/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "opencv2/gpu/device/limits_gpu.hpp" #include "opencv2/gpu/device/saturate_cast.hpp" #include "opencv2/gpu/device/vecmath.hpp" #include "transform.hpp" #include "internal_shared.hpp" using namespace cv::gpu; using namespace cv::gpu::device; #ifndef CV_PI #define CV_PI 3.1415926535897932384626433832795f #endif ////////////////////////////////////////////////////////////////////////////////////// // Cart <-> Polar namespace cv { namespace gpu { namespace mathfunc { template __device__ void sum_in_smem(volatile T* data, const uint tid) { T sum = data[tid]; if (size >= 512) { if (tid < 256) { data[tid] = sum = sum + data[tid + 256]; } __syncthreads(); } if (size >= 256) { if (tid < 128) { data[tid] = sum = sum + data[tid + 128]; } __syncthreads(); } if (size >= 128) { if (tid < 64) { data[tid] = sum = sum + data[tid + 64]; } __syncthreads(); } if (tid < 32) { if (size >= 64) data[tid] = sum = sum + data[tid + 32]; if (size >= 32) data[tid] = sum = sum + data[tid + 16]; if (size >= 16) data[tid] = sum = sum + data[tid + 8]; if (size >= 8) data[tid] = sum = sum + data[tid + 4]; if (size >= 4) data[tid] = sum = sum + data[tid + 2]; if (size >= 2) data[tid] = sum = sum + data[tid + 1]; } } struct Nothing { static __device__ void calc(int, int, float, float, float*, size_t, float) { } }; struct Magnitude { static __device__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float) { dst[y * dst_step + x] = sqrtf(x_data * x_data + y_data * y_data); } }; struct MagnitudeSqr { static __device__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float) { dst[y * dst_step + x] = x_data * x_data + y_data * y_data; } }; struct Atan2 { static __device__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float scale) { dst[y * dst_step + x] = scale * atan2f(y_data, x_data); } }; template __global__ void cartToPolar(const float* xptr, size_t x_step, const float* yptr, size_t y_step, float* mag, size_t mag_step, float* angle, size_t angle_step, float scale, int width, int height) { const int x = blockDim.x * blockIdx.x + threadIdx.x; const int y = blockDim.y * blockIdx.y + threadIdx.y; if (x < width && y < height) { float x_data = xptr[y * x_step + x]; float y_data = yptr[y * y_step + x]; Mag::calc(x, y, x_data, y_data, mag, mag_step, scale); Angle::calc(x, y, x_data, y_data, angle, angle_step, scale); } } struct NonEmptyMag { static __device__ float get(const float* mag, size_t mag_step, int x, int y) { return mag[y * mag_step + x]; } }; struct EmptyMag { static __device__ float get(const float*, size_t, int, int) { return 1.0f; } }; template __global__ void polarToCart(const float* mag, size_t mag_step, const float* angle, size_t angle_step, float scale, float* xptr, size_t x_step, float* yptr, size_t y_step, int width, int height) { const int x = blockDim.x * blockIdx.x + threadIdx.x; const int y = blockDim.y * blockIdx.y + threadIdx.y; if (x < width && y < height) { float mag_data = Mag::get(mag, mag_step, x, y); float angle_data = angle[y * angle_step + x]; float sin_a, cos_a; sincosf(scale * angle_data, &sin_a, &cos_a); xptr[y * x_step + x] = mag_data * cos_a; yptr[y * y_step + x] = mag_data * sin_a; } } template void cartToPolar_caller(const DevMem2Df& x, const DevMem2Df& y, const DevMem2Df& mag, const DevMem2Df& angle, bool angleInDegrees, cudaStream_t stream) { dim3 threads(16, 16, 1); dim3 grid(1, 1, 1); grid.x = divUp(x.cols, threads.x); grid.y = divUp(x.rows, threads.y); const float scale = angleInDegrees ? (float)(180.0f / CV_PI) : 1.f; cartToPolar<<>>( x.data, x.step/x.elemSize(), y.data, y.step/y.elemSize(), mag.data, mag.step/mag.elemSize(), angle.data, angle.step/angle.elemSize(), scale, x.cols, x.rows); if (stream == 0) cudaSafeCall( cudaThreadSynchronize() ); } void cartToPolar_gpu(const DevMem2Df& x, const DevMem2Df& y, const DevMem2Df& mag, bool magSqr, const DevMem2Df& angle, bool angleInDegrees, cudaStream_t stream) { typedef void (*caller_t)(const DevMem2Df& x, const DevMem2Df& y, const DevMem2Df& mag, const DevMem2Df& angle, bool angleInDegrees, cudaStream_t stream); static const caller_t callers[2][2][2] = { { { cartToPolar_caller, cartToPolar_caller }, { cartToPolar_caller, cartToPolar_caller, } }, { { cartToPolar_caller, cartToPolar_caller }, { cartToPolar_caller, cartToPolar_caller, } } }; callers[mag.data == 0][magSqr][angle.data == 0](x, y, mag, angle, angleInDegrees, stream); } template void polarToCart_caller(const DevMem2Df& mag, const DevMem2Df& angle, const DevMem2Df& x, const DevMem2Df& y, bool angleInDegrees, cudaStream_t stream) { dim3 threads(16, 16, 1); dim3 grid(1, 1, 1); grid.x = divUp(mag.cols, threads.x); grid.y = divUp(mag.rows, threads.y); const float scale = angleInDegrees ? (float)(CV_PI / 180.0f) : 1.0f; polarToCart<<>>(mag.data, mag.step/mag.elemSize(), angle.data, angle.step/angle.elemSize(), scale, x.data, x.step/x.elemSize(), y.data, y.step/y.elemSize(), mag.cols, mag.rows); if (stream == 0) cudaSafeCall( cudaThreadSynchronize() ); } void polarToCart_gpu(const DevMem2Df& mag, const DevMem2Df& angle, const DevMem2Df& x, const DevMem2Df& y, bool angleInDegrees, cudaStream_t stream) { typedef void (*caller_t)(const DevMem2Df& mag, const DevMem2Df& angle, const DevMem2Df& x, const DevMem2Df& y, bool angleInDegrees, cudaStream_t stream); static const caller_t callers[2] = { polarToCart_caller, polarToCart_caller }; callers[mag.data == 0](mag, angle, x, y, angleInDegrees, stream); } ////////////////////////////////////////////////////////////////////////////////////// // Compare template struct NotEqual { __device__ uchar operator()(const T1& src1, const T2& src2) { return static_cast(static_cast(src1 != src2) * 255); } }; template inline void compare_ne(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst) { NotEqual op; transform(static_cast< DevMem2D_ >(src1), static_cast< DevMem2D_ >(src2), dst, op, 0); } void compare_ne_8uc4(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst) { compare_ne(src1, src2, dst); } void compare_ne_32f(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst) { compare_ne(src1, src2, dst); } ////////////////////////////////////////////////////////////////////////////// // Per-element