//*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include #include using namespace std; const int progressBarSize = 50; namespace cv { CalonderClassifier::CalonderClassifier() { verbose = false; clear(); } CalonderClassifier::~CalonderClassifier() {} CalonderClassifier::CalonderClassifier( const vector >& points, const vector& refimgs, const vector >& labels, int _numClasses, int _pathSize, int _numTrees, int _treeDepth, int _numViews, int _compressedDim, int _compressType, int _numQuantBits, const PatchGenerator &patchGenerator ) { verbose = false; train( points, refimgs, labels, _numClasses, _pathSize, _numTrees, _treeDepth, _numViews, _compressedDim, _compressType, _numQuantBits, patchGenerator ); } int CalonderClassifier::getPatchSize() const { return patchSize; } int CalonderClassifier::getNumTrees() const { return numTrees; } int CalonderClassifier::getTreeDepth() const { return treeDepth; } int CalonderClassifier::getNumViews() const { return numViews; } int CalonderClassifier::getSignatureSize() const { return signatureSize; } int CalonderClassifier::getCompressType() const { return compressType; } int CalonderClassifier::getNumQuantBits() const { return numQuantBits; } int CalonderClassifier::getOrigNumClasses() const { return origNumClasses; } void CalonderClassifier::setVerbose( bool _verbose ) { verbose = _verbose; } void CalonderClassifier::clear() { patchSize = numTrees = origNumClasses = signatureSize = treeDepth = numViews = numQuantBits = 0; compressType = COMPRESS_NONE; nodes.clear(); posteriors.clear(); #if QUANTIZATION_AVAILABLE quantizedPosteriors.clear(); #endif } bool CalonderClassifier::empty() const { return posteriors.empty() && quantizedPosteriors.empty(); } void CalonderClassifier::prepare( int _patchSize, int _signatureSize, int _numTrees, int _treeDepth, int _numViews ) { clear(); patchSize = _patchSize; signatureSize = _signatureSize; numTrees = _numTrees; treeDepth = _treeDepth; numViews = _numViews; numLeavesPerTree = 1 << treeDepth; // 2^d numNodesPerTree = numLeavesPerTree - 1; // 2^d - 1 nodes = vector( numTrees*numNodesPerTree ); posteriors = vector( numTrees*numLeavesPerTree*signatureSize, 0.f ); } static int calcNumPoints( const vector >& points ) { int count = 0; for( size_t i = 0; i < points.size(); i++ ) count += points[i].size(); return count; } void CalonderClassifier::train( const vector >& points, const vector& refimgs, const vector >& labels, int _numClasses, int _patchSize, int _numTrees, int _treeDepth, int _numViews, int _compressedDim, int _compressType, int _numQuantBits, const PatchGenerator &patchGenerator ) { if( points.empty() || refimgs.size() != points.size() ) CV_Error( CV_StsBadSize, "points vector must be no empty and refimgs must have the same size as points" ); if( _patchSize < 5 || _patchSize >= 256 ) CV_Error( CV_StsBadArg, "patchSize must be in [5, 255]"); if( _numTrees <= 0 || _treeDepth <= 0 ) CV_Error( CV_StsBadArg, "numTrees, treeDepth, numViews must be positive"); int numPoints = calcNumPoints( points ); if( !labels.empty() && ( labels.size() != points.size() || _numClasses <=0 || _numClasses > numPoints ) ) CV_Error( CV_StsBadArg, "labels has incorrect size or _numClasses is not in [1, numPoints]"); _numViews = std::max( 1, _numViews ); int _origNumClasses = labels.empty() ? numPoints : _numClasses; if( verbose ) { cout << "Using train parameters:" << endl; cout << " patchSize=" << _patchSize << endl; cout << " numTrees=" << _numTrees << endl; cout << " treeDepth=" << _treeDepth << endl; cout << " numViews=" << _numViews << endl; cout << " compressedDim=" << _compressedDim << endl; cout << " compressType=" << _compressType << endl; cout << " numQuantBits=" << _numQuantBits << endl; cout << endl << " numPoints=" << numPoints << endl; cout << " origNumClasses=" << _origNumClasses << endl; } prepare( _patchSize, _origNumClasses, _numTrees, _treeDepth, _numViews ); origNumClasses = _origNumClasses; vector leafSampleCounters = vector( numTrees*numLeavesPerTree, 0 ); // generate nodes RNG rng = theRNG(); for( int i = 0; i < numTrees*numNodesPerTree; i++ ) { uchar x1 = rng(_patchSize); uchar y1 = rng(_patchSize); uchar x2 = rng(_patchSize); uchar y2 = rng(_patchSize); nodes[i] = Node(x1, y1, x2, y2); } Size size( patchSize, patchSize ); Mat patch; if( verbose ) cout << "START training..." << endl; for( size_t treeIdx = 0; treeIdx < (size_t)numTrees; treeIdx++ ) { if( verbose ) cout << "< tree " << treeIdx << endl; int globalPointIdx = 0; int* treeLeafSampleCounters = &leafSampleCounters[treeIdx*numLeavesPerTree]; float* treePosteriors = &posteriors[treeIdx*numLeavesPerTree*signatureSize]; for( size_t imgIdx = 0; imgIdx < points.size(); imgIdx++ ) { const Point2f* imgPoints = &points[imgIdx][0]; const int* imgLabels = labels.empty() ? 0 : &labels[imgIdx][0]; int last = -1, cur; for( size_t pointIdx = 0; pointIdx < points[imgIdx].size(); pointIdx++, globalPointIdx++ ) { int classID = imgLabels==0 ? globalPointIdx : imgLabels[pointIdx]; Point2f pt = imgPoints[pointIdx]; const Mat& src = refimgs[imgIdx]; if( verbose && (cur = (int)((float)globalPointIdx/numPoints*progressBarSize)) != last ) { last = cur; cout << "."; cout.flush(); } CV_Assert( classID >= 0 && classID < signatureSize ); for( int v = 0; v < numViews; v++ ) { patchGenerator( src, pt, patch, size, rng ); // add sample int leafIdx = getLeafIdx( treeIdx, patch ); treeLeafSampleCounters[leafIdx]++; treePosteriors[leafIdx*signatureSize + classID]++; } } } if( verbose ) cout << endl << ">" << endl; } _compressedDim = std::max( 0, std::min(signatureSize, _compressedDim) ); _numQuantBits = std::max( 0, std::min((int)MAX_NUM_QUANT_BITS, _numQuantBits) ); finalize( _compressedDim, _compressType, _numQuantBits, leafSampleCounters ); if( verbose ) cout << "END training." << endl; } int CalonderClassifier::getLeafIdx( int treeIdx, const Mat& patch ) const { const Node* treeNodes = &nodes[treeIdx*numNodesPerTree]; int idx = 0; for( int d = 0; d < treeDepth-1; d++ ) { int offset = treeNodes[idx](patch); idx = 2*idx + 1 + offset; } return idx; } void CalonderClassifier::finalize( int _compressedDim, int _compressType, int _numQuantBits, const vector& leafSampleCounters ) { for( int ti = 0; ti < numTrees; ti++ ) { const int* treeLeafSampleCounters = &leafSampleCounters[ti*numLeavesPerTree]; float* treePosteriors = &posteriors[ti*numLeavesPerTree*signatureSize]; // Normalize by number of patches to reach each leaf for( int li = 0; li < numLeavesPerTree; li++ ) { int sampleCount = treeLeafSampleCounters[li]; if( sampleCount != 0 ) { float normalizer = 1.0f / sampleCount; int leafPosteriorIdx = li*signatureSize; for( int ci = 0; ci < signatureSize; ci++ ) treePosteriors[leafPosteriorIdx + ci] *= normalizer; } } } // apply compressive sensing if( _compressedDim > 0 && _compressedDim < signatureSize ) compressLeaves( _compressedDim, _compressType ); else { if( verbose ) cout << endl << "[WARNING] NO compression to leaves applied, because _compressedDim=" << _compressedDim << endl; } // convert float-posteriors to uchar-posteriors (quantization step) #if QUANTIZATION_AVAILABLE if( _numQuantBits > 0 ) quantizePosteriors( _numQuantBits ); else { if( verbose ) cout << endl << "[WARNING] NO quantization to posteriors, because _numQuantBits=" << _numQuantBits << endl; } #endif } Mat createCompressionMatrix( int rows, int