// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include #include #include "math.hpp" #include "types.hpp" #include "grid_stride_range.hpp" #include "execution.hpp" #include "../cuda4dnn/csl/stream.hpp" #include "../cuda4dnn/csl/tensor.hpp" #include "../cuda4dnn/csl/span.hpp" #include using namespace cv::dnn::cuda4dnn::csl; using namespace cv::dnn::cuda4dnn::csl::device; namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels { namespace raw { template __global__ void resize_nn( Span output, size_type out_height, size_type out_width, View input, size_type in_height, size_type in_width) { auto in_image_size = in_height * in_width; auto out_image_size = out_height * out_width; /* think of the output and input as a collection of 2d images with the last axis * representing the width and the last but one axis representing the height * * the remaining axis together form a collection of these images/channels */ auto num_effective_channels = output.size() / out_image_size; /* we process multiple channels every iteration to reuse the identical computation * involved with the spatial dimensions * * if we are processing `CHANNELS_PER_ITER` channels per iteration, we will need * (num_effective_channels / CHANNELS_PER_ITER) iterations per (x, y) location */ auto num_channel_iters_per_xy = (num_effective_channels / CHANNELS_PER_ITER); /* we need `num_channel_iters_per_xy` iterations per (x, y) and there are `out_image_size` * combinations of (x, y); hence, we'll need `num_channel_iters_per_xy * out_image_size` * iterations in total to finish the resize operation */ auto iters_required = num_channel_iters_per_xy * out_image_size; for (auto iter : grid_stride_range(iters_required)) { const index_type c_start = (iter / out_image_size) * CHANNELS_PER_ITER; /* note here that consecutive `iter` values will often have consecutive `x` values * => stores into output will be coalesced across threads */ const index_type y = (iter % out_image_size) / out_width; const index_type x = iter % out_width; /* o2i = output to input */ auto o2i_fy = static_cast(in_height) / out_height; auto o2i_fx = static_cast(in_width) / out_width; auto in_y = static_cast(y * o2i_fy); auto in_x = static_cast(x * o2i_fx); index_type in_idx = c_start * in_image_size + in_y * in_width + in_x; index_type out_idx = c_start * out_image_size + y * out_width + x; for (int i = 0; i < CHANNELS_PER_ITER; i++) { output[out_idx] = input[in_idx]; in_idx += in_image_size; out_idx += out_image_size; } } } template __global__ void resize_bilinear( Span output, size_type out_height, size_type out_width, View input, size_type in_height, size_type in_width, float o2i_fy, float o2i_fx) { auto in_image_size = in_height * in_width; auto out_image_size = out_height * out_width; /* think of the output and input as a collection of 2d images with the last axis * representing the width and the last but one axis representing the height * * the remaining axis together form a collection of these images/channels */ auto num_effective_channels = output.size() / out_image_size; /* we process multiple channels every iteration to reuse the identical computation * involved with the spatial dimensions * * if we are processing `CHANNELS_PER_ITER` channels per iteration, we will need * (num_effective_channels / CHANNELS_PER_ITER) iterations per (x, y) location */ auto num_channel_iters_per_xy = (num_effective_channels / CHANNELS_PER_ITER); /* we need `num_channel_iters_per_xy` iterations per (x, y) and there are `out_image_size` * combinations of (x, y); hence, we'll need `num_channel_iters_per_xy * out_image_size` * iterations in total to finish the resize operation */ auto iters_required = num_channel_iters_per_xy * out_image_size; for (auto iter : grid_stride_range(iters_required)) { const index_type c_start = (iter / out_image_size) * CHANNELS_PER_ITER; const index_type c_end = c_start + CHANNELS_PER_ITER; /* note here that consecutive `iter` values will often have consecutive `x` values * => stores into output will be coalesced across threads */ const index_type y = (iter % out_image_size) / out_width; const index_type x = iter % out_width; auto in_x = x * o2i_fx; auto in_y = y * o2i_fy; auto in_x0 = static_cast(in_x); auto in_y0 = static_cast(in_y); using device::min; auto in_x1 = min(in_x0 + 1, in_width - 1); auto in_y1 = min(in_y0 + 1, in_height - 1); index_type in_offset_r0 = c_start * in_image_size + in_y0 * in_width; index_type