bit-wise logical matrix operations struct Mask8U { explicit Mask8U(PtrStep mask): mask(mask) {} __device__ bool operator()(int y, int x) const { return mask.ptr(y)[x]; } PtrStep mask; }; struct MaskTrue { __device__ bool operator()(int y, int x) const { return true; } }; //------------------------------------------------------------------------ // Unary operations enum { UN_OP_NOT }; template struct UnOp; template struct UnOp { typedef typename TypeVec::vec_t Vec2; typedef typename TypeVec::vec_t Vec3; typedef typename TypeVec::vec_t Vec4; static __device__ T call(T v) { return ~v; } static __device__ Vec2 call(Vec2 v) { return VecTraits::make(~v.x, ~v.y); } static __device__ Vec3 call(Vec3 v) { return VecTraits::make(~v.x, ~v.y, ~v.z); } static __device__ Vec4 call(Vec4 v) { return VecTraits::make(~v.x, ~v.y, ~v.z, ~v.w); } }; template __global__ void bitwise_un_op(int rows, int cols, const PtrStep src, PtrStep dst) { const int x = (blockDim.x * blockIdx.x + threadIdx.x) * 4; const int y = blockDim.y * blockIdx.y + threadIdx.y; if (y < rows) { uchar* dst_ptr = dst.ptr(y) + x; const uchar* src_ptr = src.ptr(y) + x; if (x + sizeof(uint) - 1 < cols) { *(uint*)dst_ptr = UnOp::call(*(uint*)src_ptr); } else { const uchar* src_end = src.ptr(y) + cols; while (src_ptr < src_end) { *dst_ptr++ = UnOp::call(*src_ptr++); } } } } template __global__ void bitwise_un_op(int rows, int cols, const PtrStep src, PtrStep dst, const PtrStep mask) { typedef typename TypeVec::vec_t Type; const int x = blockDim.x * blockIdx.x + threadIdx.x; const int y = blockDim.y * blockIdx.y + threadIdx.y; if (x < cols && y < rows && mask.ptr(y)[x]) { Type* dst_row = (Type*)dst.ptr(y); const Type* src_row = (const Type*)src.ptr(y); dst_row[x] = UnOp::call(src_row[x]); } } template __global__ void bitwise_un_op_two_loads(int rows, int cols, const PtrStep src, PtrStep dst, const PtrStep mask) { typedef typename TypeVec::vec_t Type; const int x = blockDim.x * blockIdx.x + threadIdx.x; const int y = blockDim.y * blockIdx.y + threadIdx.y; if (x < cols && y < rows && mask.ptr(y)[x]) { Type* dst_row = (Type*)dst.ptr(y); const Type* src_row = (const Type*)src.ptr(y); dst_row[2 * x] = UnOp::call(src_row[2 * x]); dst_row[2 * x + 1] = UnOp::call(src_row[2 * x + 1]); } } template void bitwise_un_op(int rows, int cols, const PtrStep src, PtrStep dst, int elem_size, cudaStream_t stream) { dim3 threads(16, 16); dim3 grid(divUp(cols * elem_size, threads.x * sizeof(uint)), divUp(rows, threads.y)); bitwise_un_op<<>>(rows, cols * elem_size, src, dst); if (stream == 0) cudaSafeCall(cudaThreadSynchronize()); } template void bitwise_un_op(int rows, int cols, const PtrStep src, PtrStep dst, int elem_size, const PtrStep mask, cudaStream_t stream) { dim3 threads(16, 16); dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y)); switch (elem_size) { case 1: bitwise_un_op<<>>(rows, cols, src, dst, mask); break; case 2: bitwise_un_op<<>>(rows, cols, src, dst, mask); break; case 3: bitwise_un_op<<>>(rows, cols, src, dst, mask); break; case 4: bitwise_un_op<<>>(rows, cols, src, dst, mask); break; case 6: bitwise_un_op<<>>(rows, cols, src, dst, mask); break; case 8: bitwise_un_op<<>>(rows, cols, src, dst, mask); break; case 12: bitwise_un_op<<>>(rows, cols, src, dst, mask); break; case 16: bitwise_un_op<<>>(rows, cols, src, dst, mask); break; case 24: bitwise_un_op_two_loads<<>>(rows, cols, src, dst, mask); break; case 32: bitwise_un_op_two_loads<<>>(rows, cols, src, dst, mask); break; } if (stream == 0) cudaSafeCall(cudaThreadSynchronize()); } void bitwise_not_caller(int rows, int cols, const PtrStep src, int elem_size, PtrStep dst, cudaStream_t stream) { bitwise_un_op(rows, cols, src, dst, elem_size, stream); } void bitwise_not_caller(int rows, int cols,const PtrStep src, int elem_size, PtrStep dst, const PtrStep mask, cudaStream_t stream) { bitwise_un_op(rows, cols, src, dst, elem_size, mask, stream); } //------------------------------------------------------------------------ // Binary operations enum { BIN_OP_OR, BIN_OP_AND, BIN_OP_XOR }; template struct BinOp; template struct BinOp { static __device__ T call(T lhs, T rhs) { return lhs | rhs; } }; template struct BinOp { static __device__ T call(T lhs, T rhs) { return lhs & rhs; } }; template struct BinOp { static __device__ T call(T lhs, T rhs) { return lhs ^ rhs; } }; template __global__ void bitwise_bin_op(int rows, int cols, const PtrStep src1, const PtrStep src2, PtrStep dst, Mask mask) { const int x = blockDim.x * blockIdx.x + threadIdx.x; const int y = blockDim.y * blockIdx.y + threadIdx.y; if (x < cols && y < rows && mask(y, x)) { T* dsty = (T*)dst.ptr(y); const T* src1y = (const T*)src1.ptr(y); const T* src2y = (const T*)src2.ptr(y); #pragma unroll for (int i = 0; i < cn; ++i) dsty[cn * x + i] = BinOp::call(src1y[cn * x + i], src2y[cn * x + i]); } } template void bitwise_bin_op(int rows, int cols, const PtrStep src1, const PtrStep src2, PtrStep dst, int elem_size, Mask mask, cudaStream_t stream) { dim3 threads(16, 16); dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y)); switch (elem_size) { case 1: bitwise_bin_op ><<>>(rows, cols, src1, src2, dst, mask); break; case 2: bitwise_bin_op ><<>>(rows, cols, src1, src2, dst, mask); break; case 3: bitwise_bin_op ><<>>(rows, cols, src1, src2, dst, mask); break; case 4: bitwise_bin_op ><<>>(rows, cols, src1, src2, dst, mask); break; case 6: bitwise_bin_op ><<>>(rows, cols, src1, src2, dst, mask); break; case 8: bitwise_bin_op ><<>>(rows, cols, src1, src2, dst, mask); break; case 12: bitwise_bin_op ><<>>(rows, cols, src1, src2, dst, mask); break; case 16: bitwise_bin_op ><<>>(rows, cols, src1, src2, dst, mask); break; case 24: bitwise_bin_op ><<>>(rows, cols, src1, src2, dst, mask); break; case 32: bitwise_bin_op ><<>>(rows, cols, src1, src2, dst, mask); break; } if (stream == 0) cudaSafeCall(cudaThreadSynchronize()); } void bitwise_or_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elem_size, PtrStep dst, cudaStream_t stream) { bitwise_bin_op(rows, cols, src1, src2, dst, elem_size, MaskTrue(), stream); } void bitwise_or_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elem_size, PtrStep dst, const PtrStep mask, cudaStream_t