// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2018, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. #include "precomp.hpp" #include "opencv2/objdetect.hpp" #include #include #include namespace cv { using std::vector; class QRDetect { public: void init(const Mat& src, double eps_vertical_ = 0.2, double eps_horizontal_ = 0.1); bool localization(); bool computeTransformationPoints(); Mat getBinBarcode() { return bin_barcode; } Mat getStraightBarcode() { return straight_barcode; } vector getTransformationPoints() { return transformation_points; } protected: vector searchHorizontalLines(); vector separateVerticalLines(const vector &list_lines); void fixationPoints(vector &local_point); Point2f intersectionLines(Point2f a1, Point2f a2, Point2f b1, Point2f b2); vector getQuadrilateral(vector angle_list); bool testBypassRoute(vector hull, int start, int finish); inline double getCosVectors(Point2f a, Point2f b, Point2f c); Mat barcode, bin_barcode, straight_barcode; vector localization_points, transformation_points; double eps_vertical, eps_horizontal, coeff_expansion; }; void QRDetect::init(const Mat& src, double eps_vertical_, double eps_horizontal_) { CV_Assert(!src.empty()); const double min_side = std::min(src.size().width, src.size().height); if (min_side < 512.0) { coeff_expansion = 512.0 / min_side; const int width = cvRound(src.size().width * coeff_expansion); const int height = cvRound(src.size().height * coeff_expansion); Size new_size(width, height); resize(src, barcode, new_size, 0, 0, INTER_LINEAR); } else { coeff_expansion = 1.0; barcode = src; } eps_vertical = eps_vertical_; eps_horizontal = eps_horizontal_; adaptiveThreshold(barcode, bin_barcode, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 83, 2); } vector QRDetect::searchHorizontalLines() { vector result; const int height_bin_barcode = bin_barcode.rows; const int width_bin_barcode = bin_barcode.cols; const size_t test_lines_size = 5; double test_lines[test_lines_size]; const size_t count_pixels_position = 1024; size_t pixels_position[count_pixels_position]; size_t index = 0; for (int y = 0; y < height_bin_barcode; y++) { const uint8_t *bin_barcode_row = bin_barcode.ptr(y); int pos = 0; for (; pos < width_bin_barcode; pos++) { if (bin_barcode_row[pos] == 0) break; } if (pos == width_bin_barcode) { continue; } index = 0; pixels_position[index] = pixels_position[index + 1] = pixels_position[index + 2] = pos; index +=3; uint8_t future_pixel = 255; for (int x = pos; x < width_bin_barcode; x++) { if (bin_barcode_row[x] == future_pixel) { future_pixel = 255 - future_pixel; pixels_position[index] = x; index++; } } pixels_position[index] = width_bin_barcode - 1; index++; for (size_t i = 2; i < index - 4; i+=2) { test_lines[0] = static_cast(pixels_position[i - 1] - pixels_position[i - 2]); test_lines[1] = static_cast(pixels_position[i ] - pixels_position[i - 1]); test_lines[2] = static_cast(pixels_position[i + 1] - pixels_position[i ]); test_lines[3] = static_cast(pixels_position[i + 2] - pixels_position[i + 1]); test_lines[4] = static_cast(pixels_position[i + 3] - pixels_position[i + 2]); double length = 0.0, weight = 0.0; for (size_t j = 0; j < test_lines_size; j++) { length += test_lines[j]; } if (length == 0) { continue; } for (size_t j = 0; j < test_lines_size; j++) { if (j == 2) { weight += fabs((test_lines[j] / length) - 3.0/7.0); } else { weight += fabs((test_lines[j] / length) - 1.0/7.0); } } if (weight < eps_vertical) { Vec3d line; line[0] = static_cast(pixels_position[i - 2]); line[1] = y; line[2] = length; result.push_back(line); } } } return result; } vector QRDetect::separateVerticalLines(const vector &list_lines) { vector result; int temp_length = 0; uint8_t next_pixel; vector test_lines; for (size_t pnt = 0; pnt < list_lines.size(); pnt++) { const int x = cvRound(list_lines[pnt][0] + list_lines[pnt][2] * 0.5); const int y = cvRound(list_lines[pnt][1]); // --------------- Search vertical up-lines --------------- // test_lines.clear(); uint8_t future_pixel_up = 255; for (int j = y; j < bin_barcode.rows - 1; j++) { next_pixel = bin_barcode.at(j + 1, x); temp_length++; if (next_pixel == future_pixel_up) { future_pixel_up = 255 - future_pixel_up; test_lines.push_back(temp_length); temp_length = 0; if (test_lines.size() == 3) { break; } } } // --------------- Search vertical down-lines --------------- // uint8_t future_pixel_down = 255; for (int j = y; j >= 1; j--) { next_pixel = bin_barcode.at(j - 1, x); temp_length++; if (next_pixel == future_pixel_down) { future_pixel_down = 255 - future_pixel_down; test_lines.push_back(temp_length); temp_length = 0; if (test_lines.size() == 6) { break; } } } // --------------- Compute vertical lines --------------- // if (test_lines.size() == 6) { double length = 0.0, weight = 0.0; for (size_t i = 0; i < test_lines.size(); i++) { length += test_lines[i]; } CV_Assert(length > 0); for (size_t i = 0; i < test_lines.size(); i++) { if (i % 3 == 0) { weight += fabs((test_lines[i] / length) - 3.0/14.0); } else { weight += fabs((test_lines[i] / length) - 1.0/ 7.0); } } if(weight < eps_horizontal) { result.push_back(list_lines[pnt]); } } } vector point2f_result; for (size_t i = 0; i < result.size(); i++) { point2f_result.push_back( Point2f(static_cast(result[i][0] + result[i][2] * 0.5), static_cast(result[i][1]))); } return point2f_result; } void QRDetect::fixationPoints(vector &local_point) { double cos_angles[3], norm_triangl[3]; norm_triangl[0] = norm(local_point[1] - local_point[2]); norm_triangl[1] = norm(local_point[0] - local_point[2]); norm_triangl[2] = norm(local_point[1] - local_point[0]); cos_angles[0] = (norm_triangl[1] * norm_triangl[1] + norm_triangl[2] * norm_triangl[2] - norm_triangl[0] * norm_triangl[0]) / (2 * norm_triangl[1] * norm_triangl[2]); cos_angles[1] = (norm_triangl[0] * norm_triangl[0] + norm_triangl[2] * norm_triangl[2] - norm_triangl[1] * norm_triangl[1]) / (2 * norm_triangl[0] * norm_triangl[2]); cos_angles[2] = (norm_triangl[0] * norm_triangl[0] + norm_triangl[1] * norm_triangl[1] - norm_triangl[2] * norm_triangl[2]) / (2 * norm_triangl[0] * norm_triangl[1]); const double angle_barrier = 0.85; if (fabs(cos_angles[0]) > angle_barrier || fabs(cos_angles[1]) > angle_barrier || fabs(cos_angles[2]) > angle_barrier) { local_point.clear(); return; } size_t i_min_cos = (cos_angles[0] < cos_angles[1] && cos_angles[0] < cos_angles[2]) ? 0 : (cos_angles[1] < cos_angles[0] && cos_angles[1] < cos_angles[2]) ? 1 : 2; size_t index_max = 0; double max_area = std::numeric_limits::min(); for (size_t i = 0; i < local_point.size(); i++) { const size_t current_index = i % 3; const size_t left_index = (i + 1) % 3; const size_t right_index = (i + 2) % 3; const Point2f current_point(local_point[current_index]), left_point(local_point[left_index]), right_point(local_point[right_index]), central_point(intersectionLines(current_point, Point2f(static_cast((local_point[left_index].x + local_point[right_index].x) * 0.5), static_cast((local_point[left_index].y + local_point[right_index].y) * 0.5)), Point2f(0, static_cast(bin_barcode.rows - 1)), Point2f(static_cast(bin_barcode.cols - 1), static_cast(bin_barcode.rows - 1)))); vector list_area_pnt; list_area_pnt.push_back(current_point); vector list_line_iter; list_line_iter.push_back(LineIterator(bin_barcode, current_point, left_point)); list_line_iter.push_back(LineIterator(bin_barcode, current_point, central_point)); list_line_iter.push_back(LineIterator(bin_barcode, current_point, right_point)); for (size_t k = 0; k < list_line_iter.size(); k++) { uint8_t future_pixel = 255, count_index = 0; for(int j = 0; j < list_line_iter[k].count; j++, ++list_line_iter[k]) { if (list_line_iter[k].pos().x >= bin_barcode.cols || list_line_iter[k].pos().y >= bin_barcode.rows) { break; } const uint8_t value = bin_barcode.at(list_line_iter[k].pos()); if (value == future_pixel) { future_pixel = 255 - future_pixel; count_index++; if (count_index == 3) { list_area_pnt.push_back(list_line_iter[k].pos()); break; } } } } const double temp_check_area = contourArea(list_area_pnt); if (temp_check_area > max_area) { index_max = current_index; max_area = temp_check_area; } } if (index_max == i_min_cos) { std::swap(local_point[0], local_point[index_max]); } else { local_point.clear(); return; } const Point2f rpt = local_point[0], bpt = local_point[1], gpt = local_point[2]; Matx22f m(rpt.x - bpt.x, rpt.y - bpt.y, gpt.x - rpt.x, gpt.y - rpt.y); if( determinant(m) > 0 ) { std::swap(local_point[1], local_point[2]); } } bool QRDetect::localization() { Point2f begin, end; vector list_lines_x = searchHorizontalLines(); if( list_lines_x.empty() ) { return false; } vector list_lines_y = separateVerticalLines(list_lines_x); if( list_lines_y.size() < 3 ) { return false; } vector centers; Mat labels; kmeans(list_lines_y, 3, labels, TermCriteria( TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1), 3, KMEANS_PP_CENTERS, localization_points); fixationPoints(localization_points); if (localization_points.size() != 3) { return false; } if (coeff_expansion > 1.0) { const int width = cvRound(bin_barcode.size().width / coeff_expansion); const int height = cvRound(bin_barcode.size().height / coeff_expansion); Size new_size(width, height); Mat intermediate = Mat::zeros(new_size, CV_8UC1); resize(bin_barcode, intermediate, new_size, 0, 0, INTER_LINEAR); bin_barcode = intermediate.clone(); for (size_t i = 0; i < localization_points.size(); i++) { localization_points[i] /= coeff_expansion; } } for (size_t i = 0; i < localization_points.size(); i++) { for (size_t j = i + 1; j < localization_points.size(); j++) { if (norm(localization_points[i] - localization_points[j]) < 10) { return false; } } } return true; } bool QRDetect::computeTransformationPoints() { if (localization_points.size() != 3) { return false; } vector locations, non_zero_elem[3], newHull; vector new_non_zero_elem[3]; for (size_t i = 0; i < 3; i++) { Mat mask = Mat::zeros(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1); uint8_t next_pixel, future_pixel = 255; int count_test_lines = 0, index = cvRound(localization_points[i].x); for (; index < bin_barcode.cols - 1; index++) { next_pixel = bin_barcode.at( cvRound(localization_points[i].y), index + 1); if (next_pixel == future_pixel) { future_pixel = 255 - future_pixel; count_test_lines++; if (count_test_lines == 2) { floodFill(bin_barcode, mask, Point(index + 1, cvRound(localization_points[i].y)), 255, 0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY); break; } } } Mat mask_roi = mask(Range(1, bin_barcode.rows - 1), Range(1, bin_barcode.cols - 1)); findNonZero(mask_roi, non_zero_elem[i]); newHull.insert(newHull.end(), non_zero_elem[i].begin(), non_zero_elem[i].end()); } convexHull(Mat(newHull), locations); for (size_t i = 0; i < locations.size(); i++) { for (size_t j = 0; j < 3; j++) { for (size_t k = 0; k < non_zero_elem[j].size(); k++) { if (locations[i] == non_zero_elem[j][k]) { new_non_zero_elem[j].push_back(locations[i]); } } } } double pentagon_diag_norm = -1; Point2f down_left_edge_point, up_right_edge_point, up_left_edge_point; for (size_t i = 0; i < new_non_zero_elem[1].size(); i++) { for (size_t j = 0; j < new_non_zero_elem[2].size(); j++) { double temp_norm = norm(new_non_zero_elem[1][i] - new_non_zero_elem[2][j]); if (temp_norm > pentagon_diag_norm) { down_left_edge_point = new_non_zero_elem[1][i]; up_right_edge_point = new_non_zero_elem[2][j]; pentagon_diag_norm = temp_norm; } } } if (down_left_edge_point == Point2f(0, 0) || up_right_edge_point == Point2f(0, 0) || new_non_zero_elem[0].size() == 0) { return false; } double max_area = -1; up_left_edge_point = new_non_zero_elem[0][0]; for (size_t i = 0; i < new_non_zero_elem[0].size(); i++) { vector list_edge_points; list_edge_points.push_back(new_non_zero_elem[0][i]); list_edge_points.push_back(down_left_edge_point); list_edge_points.push_back(up_right_edge_point); double temp_area = fabs(contourArea(list_edge_points)); if (max_area < temp_area) { up_left_edge_point = new_non_zero_elem[0][i]; max_area = temp_area; } } Point2f down_max_delta_point, up_max_delta_point; double norm_down_max_delta = -1, norm_up_max_delta = -1; for (size_t i = 0; i < new_non_zero_elem[1].size(); i++) { double temp_norm_delta = norm(up_left_edge_point - new_non_zero_elem[1][i]) + norm(down_left_edge_point - new_non_zero_elem[1][i]); if (norm_down_max_delta < temp_norm_delta) { down_max_delta_point = new_non_zero_elem[1][i]; norm_down_max_delta = temp_norm_delta; } } for (size_t i = 0; i < new_non_zero_elem[2].size(); i++) { double temp_norm_delta = norm(up_left_edge_point - new_non_zero_elem[2][i]) + norm(up_right_edge_point - new_non_zero_elem[2][i]); if (norm_up_max_delta < temp_norm_delta) { up_max_delta_point = new_non_zero_elem[2][i]; norm_up_max_delta = temp_norm_delta; } } transformation_points.push_back(down_left_edge_point); transformation_points.push_back(up_left_edge_point); transformation_points.push_back(up_right_edge_point); transformation_points.push_back( intersectionLines(down_left_edge_point, down_max_delta_point, up_right_edge_point, up_max_delta_point)); vector quadrilateral = getQuadrilateral(transformation_points); transformation_points = quadrilateral; return true; } Point2f QRDetect::intersectionLines(Point2f a1, Point2f a2, Point2f b1, Point2f b2) { Point2f result_square_angle( ((a1.x * a2.y - a1.y * a2.x) * (b1.x - b2.x) - (b1.x * b2.y - b1.y * b2.x) * (a1.x - a2.x)) / ((a1.x - a2.x) * (b1.y - b2.y) - (a1.y - a2.y) * (b1.x - b2.x)), ((a1.x * a2.y - a1.y * a2.x) * (b1.y - b2.y) - (b1.x * b2.y - b1.y * b2.x) * (a1.y - a2.y)) / ((a1.x - a2.x) * (b1.y - b2.y) - (a1.y - a2.y) * (b1.x - b2.x)) ); return result_square_angle; } // test function (if true then ------> else <------ ) bool QRDetect::testBypassRoute(vector hull, int start, int finish) { int index_hull = start, next_index_hull, hull_size = (int)hull.size(); double test_length[2] = { 0.0, 0.0 }; do { next_index_hull = index_hull + 1; if (next_index_hull == hull_size) { next_index_hull = 0; } test_length[0] += norm(hull[index_hull] - hull[next_index_hull]); index_hull = next_index_hull; } while(index_hull != finish); index_hull = start; do { next_index_hull = index_hull - 1; if (next_index_hull == -1) { next_index_hull = hull_size - 1; } test_length[1] += norm(hull[index_hull] - hull[next_index_hull]); index_hull = next_index_hull; } while(index_hull != finish); if (test_length[0] < test_length[1]) { return true; } else { return false; } } vector QRDetect::getQuadrilateral(vector angle_list) { size_t angle_size = angle_list.size(); uint8_t value, mask_value; Mat mask = Mat::zeros(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1); Mat fill_bin_barcode = bin_barcode.clone(); for (size_t i = 0; i < angle_size; i++) { LineIterator line_iter(bin_barcode, angle_list[ i % angle_size], angle_list[(i + 1) % angle_size]); for(int j = 0; j < line_iter.count; j++, ++line_iter) { value = bin_barcode.at(line_iter.pos()); mask_value = mask.at(line_iter.pos() + Point(1, 1)); if (value == 0 && mask_value == 0) { floodFill(fill_bin_barcode, mask, line_iter.pos(), 255, 0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY); } } } vector locations; Mat mask_roi = mask(Range(1, bin_barcode.rows - 1), Range(1, bin_barcode.cols - 