cols, int distrType ) { Mat mtr( rows, cols, CV_32FC1 ); assert( rows <= cols ); RNG rng(23); if( distrType == CalonderClassifier::COMPRESS_DISTR_GAUSS ) { float sigma = 1./rows; for( int y = 0; y < rows; y++ ) for( int x = 0; x < cols; x++ ) mtr.at(y,x) = rng.gaussian( sigma ); } else if( distrType == CalonderClassifier::COMPRESS_DISTR_BERNOULLI ) { float par = (float)(1./sqrt((float)rows)); for( int y = 0; y < rows; y++ ) for( int x = 0; x < cols; x++ ) mtr.at(y,x) = rng(2)==0 ? par : -par; } else if( distrType == CalonderClassifier::COMPRESS_DISTR_DBFRIENDLY ) { float par = (float)sqrt(3./rows); for( int y = 0; y < rows; y++ ) for( int x = 0; x < cols; x++ ) { int rng6 = rng(6); mtr.at(y,x) = rng6==0 ? par : (rng6==1 ? -par : 0.f); } } else CV_Assert( 0 ); return mtr; } void CalonderClassifier::compressLeaves( int _compressedDim, int _compressType ) { if( verbose ) cout << endl << "[OK] compressing leaves with matrix " << _compressedDim << " x " << signatureSize << endl; Mat compressionMtrT = (createCompressionMatrix( _compressedDim, signatureSize, _compressType )).t(); vector comprPosteriors( numTrees*numLeavesPerTree*_compressedDim, 0); Mat( numTrees*numLeavesPerTree, _compressedDim, CV_32FC1, &comprPosteriors[0] ) = Mat( numTrees*numLeavesPerTree, signatureSize, CV_32FC1, &posteriors[0]) * compressionMtrT; posteriors.resize( comprPosteriors.size() ); copy( comprPosteriors.begin(), comprPosteriors.end(), posteriors.begin() ); signatureSize = _compressedDim; compressType = _compressType; } #if QUANTIZATION_AVAILABLE static float percentile( const float* data, int n, float p ) { assert( n>0 ); assert( p>=0 && p<=1 ); vector vec( data, data+n ); sort(vec.begin(), vec.end()); int ix = (int)(p*(n-1)); return vec[ix]; } void quantizeVector( const float* src, int dim, float fbounds[2], uchar ubounds[2], uchar* dst ) { assert( fbounds[0] < fbounds[1] ); assert( ubounds[0] < ubounds[1] ); float normFactor = 1.f/(fbounds[1] - fbounds[0]); for( int i = 0; i < dim; i++ ) { float part = (src[i] - fbounds[0]) * normFactor; assert( 0 <= part && part <= 1 ) ; uchar val = ubounds[0] + (uchar)( part*ubounds[1] ); dst[i] = std::max( 0, (int)std::min(ubounds[1], val) ); } } void CalonderClassifier::quantizePosteriors( int _numQuantBits, bool isClearFloatPosteriors ) { uchar ubounds[] = { 0, (uchar)((1<<_numQuantBits)-1) }; float fbounds[] = { 0.f, 0.f }; int totalLeavesCount = numTrees*numLeavesPerTree; for( int li = 0; li < totalLeavesCount; li++ ) // TODO for some random choosen leaves ! { fbounds[0] += percentile( &posteriors[li*signatureSize], signatureSize, GET_LOWER_QUANT_PERC() ); fbounds[1] += percentile( &posteriors[li*signatureSize], signatureSize, GET_UPPER_QUANT_PERC() ); } fbounds[0] /= totalLeavesCount; fbounds[1] /= totalLeavesCount; quantizedPosteriors.resize( posteriors.size() ); quantizeVector( &posteriors[0], posteriors.size(), fbounds, ubounds, &quantizedPosteriors[0] ); if( isClearFloatPosteriors ) clearFloatPosteriors(); } void CalonderClassifier::clearFloatPosteriors() { quantizedPosteriors.clear(); } #endif void CalonderClassifier::operator()( const Mat& img, Point2f pt, vector& signature, float thresh ) const { if( img.empty() || img.type() != CV_8UC1 ) return; Mat patch; getRectSubPix(img, Size(patchSize,patchSize), pt, patch, img.type()); (*this)( patch, signature, thresh ); } void CalonderClassifier::operator()( const Mat& patch, vector& signature, float thresh ) const { if( posteriors.empty() || patch.empty() || patch.type() != CV_8UC1 || patch.cols < patchSize || patch.rows < patchSize ) return; int treePostSize = numLeavesPerTree*signatureSize; signature.resize( signatureSize, 0.f ); float* sig = &signature[0]; for( int ti = 0; ti < numTrees; ti++ ) { int leafIdx = getLeafIdx( ti, patch ); const float* post = &posteriors[ti*treePostSize + leafIdx*signatureSize]; for( int ci = 0; ci < signatureSize; ci++ ) sig[ci] += post[ci]; } float coef = 1.f/numTrees; for( int ci = 0; ci < signatureSize; ci++ ) { sig[ci] *= coef; if( sig[ci] < thresh ) sig[ci] = 0; } } #if QUANTIZATION_AVAILABLE void CalonderClassifier::operator()( const Mat& img, Point2f pt, vector& signature, uchar thresh ) const { if( img.empty() || img.type() != CV_8UC1 ) return; Mat patch; getRectSubPix(img, Size(patchSize,patchSize), pt, patch, img.type()); (*this)(patch, signature, thresh ); } void CalonderClassifier::operator()( const Mat& patch, vector& signature, uchar thresh ) const { if( quantizedPosteriors.empty() || patch.empty() || patch.type() != CV_8UC1 || patch.cols > patchSize || patch.rows > patchSize ) return; int treePostSize = numLeavesPerTree*signatureSize; vector sum( signatureSize, 0.f ); for( int ti = 0; ti < numTrees; ti++ ) { int leafIdx = getLeafIdx( ti, patch ); const uchar* post = &quantizedPosteriors[ti*treePostSize + leafIdx*signatureSize]; for( int ci = 0; ci < signatureSize; ci++ ) sum[ci] += post[ci]; } float coef = 1.f/numTrees; signature.resize( signatureSize ); uchar* sig = &signature[0]; for( int ci = 0; ci < signatureSize; ci++ ) { sig[ci] = (uchar)(sum[ci]*coef); if( sig[ci] < thresh ) sig[ci] = 0; } } #endif void CalonderClassifier::read( const FileNode& fn ) { prepare( fn["patchSize"], fn["signatureSize"], fn["numTrees"], fn["treeDepth"], fn["numViews"] ); origNumClasses = fn["origNumClasses"]; compressType = fn["compressType"]; int _numQuantBits = fn["numQuantBits"]; for( int ti = 0; ti < numTrees; ti++ ) { stringstream treeName; treeName << "tree" << ti; FileNode treeFN = fn["trees"][treeName.str()]; Node* treeNodes = &nodes[ti*numNodesPerTree]; FileNodeIterator nodesFNIter = treeFN["nodes"].begin(); for( int ni = 0; ni < numNodesPerTree; ni++ ) { Node* node = treeNodes + ni; nodesFNIter >> node->x1 >> node->y1 >> node->x2 >> node->y2; } FileNode posteriorsFN = treeFN["posteriors"]; for( int li = 0; li < numLeavesPerTree; li++ ) { stringstream leafName; leafName << "leaf" << li; float* post = &posteriors[ti*numLeavesPerTree*signatureSize + li*signatureSize]; FileNodeIterator leafFNIter = posteriorsFN[leafName.str()].begin(); for( int ci = 0; ci < signatureSize; ci++ ) leafFNIter >> post[ci]; } } #if QUANTIZATION_AVAILABLE if( _numQuantBits ) quantizePosteriors(_numQuantBits); #endif } void CalonderClassifier::write( FileStorage& fs ) const { if( !fs.isOpened() ) return; fs << "patchSize" << patchSize; fs << "numTrees" << numTrees; fs << "treeDepth" << treeDepth; fs << "numViews" << numViews; fs << "origNumClasses" << origNumClasses; fs << "signatureSize" << signatureSize; fs << "compressType" << compressType; fs << "numQuantBits" << numQuantBits; fs << "trees" << "{"; for( int ti = 0; ti < numTrees; ti++ ) { stringstream treeName; treeName << "tree" << ti; fs << treeName.str() << "{"; fs << "nodes" << "[:"; const Node* treeNodes = &nodes[ti*numNodesPerTree]; for( int ni = 0; ni < numNodesPerTree; ni++ ) { const Node* node = treeNodes + ni; fs << node->x1 << node->y1 << node->x2 << node->y2; } fs << "]"; // nodes fs << "posteriors" << "{"; for( int li = 0; li < numLeavesPerTree; li++ ) { stringstream leafName; leafName << "leaf" << li; fs << leafName.str() << "[:"; const float* post = &posteriors[ti*numLeavesPerTree*signatureSize + li*signatureSize]; for( int ci = 0; ci < signatureSize; ci++ ) { fs << post[ci]; } fs << "]"; // leaf } fs << "}"; // posteriors fs << "}"; // tree } fs << "}"; // trees } }