stream) { bitwise_bin_op(rows, cols, src1, src2, dst, elem_size, Mask8U(mask), stream); } void bitwise_and_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elem_size, PtrStep dst, cudaStream_t stream) { bitwise_bin_op(rows, cols, src1, src2, dst, elem_size, MaskTrue(), stream); } void bitwise_and_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elem_size, PtrStep dst, const PtrStep mask, cudaStream_t stream) { bitwise_bin_op(rows, cols, src1, src2, dst, elem_size, Mask8U(mask), stream); } void bitwise_xor_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elem_size, PtrStep dst, cudaStream_t stream) { bitwise_bin_op(rows, cols, src1, src2, dst, elem_size, MaskTrue(), stream); } void bitwise_xor_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elem_size, PtrStep dst, const PtrStep mask, cudaStream_t stream) { bitwise_bin_op(rows, cols, src1, src2, dst, elem_size, Mask8U(mask), stream); } ////////////////////////////////////////////////////////////////////////////// // Min max // To avoid shared bank conflicts we convert each value into value of // appropriate type (32 bits minimum) template struct MinMaxTypeTraits {}; template <> struct MinMaxTypeTraits { typedef int best_type; }; template <> struct MinMaxTypeTraits { typedef int best_type; }; template <> struct MinMaxTypeTraits { typedef int best_type; }; template <> struct MinMaxTypeTraits { typedef int best_type; }; template <> struct MinMaxTypeTraits { typedef int best_type; }; template <> struct MinMaxTypeTraits { typedef float best_type; }; template <> struct MinMaxTypeTraits { typedef double best_type; }; namespace minmax { __constant__ int ctwidth; __constant__ int ctheight; // Global counter of blocks finished its work __device__ uint blocks_finished = 0; // Estimates good thread configuration // - threads variable satisfies to threads.x * threads.y == 256 void estimate_thread_cfg(int cols, int rows, dim3& threads, dim3& grid) { threads = dim3(32, 8); grid = dim3(divUp(cols, threads.x * 8), divUp(rows, threads.y * 32)); grid.x = min(grid.x, threads.x); grid.y = min(grid.y, threads.y); } // Returns required buffer sizes void get_buf_size_required(int cols, int rows, int elem_size, int& bufcols, int& bufrows) { dim3 threads, grid; estimate_thread_cfg(cols, rows, threads, grid); bufcols = grid.x * grid.y * elem_size; bufrows = 2; } // Estimates device constants which are used in the kernels using specified thread configuration void set_kernel_consts(int cols, int rows, const dim3& threads, const dim3& grid) { int twidth = divUp(divUp(cols, grid.x), threads.x); int theight = divUp(divUp(rows, grid.y), threads.y); cudaSafeCall(cudaMemcpyToSymbol(ctwidth, &twidth, sizeof(ctwidth))); cudaSafeCall(cudaMemcpyToSymbol(ctheight, &theight, sizeof(ctheight))); } // Does min and max in shared memory template __device__ void merge(uint tid, uint offset, volatile T* minval, volatile T* maxval) { minval[tid] = min(minval[tid], minval[tid + offset]); maxval[tid] = max(maxval[tid], maxval[tid + offset]); } template __device__ void find_min_max_in_smem(volatile T* minval, volatile T* maxval, const uint tid) { if (size >= 512) { if (tid < 256) { merge(tid, 256, minval, maxval); } __syncthreads(); } if (size >= 256) { if (tid < 128) { merge(tid, 128, minval, maxval); } __syncthreads(); } if (size >= 128) { if (tid < 64) { merge(tid, 64, minval, maxval); } __syncthreads(); } if (tid < 32) { if (size >= 64) merge(tid, 32, minval, maxval); if (size >= 32) merge(tid, 16, minval, maxval); if (size >= 16) merge(tid, 8, minval, maxval); if (size >= 8) merge(tid, 4, minval, maxval); if (size >= 4) merge(tid, 2, minval, maxval); if (size >= 2) merge(tid, 1, minval, maxval); } } template __global__ void min_max_kernel(const DevMem2D src, Mask mask, T* minval, T* maxval) { typedef typename MinMaxTypeTraits::best_type best_type; __shared__ best_type sminval[nthreads]; __shared__ best_type smaxval[nthreads]; uint x0 = blockIdx.x * blockDim.x * ctwidth + threadIdx.x; uint y0 = blockIdx.y * blockDim.y * ctheight + threadIdx.y; uint tid = threadIdx.y * blockDim.x + threadIdx.x; T mymin = numeric_limits_gpu::max(); T mymax = numeric_limits_gpu::is_signed ? -numeric_limits_gpu::max() : numeric_limits_gpu::min(); uint y_end = min(y0 + (ctheight - 1) * blockDim.y + 1, src.rows); uint x_end = min(x0 + (ctwidth - 1) * blockDim.x + 1, src.cols); for (uint y = y0; y < y_end; y += blockDim.y) { const T* src_row = (const T*)src.ptr(y); for (uint x = x0; x < x_end; x += blockDim.x) { T val = src_row[x]; if (mask(y, x)) { mymin = min(mymin, val); mymax = max(mymax, val); } } } sminval[tid] = mymin; smaxval[tid] = mymax; __syncthreads(); find_min_max_in_smem(sminval, smaxval, tid); if (tid == 0) { minval[blockIdx.y * gridDim.x + blockIdx.x] = (T)sminval[0]; maxval[blockIdx.y * gridDim.x + blockIdx.x] = (T)smaxval[0]; } #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110 __shared__ bool is_last; if (tid == 0) { minval[blockIdx.y * gridDim.x + blockIdx.x] = (T)sminval[0]; maxval[blockIdx.y * gridDim.x + blockIdx.x] = (T)smaxval[0]; __threadfence(); uint ticket = atomicInc(&blocks_finished, gridDim.x * gridDim.y); is_last = ticket == gridDim.x * gridDim.y - 1; } __syncthreads(); if (is_last) { uint idx = min(tid, gridDim.x * gridDim.y - 1); sminval[tid] = minval[idx]; smaxval[tid] = maxval[idx]; __syncthreads(); find_min_max_in_smem(sminval, smaxval, tid); if (tid == 0) { minval[0] = (T)sminval[0]; maxval[0] = (T)smaxval[0]; blocks_finished = 0; } } #else if (tid == 0) { minval[blockIdx.y * gridDim.x + blockIdx.x] = (T)sminval[0]; maxval[blockIdx.y * gridDim.x + blockIdx.x] = (T)smaxval[0]; } #endif } template void min_max_mask_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval, PtrStep buf) { dim3 threads, grid; estimate_thread_cfg(src.cols, src.rows, threads, grid); set_kernel_consts(src.cols, src.rows, threads, grid); T* minval_buf = (T*)buf.ptr(0); T* maxval_buf = (T*)buf.ptr(1); min_max_kernel<256, T, Mask8U><<>>(src, Mask8U(mask), minval_buf, maxval_buf); cudaSafeCall(cudaThreadSynchronize()); T minval_, maxval_; cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost)); cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost)); *minval = minval_; *maxval = maxval_; } template void