1)); cv::findNonZero(mask_roi, locations); for (size_t i = 0; i < angle_list.size(); i++) { int x = cvRound(angle_list[i].x); int y = cvRound(angle_list[i].y); locations.push_back(Point(x, y)); } vector integer_hull; convexHull(Mat(locations), integer_hull); int hull_size = (int)integer_hull.size(); vector hull(hull_size); for (int i = 0; i < hull_size; i++) { float x = saturate_cast(integer_hull[i].x); float y = saturate_cast(integer_hull[i].y); hull[i] = Point2f(x, y); } const double experimental_area = fabs(contourArea(hull)); vector result_hull_point(angle_size); double min_norm; for (size_t i = 0; i < angle_size; i++) { min_norm = std::numeric_limits::max(); Point closest_pnt; for (int j = 0; j < hull_size; j++) { double temp_norm = norm(hull[j] - angle_list[i]); if (min_norm > temp_norm) { min_norm = temp_norm; closest_pnt = hull[j]; } } result_hull_point[i] = closest_pnt; } int start_line[2] = { 0, 0 }, finish_line[2] = { 0, 0 }, unstable_pnt = 0; for (int i = 0; i < hull_size; i++) { if (result_hull_point[2] == hull[i]) { start_line[0] = i; } if (result_hull_point[1] == hull[i]) { finish_line[0] = start_line[1] = i; } if (result_hull_point[0] == hull[i]) { finish_line[1] = i; } if (result_hull_point[3] == hull[i]) { unstable_pnt = i; } } int index_hull, extra_index_hull, next_index_hull, extra_next_index_hull; Point result_side_begin[4], result_side_end[4]; bool bypass_orientation = testBypassRoute(hull, start_line[0], finish_line[0]); min_norm = std::numeric_limits::max(); index_hull = start_line[0]; do { if (bypass_orientation) { next_index_hull = index_hull + 1; } else { next_index_hull = index_hull - 1; } if (next_index_hull == hull_size) { next_index_hull = 0; } if (next_index_hull == -1) { next_index_hull = hull_size - 1; } Point angle_closest_pnt = norm(hull[index_hull] - angle_list[1]) > norm(hull[index_hull] - angle_list[2]) ? angle_list[2] : angle_list[1]; Point intrsc_line_hull = intersectionLines(hull[index_hull], hull[next_index_hull], angle_list[1], angle_list[2]); double temp_norm = getCosVectors(hull[index_hull], intrsc_line_hull, angle_closest_pnt); if (min_norm > temp_norm && norm(hull[index_hull] - hull[next_index_hull]) > norm(angle_list[1] - angle_list[2]) * 0.1) { min_norm = temp_norm; result_side_begin[0] = hull[index_hull]; result_side_end[0] = hull[next_index_hull]; } index_hull = next_index_hull; } while(index_hull != finish_line[0]); if (min_norm == std::numeric_limits::max()) { result_side_begin[0] = angle_list[1]; result_side_end[0] = angle_list[2]; } min_norm = std::numeric_limits::max(); index_hull = start_line[1]; bypass_orientation = testBypassRoute(hull, start_line[1], finish_line[1]); do { if (bypass_orientation) { next_index_hull = index_hull + 1; } else { next_index_hull = index_hull - 1; } if (next_index_hull == hull_size) { next_index_hull = 0; } if (next_index_hull == -1) { next_index_hull = hull_size - 1; } Point angle_closest_pnt = norm(hull[index_hull] - angle_list[0]) > norm(hull[index_hull] - angle_list[1]) ? angle_list[1] : angle_list[0]; Point intrsc_line_hull = intersectionLines(hull[index_hull], hull[next_index_hull], angle_list[0], angle_list[1]); double temp_norm = getCosVectors(hull[index_hull], intrsc_line_hull, angle_closest_pnt); if (min_norm > temp_norm && norm(hull[index_hull] - hull[next_index_hull]) > norm(angle_list[0] - angle_list[1]) * 0.05) { min_norm = temp_norm; result_side_begin[1] = hull[index_hull]; result_side_end[1] = hull[next_index_hull]; } index_hull = next_index_hull; } while(index_hull != finish_line[1]); if (min_norm == std::numeric_limits::max()) { result_side_begin[1] = angle_list[0]; result_side_end[1] = angle_list[1]; } bypass_orientation = testBypassRoute(hull, start_line[0], unstable_pnt); const bool extra_bypass_orientation = testBypassRoute(hull, finish_line[1], unstable_pnt); vector