in_offset_r1 = c_start * in_image_size + in_y1 * in_width; index_type out_idx = c_start * out_image_size + y * out_width + x; #pragma unroll 1 /* disable unrolling to reduce register pressure; not sure how but it works */ for (auto c = c_start; c < c_end; c++) { auto v_00 = input[in_offset_r0 + in_x0], v_01 = input[in_offset_r0 + in_x1], v_10 = input[in_offset_r1 + in_x0], v_11 = input[in_offset_r1 + in_x1]; output[out_idx] = v_00 + T(in_y - in_y0) * T(v_10 - v_00) + T(in_x - in_x0) * T(v_01 - v_00) + T(in_y - in_y0) * T(in_x - in_x0) * T(v_11 - v_01 - v_10 + v_00); in_offset_r0 += in_image_size; in_offset_r1 += in_image_size; out_idx += out_image_size; } } } } template static void launch_multichannel_resize_nn(const Stream& stream, Span output, size_type out_height, size_type out_width, View input, size_type in_height, size_type in_width) { auto kernel = raw::resize_nn; auto policy = make_policy(kernel, output.size() / CHANNELS_PER_ITER, 0, stream); launch_kernel(kernel, policy, output, out_height, out_width, input, in_height, in_width); } template void resize_nn(const Stream& stream, TensorSpan output, TensorView input) { auto out_height = output.get_axis_size(-2); auto out_width = output.get_axis_size(-1); auto in_height = input.get_axis_size(-2); auto in_width = input.get_axis_size(-1); auto num_effective_channels = input.size_range(0, 2); auto num_iters = num_effective_channels * out_height * out_width; if (num_effective_channels % 32 == 0 && num_iters > 655360) { launch_multichannel_resize_nn(stream, output, out_height, out_width, input, in_height, in_width); } else if (num_effective_channels % 16 == 0 && num_iters > 327680) { launch_multichannel_resize_nn(stream, output, out_height, out_width, input, in_height, in_width); } else if (num_effective_channels % 8 == 0 && num_iters > 163840) { launch_multichannel_resize_nn(stream, output, out_height, out_width, input, in_height, in_width); } else if (num_effective_channels % 4 == 0 && num_iters > 81920) { launch_multichannel_resize_nn(stream, output, out_height, out_width, input, in_height, in_width); } else if (num_effective_channels % 2 == 0) { launch_multichannel_resize_nn(stream, output, out_height, out_width, input, in_height, in_width); } else { launch_multichannel_resize_nn(stream, output, out_height, out_width, input, in_height, in_width); } } #if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530) template void resize_nn<__half>(const Stream&, TensorSpan<__half>, TensorView<__half>); #endif template void resize_nn(const Stream&, TensorSpan, TensorView); template static void launch_multichannel_resize_bilinear(const Stream& stream, Span output, size_type out_height, size_type out_width, View input, size_type in_height, size_type in_width, float scale_y, float scale_x) { auto kernel = raw::resize_bilinear; auto policy = make_policy(kernel, output.size() / CHANNELS_PER_ITER, 0, stream); launch_kernel(kernel, policy, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x); } template void resize_bilinear(const Stream& stream, TensorSpan output, TensorView input, float scale_y, float scale_x) { auto out_height = output.get_axis_size(-2); auto out_width = output.get_axis_size(-1); auto in_height = input.get_axis_size(-2); auto in_width = input.get_axis_size(-1); auto num_effective_channels = input.size_range(0, 2); auto num_iters = num_effective_channels * out_height * out_width; if (num_effective_channels % 16 == 0 && num_iters > 163840) { launch_multichannel_resize_bilinear(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x); } else if (num_effective_channels % 8 == 0 && num_iters > 81920) { launch_multichannel_resize_bilinear(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x); } else if (num_effective_channels % 4 == 0 && num_iters > 40960) { launch_multichannel_resize_bilinear(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x); } else if (num_effective_channels % 2 == 0) { launch_multichannel_resize_bilinear(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x); } else { launch_multichannel_resize_bilinear(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x); } } #if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530) template void resize_bilinear<__half>(const Stream&, TensorSpan<__half>, TensorView<__half>, float, float); #endif template void resize_bilinear(const Stream&, TensorSpan, TensorView, float, float); }}}} /* namespace cv::dnn::cuda4dnn::kernels */