min_max_mask_caller(const DevMem2D, const PtrStep, double*, double*, PtrStep); template void min_max_mask_caller(const DevMem2D, const PtrStep, double*, double*, PtrStep); template void min_max_mask_caller(const DevMem2D, const PtrStep, double*, double*, PtrStep); template void min_max_mask_caller(const DevMem2D, const PtrStep, double*, double*, PtrStep); template void min_max_mask_caller(const DevMem2D, const PtrStep, double*, double*, PtrStep); template void min_max_mask_caller(const DevMem2D, const PtrStep, double*, double*, PtrStep); template void min_max_mask_caller(const DevMem2D, const PtrStep, double*, double*, PtrStep); template void min_max_caller(const DevMem2D src, double* minval, double* maxval, PtrStep buf) { dim3 threads, grid; estimate_thread_cfg(src.cols, src.rows, threads, grid); set_kernel_consts(src.cols, src.rows, threads, grid); T* minval_buf = (T*)buf.ptr(0); T* maxval_buf = (T*)buf.ptr(1); min_max_kernel<256, T, MaskTrue><<>>(src, MaskTrue(), minval_buf, maxval_buf); cudaSafeCall(cudaThreadSynchronize()); T minval_, maxval_; cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost)); cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost)); *minval = minval_; *maxval = maxval_; } template void min_max_caller(const DevMem2D, double*, double*, PtrStep); template void min_max_caller(const DevMem2D, double*, double*, PtrStep); template void min_max_caller(const DevMem2D, double*, double*, PtrStep); template void min_max_caller(const DevMem2D, double*, double*, PtrStep); template void min_max_caller(const DevMem2D, double*, double*, PtrStep); template void min_max_caller(const DevMem2D, double*,double*, PtrStep); template void min_max_caller(const DevMem2D, double*, double*, PtrStep); template __global__ void min_max_pass2_kernel(T* minval, T* maxval, int size) { typedef typename MinMaxTypeTraits::best_type best_type; __shared__ best_type sminval[nthreads]; __shared__ best_type smaxval[nthreads]; uint tid = threadIdx.y * blockDim.x + threadIdx.x; uint idx = min(tid, gridDim.x * gridDim.y - 1); sminval[tid] = minval[idx]; smaxval[tid] = maxval[idx]; __syncthreads(); find_min_max_in_smem(sminval, smaxval, tid); if (tid == 0) { minval[0] = (T)sminval[0]; maxval[0] = (T)smaxval[0]; } } template void min_max_mask_multipass_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval, PtrStep buf) { dim3 threads, grid; estimate_thread_cfg(src.cols, src.rows, threads, grid); set_kernel_consts(src.cols, src.rows, threads, grid); T* minval_buf = (T*)buf.ptr(0); T* maxval_buf = (T*)buf.ptr(1); min_max_kernel<256, T, Mask8U><<>>(src, Mask8U(mask), minval_buf, maxval_buf); min_max_pass2_kernel<256, T><<<1, 256>>>(minval_buf, maxval_buf, grid.x * grid.y); cudaSafeCall(cudaThreadSynchronize()); T minval_, maxval_; cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost)); cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost)); *minval = minval_; *maxval = maxval_; } template void min_max_mask_multipass_caller(const DevMem2D, const PtrStep, double*, double*, PtrStep); template void min_max_mask_multipass_caller(const DevMem2D, const PtrStep, double*, double*, PtrStep); template void min_max_mask_multipass_caller(const DevMem2D, const PtrStep, double*, double*, PtrStep); template void min_max_mask_multipass_caller(const DevMem2D, const PtrStep, double*, double*, PtrStep); template void min_max_mask_multipass_caller(const DevMem2D, const PtrStep, double*, double*, PtrStep); template void min_max_mask_multipass_caller(const DevMem2D, const PtrStep, double*, double*, PtrStep); template void min_max_multipass_caller(const DevMem2D src, double* minval, double* maxval, PtrStep buf) { dim3 threads, grid; estimate_thread_cfg(src.cols, src.rows, threads, grid); set_kernel_consts(src.cols, src.rows, threads, grid); T* minval_buf = (T*)buf.ptr(0); T* maxval_buf = (T*)buf.ptr(1); min_max_kernel<256, T, MaskTrue><<>>(src, MaskTrue(), minval_buf, maxval_buf); min_max_pass2_kernel<256, T><<<1, 256>>>(minval_buf, maxval_buf, grid.x * grid.y); cudaSafeCall(cudaThreadSynchronize()); T minval_, maxval_; cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost)); cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost)); *minval = minval_; *maxval = maxval_; } template void min_max_multipass_caller(const DevMem2D, double*, double*, PtrStep); template void min_max_multipass_caller(const DevMem2D, double*, double*, PtrStep); template void min_max_multipass_caller(const DevMem2D, double*, double*, PtrStep); template void min_max_multipass_caller(const DevMem2D, double*, double*, PtrStep); template void min_max_multipass_caller(const DevMem2D, double*, double*, PtrStep); template void min_max_multipass_caller(const DevMem2D, double*, double*, PtrStep); } // namespace minmax /////////////////////////////////////////////////////////////////////////////// // minMaxLoc namespace minmaxloc { __constant__ int ctwidth; __constant__ int ctheight; // Global counter of blocks finished its work __device__ uint blocks_finished = 0; // Estimates good thread configuration // - threads variable satisfies to threads.x * threads.y == 256 void estimate_thread_cfg(int cols, int rows, dim3& threads, dim3& grid) { threads = dim3(32, 8); grid = dim3(divUp(cols, threads.x * 8), divUp(rows, threads.y * 32)); grid.x = min(grid.x, threads.x); grid.y = min(grid.y, threads.y); } // Returns required buffer sizes void get_buf_size_required(int cols, int rows, int elem_size, int& b1cols, int& b1rows, int& b2cols, int& b2rows) { dim3 threads, grid; estimate_thread_cfg(cols, rows, threads, grid); b1cols = grid.x * grid.y * elem_size; // For values b1rows = 2; b2cols = grid.x * grid.y * sizeof(int); // For locations b2rows = 2; } // Estimates device constants which are used in the kernels using specified thread configuration void set_kernel_consts(int cols, int rows, const dim3& threads, const dim3& grid) { int twidth = divUp(divUp(cols, grid.x), threads.x); int theight = divUp(divUp(rows, grid.y), threads.y); cudaSafeCall(cudaMemcpyToSymbol(ctwidth, &twidth, sizeof(ctwidth))); cudaSafeCall(cudaMemcpyToSymbol(ctheight, &theight, sizeof(ctheight))); } template __device__ void merge(uint tid, uint offset, volatile T* minval, volatile T* maxval, volatile