result_angle_list(4), test_result_angle_list(4); double min_diff_area = std::numeric_limits::max(); index_hull = start_line[0]; const double standart_norm = std::max( norm(result_side_begin[0] - result_side_end[0]), norm(result_side_begin[1] - result_side_end[1])); do { if (bypass_orientation) { next_index_hull = index_hull + 1; } else { next_index_hull = index_hull - 1; } if (next_index_hull == hull_size) { next_index_hull = 0; } if (next_index_hull == -1) { next_index_hull = hull_size - 1; } if (norm(hull[index_hull] - hull[next_index_hull]) < standart_norm * 0.1) { index_hull = next_index_hull; continue; } extra_index_hull = finish_line[1]; do { if (extra_bypass_orientation) { extra_next_index_hull = extra_index_hull + 1; } else { extra_next_index_hull = extra_index_hull - 1; } if (extra_next_index_hull == hull_size) { extra_next_index_hull = 0; } if (extra_next_index_hull == -1) { extra_next_index_hull = hull_size - 1; } if (norm(hull[extra_index_hull] - hull[extra_next_index_hull]) < standart_norm * 0.1) { extra_index_hull = extra_next_index_hull; continue; } test_result_angle_list[0] = intersectionLines(result_side_begin[0], result_side_end[0], result_side_begin[1], result_side_end[1]); test_result_angle_list[1] = intersectionLines(result_side_begin[1], result_side_end[1], hull[extra_index_hull], hull[extra_next_index_hull]); test_result_angle_list[2] = intersectionLines(hull[extra_index_hull], hull[extra_next_index_hull], hull[index_hull], hull[next_index_hull]); test_result_angle_list[3] = intersectionLines(hull[index_hull], hull[next_index_hull], result_side_begin[0], result_side_end[0]); const double test_diff_area = fabs(fabs(contourArea(test_result_angle_list)) - experimental_area); if (min_diff_area > test_diff_area) { min_diff_area = test_diff_area; for (size_t i = 0; i < test_result_angle_list.size(); i++) { result_angle_list[i] = test_result_angle_list[i]; } } extra_index_hull = extra_next_index_hull; } while(extra_index_hull != unstable_pnt); index_hull = next_index_hull; } while(index_hull != unstable_pnt); // check label points if (norm(result_angle_list[0] - angle_list[1]) > 2) { result_angle_list[0] = angle_list[1]; } if (norm(result_angle_list[1] - angle_list[0]) > 2) { result_angle_list[1] = angle_list[0]; } if (norm(result_angle_list[3] - angle_list[2]) > 2) { result_angle_list[3] = angle_list[2]; } // check calculation point if (norm(result_angle_list[2] - angle_list[3]) > (norm(result_angle_list[0] - result_angle_list[1]) + norm(result_angle_list[0] - result_angle_list[3])) * 0.5 ) { result_angle_list[2] = angle_list[3]; } return result_angle_list; } // / | b // / | // / | // a/ | c inline double QRDetect::getCosVectors(Point2f a, Point2f b, Point2f c) { return ((a - b).x * (c - b).x + (a - b).y * (c - b).y) / (norm(a - b) * norm(c - b)); } struct QRCodeDetector::Impl { public: Impl() { epsX = 0.2; epsY = 0.1; } ~Impl() {} double epsX, epsY; }; QRCodeDetector::QRCodeDetector() : p(new Impl) {} QRCodeDetector::~QRCodeDetector() {} void QRCodeDetector::setEpsX(double epsX) { p->epsX = epsX; } void QRCodeDetector::setEpsY(double epsY) { p->epsY = epsY; } bool QRCodeDetector::detect(InputArray in, OutputArray points) const { Mat inarr = in.getMat(); CV_Assert(!inarr.empty()); CV_Assert(inarr.type() == CV_8UC1); QRDetect qrdet; qrdet.init(inarr, p->epsX, p->epsY); if (!qrdet.localization()) { return false; } if (!qrdet.computeTransformationPoints()) { return false; } vector pnts2f = qrdet.getTransformationPoints(); Mat(pnts2f).convertTo(points, points.fixedType() ? points.type() : CV_32FC2); return true; } CV_EXPORTS bool detectQRCode(InputArray in, std::vector &points, double eps_x, double eps_y) { QRCodeDetector qrdetector; qrdetector.setEpsX(eps_x); qrdetector.setEpsY(eps_y); return qrdetector.detect(in, points); } }