst){ devcopy(src, dst, impl->stream, cudaMemcpyHostToDevice); } void cv::gpu::Stream::enqueueUpload(const Mat& src, GpuMat& dst) { devcopy(src, dst, impl->stream, cudaMemcpyHostToDevice); } void cv::gpu::Stream::enqueueCopy(const GpuMat& src, GpuMat& dst) { devcopy(src, dst, impl->stream, cudaMemcpyDeviceToDevice); } void cv::gpu::Stream::enqueueMemSet(const GpuMat& src, Scalar val) { matrix_operations::set_to_without_mask(src, src.depth(), val.val, src.channels(), impl->stream); } void cv::gpu::Stream::enqueueMemSet(const GpuMat& src, Scalar val, const GpuMat& mask) { matrix_operations::set_to_with_mask(src, src.depth(), val.val, mask, src.channels(), impl->stream); } void cv::gpu::Stream::enqueueConvert(const GpuMat& src, GpuMat& dst, int rtype, double alpha, double beta) { bool noScale = fabs(alpha-1) < std::numeric_limits::epsilon() && fabs(beta) < std::numeric_limits::epsilon(); if( rtype < 0 ) rtype = src.type(); else rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), src.channels()); int sdepth = src.depth(), ddepth = CV_MAT_DEPTH(rtype); if( sdepth == ddepth && noScale ) { src.copyTo(dst); return; } GpuMat temp; const GpuMat* psrc = &src; if( sdepth != ddepth && psrc == &dst ) psrc = &(temp = src); dst.create( src.size(), rtype ); matrix_operations::convert_to(*psrc, sdepth, dst, ddepth, psrc->channels(), alpha, beta, impl->stream); } #endif /* !defined (HAVE_CUDA) */