uint* minloc, volatile uint* maxloc) { T val = minval[tid + offset]; if (val < minval[tid]) { minval[tid] = val; minloc[tid] = minloc[tid + offset]; } val = maxval[tid + offset]; if (val > maxval[tid]) { maxval[tid] = val; maxloc[tid] = maxloc[tid + offset]; } } template __device__ void find_min_max_loc_in_smem(volatile T* minval, volatile T* maxval, volatile uint* minloc, volatile uint* maxloc, const uint tid) { if (size >= 512) { if (tid < 256) { merge(tid, 256, minval, maxval, minloc, maxloc); } __syncthreads(); } if (size >= 256) { if (tid < 128) { merge(tid, 128, minval, maxval, minloc, maxloc); } __syncthreads(); } if (size >= 128) { if (tid < 64) { merge(tid, 64, minval, maxval, minloc, maxloc); } __syncthreads(); } if (tid < 32) { if (size >= 64) merge(tid, 32, minval, maxval, minloc, maxloc); if (size >= 32) merge(tid, 16, minval, maxval, minloc, maxloc); if (size >= 16) merge(tid, 8, minval, maxval, minloc, maxloc); if (size >= 8) merge(tid, 4, minval, maxval, minloc, maxloc); if (size >= 4) merge(tid, 2, minval, maxval, minloc, maxloc); if (size >= 2) merge(tid, 1, minval, maxval, minloc, maxloc); } } template __global__ void min_max_loc_kernel(const DevMem2D src, Mask mask, T* minval, T* maxval, uint* minloc, uint* maxloc) { typedef typename MinMaxTypeTraits::best_type best_type; __shared__ best_type sminval[nthreads]; __shared__ best_type smaxval[nthreads]; __shared__ uint sminloc[nthreads]; __shared__ uint smaxloc[nthreads]; uint x0 = blockIdx.x * blockDim.x * ctwidth + threadIdx.x; uint y0 = blockIdx.y * blockDim.y * ctheight + threadIdx.y; uint tid = threadIdx.y * blockDim.x + threadIdx.x; T mymin = numeric_limits_gpu::max(); T mymax = numeric_limits_gpu::is_signed ? -numeric_limits_gpu::max() : numeric_limits_gpu::min(); uint myminloc = 0; uint mymaxloc = 0; uint y_end = min(y0 + (ctheight - 1) * blockDim.y + 1, src.rows); uint x_end = min(x0 + (ctwidth - 1) * blockDim.x + 1, src.cols); for (uint y = y0; y < y_end; y += blockDim.y) { const T* ptr = (const T*)src.ptr(y); for (uint x = x0; x < x_end; x += blockDim.x) { if (mask(y, x)) { T val = ptr[x]; if (val <= mymin) { mymin = val; myminloc = y * src.cols + x; } if (val >= mymax) { mymax = val; mymaxloc = y * src.cols + x; } } } } sminval[tid] = mymin; smaxval[tid] = mymax; sminloc[tid] = myminloc; smaxloc[tid] = mymaxloc; __syncthreads(); find_min_max_loc_in_smem(sminval, smaxval, sminloc, smaxloc, tid); #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110 __shared__ bool is_last; if (tid == 0) { minval[blockIdx.y * gridDim.x + blockIdx.x] = (T)sminval[0]; maxval[blockIdx.y * gridDim.x + blockIdx.x] = (T)smaxval[0]; minloc[blockIdx.y * gridDim.x + blockIdx.x] = sminloc[0]; maxloc[blockIdx.y * gridDim.x + blockIdx.x] = smaxloc[0]; __threadfence(); uint ticket = atomicInc(&blocks_finished, gridDim.x * gridDim.y); is_last = ticket == gridDim.x * gridDim.y - 1; } __syncthreads(); if (is_last) { uint idx = min(tid, gridDim.x * gridDim.y - 1); sminval[tid] = minval[idx]; smaxval[tid] = maxval[idx]; sminloc[tid] = minloc[idx]; smaxloc[tid] = maxloc[idx]; __syncthreads(); find_min_max_loc_in_smem(sminval, smaxval, sminloc, smaxloc, tid); if (tid == 0) { minval[0] = (T)sminval[0]; maxval[0] = (T)smaxval[0]; minloc[0] = sminloc[0]; maxloc[0] = smaxloc[0]; blocks_finished = 0; } } #else if (tid == 0) { minval[blockIdx.y * gridDim.x + blockIdx.x] = (T)sminval[0]; maxval[blockIdx.y * gridDim.x + blockIdx.x] = (T)smaxval[0]; minloc[blockIdx.y * gridDim.x + blockIdx.x] = sminloc[0]; maxloc[blockIdx.y * gridDim.x + blockIdx.x] = smaxloc[0]; } #endif } template void min_max_loc_mask_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval, int minloc[2], int maxloc[2], PtrStep valbuf, PtrStep locbuf) { dim3 threads, grid; estimate_thread_cfg(src.cols, src.rows, threads, grid); set_kernel_consts(src.cols, src.rows, threads, grid); T* minval_buf = (T*)valbuf.ptr(0); T* maxval_buf = (T*)valbuf.ptr(1); uint* minloc_buf = (uint*)locbuf.ptr(0); uint* maxloc_buf = (uint*)locbuf.ptr(1); min_max_loc_kernel<256, T, Mask8U><<>>(src, Mask8U(mask), minval_buf, maxval_buf, minloc_buf, maxloc_buf); cudaSafeCall(cudaThreadSynchronize()); T minval_, maxval_; cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost)); cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost)); *minval = minval_; *maxval = maxval_; uint minloc_, maxloc_; cudaSafeCall(cudaMemcpy(&minloc_, minloc_buf, sizeof(int), cudaMemcpyDeviceToHost)); cudaSafeCall(cudaMemcpy(&maxloc_, maxloc_buf, sizeof(int), cudaMemcpyDeviceToHost)); minloc[1] = minloc_ / src.cols; minloc[0] = minloc_ - minloc[1] * src.cols; maxloc[1] = maxloc_ / src.cols; maxloc[0] = maxloc_ - maxloc[1] * src.cols; } template void min_max_loc_mask_caller(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_mask_caller(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_mask_caller(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_mask_caller(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_mask_caller(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_mask_caller(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_mask_caller(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_caller(const DevMem2D src, double* minval, double* maxval, int minloc[2], int maxloc[2], PtrStep valbuf, PtrStep locbuf) { dim3 threads, grid; estimate_thread_cfg(src.cols, src.rows, threads, grid); set_kernel_consts(src.cols, src.rows, threads, grid); T* minval_buf = (T*)valbuf.ptr(0); T* maxval_buf = (T*)valbuf.ptr(1); uint* minloc_buf = (uint*)locbuf.ptr(0); uint* maxloc_buf = (uint*)locbuf.ptr(1); min_max_loc_kernel<256, T, MaskTrue><<>>(src, MaskTrue(), minval_buf, maxval_buf, minloc_buf, maxloc_buf); cudaSafeCall(cudaThreadSynchronize()); T minval_, maxval_; cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost)); cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost)); *minval = minval_; *maxval = maxval_; uint minloc_, maxloc_; cudaSafeCall(cudaMemcpy(&minloc_, minloc_buf, sizeof(int), cudaMemcpyDeviceToHost)); cudaSafeCall(cudaMemcpy(&maxloc_, maxloc_buf, sizeof(int), cudaMemcpyDeviceToHost)); minloc[1] = minloc_ / src.cols; minloc[0] = minloc_ - minloc[1] * src.cols; maxloc[1] = maxloc_ / src.cols; maxloc[0] = maxloc_ - maxloc[1] * src.cols; } template void min_max_loc_caller(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_caller(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_caller(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_caller(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_caller(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_caller(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_caller(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); // This kernel will be used only when compute capability is 1.0 template __global__ void min_max_loc_pass2_kernel(T* minval, T* maxval, uint* minloc, uint* maxloc, int size) { typedef typename MinMaxTypeTraits::best_type best_type; __shared__ best_type sminval[nthreads]; __shared__ best_type smaxval[nthreads]; __shared__ uint sminloc[nthreads]; __shared__ uint smaxloc[nthreads]; uint tid = threadIdx.y * blockDim.x + threadIdx.x; uint idx = min(tid, gridDim.x * gridDim.y - 1); sminval[tid] = minval[idx]; smaxval[tid] = maxval[idx]; sminloc[tid] = minloc[idx]; smaxloc[tid] = maxloc[idx]; __syncthreads(); find_min_max_loc_in_smem(sminval, smaxval, sminloc, smaxloc, tid); if (tid == 0) { minval[0] = (T)sminval[0]; maxval[0] = (T)smaxval[0]; minloc[0] = sminloc[0]; maxloc[0] = smaxloc[0]; } } template void min_max_loc_mask_multipass_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval, int minloc[2], int maxloc[2], PtrStep valbuf, PtrStep locbuf) { dim3 threads, grid; estimate_thread_cfg(src.cols, src.rows, threads, grid); set_kernel_consts(src.cols, src.rows, threads, grid); T* minval_buf = (T*)valbuf.ptr(0); T* maxval_buf = (T*)valbuf.ptr(1); uint* minloc_buf = (uint*)locbuf.ptr(0); uint* maxloc_buf = (uint*)locbuf.ptr(1); min_max_loc_kernel<256, T, Mask8U><<>>(src, Mask8U(mask), minval_buf, maxval_buf, minloc_buf, maxloc_buf); min_max_loc_pass2_kernel<256, T><<<1, 256>>>(minval_buf, maxval_buf, minloc_buf, maxloc_buf, grid.x * grid.y); cudaSafeCall(cudaThreadSynchronize()); T minval_, maxval_; cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost)); cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost)); *minval = minval_; *maxval = maxval_; uint minloc_, maxloc_; cudaSafeCall(cudaMemcpy(&minloc_, minloc_buf, sizeof(int), cudaMemcpyDeviceToHost)); cudaSafeCall(cudaMemcpy(&maxloc_, maxloc_buf, sizeof(int), cudaMemcpyDeviceToHost)); minloc[1] = minloc_ / src.cols; minloc[0] = minloc_ - minloc[1] * src.cols; maxloc[1] = maxloc_ / src.cols; maxloc[0] = maxloc_ - maxloc[1] * src.cols; } template void min_max_loc_mask_multipass_caller(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_mask_multipass_caller(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_mask_multipass_caller(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_mask_multipass_caller(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_mask_multipass_caller(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_mask_multipass_caller(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_multipass_caller(const DevMem2D src, double* minval, double* maxval, int minloc[2], int maxloc[2], PtrStep valbuf, PtrStep locbuf) { dim3 threads, grid; estimate_thread_cfg(src.cols, src.rows, threads, grid); set_kernel_consts(src.cols, src.rows, threads, grid); T* minval_buf = (T*)valbuf.ptr(0); T* maxval_buf = (T*)valbuf.ptr(1); uint* minloc_buf = (uint*)locbuf.ptr(0); uint* maxloc_buf = (uint*)locbuf.ptr(1); min_max_loc_kernel<256, T, MaskTrue><<>>(src, MaskTrue(), minval_buf, maxval_buf, minloc_buf, maxloc_buf); min_max_loc_pass2_kernel<256, T><<<1, 256>>>(minval_buf, maxval_buf, minloc_buf, maxloc_buf, grid.x * grid.y); cudaSafeCall(cudaThreadSynchronize()); T minval_, maxval_; cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost)); cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost)); *minval = minval_; *maxval = maxval_; uint minloc_, maxloc_; cudaSafeCall(cudaMemcpy(&minloc_, minloc_buf, sizeof(int), cudaMemcpyDeviceToHost)); cudaSafeCall(cudaMemcpy(&maxloc_, maxloc_buf, sizeof(int), cudaMemcpyDeviceToHost)); minloc[1] = minloc_ / src.cols; minloc[0] = minloc_ - minloc[1] * src.cols; maxloc[1] = maxloc_ / src.cols; maxloc[0] = maxloc_ - maxloc[1] * src.cols; } template void min_max_loc_multipass_caller(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_multipass_caller(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_multipass_caller(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_multipass_caller(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_multipass_caller(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); template void min_max_loc_multipass_caller(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); } // namespace minmaxloc ////////////////////////////////////////////////////////////////////////////////////////////////////////// // countNonZero namespace countnonzero { __constant__ int ctwidth; __constant__ int ctheight; __device__ uint blocks_finished = 0; void estimate_thread_cfg(int cols, int rows, dim3& threads, dim3& grid) { threads = dim3(32, 8); grid = dim3(divUp(cols, threads.x * 8), divUp(rows, threads.y * 32)); grid.x = min(grid.x, threads.x); grid.y = min(grid.y, threads.y); } void get_buf_size_required(int cols, int rows, int& bufcols, int& bufrows) { dim3 threads, grid; estimate_thread_cfg(cols, rows, threads, grid); bufcols = grid.x * grid.y * sizeof(int); bufrows = 1; } void set_kernel_consts(int cols, int rows, const dim3& threads, const dim3& grid) { int twidth = divUp(divUp(cols, grid.x), threads.x); int theight = divUp(divUp(rows, grid.y), threads.y); cudaSafeCall(cudaMemcpyToSymbol(ctwidth, &twidth, sizeof(twidth))); cudaSafeCall(cudaMemcpyToSymbol(ctheight, &theight, sizeof(theight))); } template __global__ void count_non_zero_kernel(const DevMem2D src, volatile uint* count) { __shared__ uint scount[nthreads]; uint x0 = blockIdx.x * blockDim.x * ctwidth + threadIdx.x; uint y0 = blockIdx.y * blockDim.y * ctheight + threadIdx.y; uint tid = threadIdx.y * blockDim.x + threadIdx.x; uint cnt = 0; for (uint y = 0; y < ctheight && y0 + y * blockDim.y < src.rows; ++y) { const T* ptr = (const T*)src.ptr(y0 + y * blockDim.y); for (uint x = 0; x < ctwidth && x0 + x * blockDim.x < src.cols; ++x) cnt += ptr[x0 + x * blockDim.x] != 0; } scount[tid] = cnt; __syncthreads(); sum_in_smem(scount, tid); #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110 __shared__ bool is_last; if (tid == 0) { count[blockIdx.y * gridDim.x + blockIdx.x] = scount[0]; __threadfence(); uint ticket = atomicInc(&blocks_finished, gridDim.x * gridDim.y); is_last = ticket == gridDim.x * gridDim.y - 1; } __syncthreads(); if (is_last) { scount[tid] = tid < gridDim.x * gridDim.y ? count[tid] : 0; __syncthreads(); sum_in_smem(scount, tid); if (tid == 0) { count[0] = scount[0]; blocks_finished = 0; } } #else if (tid == 0) count[blockIdx.y * gridDim.x + blockIdx.x] = scount[0]; #endif } template int count_non_zero_caller(const DevMem2D src, PtrStep buf) { dim3 threads, grid; estimate_thread_cfg(src.cols, src.rows, threads, grid); set_kernel_consts(src.cols, src.rows, threads, grid); uint* count_buf = (uint*)buf.ptr(0); count_non_zero_kernel<256, T><<>>(src, count_buf); cudaSafeCall(cudaThreadSynchronize()); uint count; cudaSafeCall(cudaMemcpy(&count, count_buf, sizeof(int), cudaMemcpyDeviceToHost)); return count; } template int count_non_zero_caller(const DevMem2D, PtrStep); template int count_non_zero_caller(const DevMem2D, PtrStep); template int count_non_zero_caller(const DevMem2D, PtrStep); template int count_non_zero_caller(const DevMem2D, PtrStep); template int count_non_zero_caller(const DevMem2D, PtrStep); template int count_non_zero_caller(const DevMem2D, PtrStep); template int count_non_zero_caller(const DevMem2D, PtrStep); template __global__ void count_non_zero_pass2_kernel(uint* count, int size) { __shared__ uint scount[nthreads]; uint tid = threadIdx.y * blockDim.x + threadIdx.x; scount[tid] = tid < size ? count[tid] : 0; __syncthreads(); sum_in_smem(scount, tid); if (tid == 0) count[0] = scount[0]; } template int count_non_zero_multipass_caller(const DevMem2D src, PtrStep buf) { dim3 threads, grid; estimate_thread_cfg(src.cols, src.rows, threads, grid); set_kernel_consts(src.cols, src.rows, threads, grid); uint* count_buf = (uint*)buf.ptr(0); count_non_zero_kernel<256, T><<>>(src, count_buf); count_non_zero_pass2_kernel<256, T><<<1, 256>>>(count_buf, grid.x * grid.y); cudaSafeCall(cudaThreadSynchronize()); uint count; cudaSafeCall(cudaMemcpy(&count, count_buf, sizeof(int), cudaMemcpyDeviceToHost)); return count; } template int count_non_zero_multipass_caller(const DevMem2D, PtrStep); template int count_non_zero_multipass_caller(const DevMem2D, PtrStep); template int count_non_zero_multipass_caller(const DevMem2D, PtrStep); template int count_non_zero_multipass_caller(const DevMem2D, PtrStep); template int count_non_zero_multipass_caller(const DevMem2D, PtrStep); template int count_non_zero_multipass_caller(const DevMem2D, PtrStep); } // namespace countnonzero ////////////////////////////////////////////////////////////////////////////////////////////////////////// // transpose __global__ void transpose(const DevMem2Di src, PtrStepi dst) { __shared__ int s_mem[16 * 17]; int x = blockIdx.x * blockDim.x + threadIdx.x; int y = blockIdx.y * blockDim.y + threadIdx.y; int smem_idx = threadIdx.y * blockDim.x + threadIdx.x + threadIdx.y; if (y < src.rows && x < src.cols) { s_mem[smem_idx] = src.ptr(y)[x]; } __syncthreads(); smem_idx = threadIdx.x * blockDim.x + threadIdx.y + threadIdx.x; x = blockIdx.y * blockDim.x + threadIdx.x; y = blockIdx.x * blockDim.y + threadIdx.y; if (y < src.cols && x < src.rows) { dst.ptr(y)[x] = s_mem[smem_idx]; } } void transpose_gpu(const DevMem2Di& src, const DevMem2Di& dst) { dim3 threads(16, 16, 1); dim3 grid(divUp(src.cols, 16), divUp(src.rows, 16), 1); transpose<<>>(src, dst); cudaSafeCall( cudaThreadSynchronize() ); } ////////////////////////////////////////////////////////////////////////////////////////////////////////// // min/max struct MinOp { template __device__ T operator()(T a, T b) { return min(a, b); } __device__ float operator()(float a, float b) { return fmin(a, b); } __device__ double operator()(double a, double b) { return fmin(a, b); } }; struct MaxOp { template __device__ T operator()(T a, T b) { return max(a, b); } __device__ float operator()(float a, float b) { return fmax(a, b); } __device__ double operator()(double a, double b) { return fmax(a, b); } }; struct ScalarMinOp { double s; explicit ScalarMinOp(double s_) : s(s_) {} template __device__ T operator()(T a) { return saturate_cast(fmin((double)a, s)); } }; struct ScalarMaxOp { double s; explicit ScalarMaxOp(double s_) : s(s_) {} template __device__ T operator()(T a) { return saturate_cast(fmax((double)a, s)); } }; template void min_gpu(const DevMem2D_& src1, const DevMem2D_& src2, const DevMem2D_& dst, cudaStream_t stream) { MinOp op; transform(src1, src2, dst, op, stream); } template void min_gpu(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst, cudaStream_t stream); template void min_gpu(const DevMem2D_& src1, const DevMem2D_& src2, const DevMem2D_& dst, cudaStream_t stream); template void min_gpu(const DevMem2D_& src1, const DevMem2D_& src2, const DevMem2D_& dst, cudaStream_t stream); template void min_gpu(const DevMem2D_& src1, const DevMem2D_& src2, const DevMem2D_& dst, cudaStream_t stream); template void min_gpu(const DevMem2D_& src1, const DevMem2D_& src2, const DevMem2D_& dst, cudaStream_t stream); template void min_gpu(const DevMem2D_& src1, const DevMem2D_& src2, const DevMem2D_& dst, cudaStream_t stream); template void min_gpu(const DevMem2D_& src1, const DevMem2D_& src2, const DevMem2D_& dst, cudaStream_t stream); template void max_gpu(const DevMem2D_& src1, const DevMem2D_& src2, const DevMem2D_& dst, cudaStream_t stream) { MaxOp op; transform(src1, src2, dst, op, stream); } template void max_gpu(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst, cudaStream_t stream); template void max_gpu(const DevMem2D_& src1, const DevMem2D_& src2, const DevMem2D_& dst, cudaStream_t stream); template void max_gpu(const DevMem2D_& src1, const DevMem2D_& src2, const DevMem2D_& dst, cudaStream_t stream); template void max_gpu(const DevMem2D_& src1, const DevMem2D_& src2, const DevMem2D_& dst, cudaStream_t stream); template void max_gpu(const DevMem2D_& src1, const DevMem2D_& src2, const DevMem2D_& dst, cudaStream_t stream); template void max_gpu(const DevMem2D_& src1, const DevMem2D_& src2, const DevMem2D_& dst, cudaStream_t stream); template void max_gpu(const DevMem2D_& src1, const DevMem2D_& src2, const DevMem2D_& dst, cudaStream_t stream); template void min_gpu(const DevMem2D_& src1, double src2, const DevMem2D_& dst, cudaStream_t stream) { ScalarMinOp op(src2); transform(src1, dst, op, stream); } template void min_gpu(const DevMem2D& src1, double src2, const DevMem2D& dst, cudaStream_t stream); template void min_gpu(const DevMem2D_& src1, double src2, const DevMem2D_& dst, cudaStream_t stream); template void min_gpu(const DevMem2D_& src1, double src2, const DevMem2D_& dst, cudaStream_t stream); template void min_gpu(const DevMem2D_& src1, double src2, const DevMem2D_& dst, cudaStream_t stream); template void min_gpu(const DevMem2D_& src1, double src2, const DevMem2D_& dst, cudaStream_t stream); template void min_gpu(const DevMem2D_& src1, double src2, const DevMem2D_& dst, cudaStream_t stream); template void min_gpu(const DevMem2D_& src1, double src2, const DevMem2D_& dst, cudaStream_t stream); template void max_gpu(const DevMem2D_& src1, double src2, const DevMem2D_& dst, cudaStream_t stream) { ScalarMaxOp op(src2); transform(src1, dst, op, stream); } template void max_gpu(const DevMem2D& src1, double src2, const DevMem2D& dst, cudaStream_t stream); template void max_gpu(const DevMem2D_& src1, double src2, const DevMem2D_& dst, cudaStream_t stream); template void max_gpu(const DevMem2D_& src1, double src2, const DevMem2D_& dst, cudaStream_t stream); template void max_gpu(const DevMem2D_& src1, double src2, const DevMem2D_& dst, cudaStream_t stream); template void max_gpu(const DevMem2D_& src1, double src2, const DevMem2D_& dst, cudaStream_t stream); template void max_gpu(const DevMem2D_& src1, double src2, const DevMem2D_& dst, cudaStream_t stream); template void max_gpu(const DevMem2D_& src1, double src2, const DevMem2D_& dst, cudaStream_t stream); ////////////////////////////////////////////////////////////////////////////// // Sum namespace sum { template struct SumType {}; template <> struct SumType { typedef uint R; }; template <> struct SumType { typedef int R; }; template <> struct SumType { typedef uint R; }; template <> struct SumType { typedef int R; }; template <> struct SumType { typedef int R; }; template <> struct SumType { typedef float R; }; template <> struct SumType { typedef double R; }; template struct IdentityOp { static __device__ R call(R x) { return x; } }; template struct SqrOp { static __device__ R call(R x) { return x * x; } }; __constant__ int ctwidth; __constant__ int ctheight; __device__ uint blocks_finished = 0; const int threads_x = 32; const int threads_y = 8; void estimate_thread_cfg(int cols, int rows, dim3& threads, dim3& grid) { threads = dim3(threads_x, threads_y); grid = dim3(divUp(cols, threads.x * threads.y), divUp(rows, threads.y * threads.x)); grid.x = min(grid.x, threads.x); grid.y = min(grid.y, threads.y); } void get_buf_size_required(int cols, int rows, int cn, int& bufcols, int& bufrows) { dim3 threads, grid; estimate_thread_cfg(cols, rows, threads, grid); bufcols = grid.x * grid.y * sizeof(double) * cn; bufrows = 1; } void set_kernel_consts(int cols, int rows, const dim3& threads, const dim3& grid) { int twidth = divUp(divUp(cols, grid.x), threads.x); int theight = divUp(divUp(rows, grid.y), threads.y); cudaSafeCall(cudaMemcpyToSymbol(ctwidth, &twidth, sizeof(twidth))); cudaSafeCall(cudaMemcpyToSymbol(ctheight, &theight, sizeof(theight))); } template __global__ void sum_kernel(const DevMem2D src, R* result) { __shared__ R smem[nthreads]; const int x0 = blockIdx.x * blockDim.x * ctwidth + threadIdx.x; const int y0 = blockIdx.y * blockDim.y * ctheight + threadIdx.y; const int tid = threadIdx.y * blockDim.x + threadIdx.x; const int bid = blockIdx.y * gridDim.x + blockIdx.x; R sum = 0; for (int y = 0; y < ctheight && y0 + y * blockDim.y < src.rows; ++y) { const T* ptr = (const T*)src.ptr(y0 + y * blockDim.y); for (int x = 0; x < ctwidth && x0 + x * blockDim.x < src.cols; ++x) sum += Op::call(ptr[x0 + x * blockDim.x]); } smem[tid] = sum; __syncthreads(); sum_in_smem(smem, tid); #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110 __shared__ bool is_last; if (tid == 0) { result[bid] = smem[0]; __threadfence(); uint ticket = atomicInc(&blocks_finished, gridDim.x * gridDim.y); is_last = (ticket == gridDim.x * gridDim.y - 1); } __syncthreads(); if (is_last) { smem[tid] = tid < gridDim.x * gridDim.y ? result[tid] : 0; __syncthreads(); sum_in_smem(smem, tid); if (tid == 0) { result[0] = smem[0]; blocks_finished = 0; } } #else if (tid == 0) result[bid] = smem[0]; #endif } template __global__ void sum_pass2_kernel(R* result, int size) { __shared__ R smem[nthreads]; int tid = threadIdx.y * blockDim.x + threadIdx.x; smem[tid] = tid < size ? result[tid] : 0; __syncthreads(); sum_in_smem(smem, tid); if (tid == 0) result[0] = smem[0]; } template __global__ void sum_kernel_C2(const DevMem2D src, typename TypeVec::vec_t* result) { typedef typename TypeVec::vec_t SrcType; typedef typename TypeVec::vec_t DstType; __shared__ R smem[nthreads * 2]; const int x0 = blockIdx.x * blockDim.x * ctwidth + threadIdx.x; const int y0 = blockIdx.y * blockDim.y * ctheight + threadIdx.y; const int tid = threadIdx.y * blockDim.x + threadIdx.x; const int bid = blockIdx.y * gridDim.x + blockIdx.x; SrcType val; DstType sum = VecTraits::all(0); for (int y = 0; y < ctheight && y0 + y * blockDim.y < src.rows; ++y) { const SrcType* ptr = (const SrcType*)src.ptr(y0 + y * blockDim.y); for (int x = 0; x < ctwidth && x0 + x * blockDim.x < src.cols; ++x) { val = ptr[x0 + x * blockDim.x]; sum = sum + VecTraits::make(Op::call(val.x), Op::call(val.y)); } } smem[tid] = sum.x; smem[tid + nthreads] = sum.y; __syncthreads(); sum_in_smem(smem, tid); sum_in_smem(smem + nthreads, tid); #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110 __shared__ bool is_last; if (tid == 0) { DstType res; res.x = smem[0]; res.y = smem[nthreads]; result[bid] = res; __threadfence(); uint ticket = atomicInc(&blocks_finished, gridDim.x * gridDim.y); is_last = (ticket == gridDim.x * gridDim.y - 1); } __syncthreads(); if (is_last) { DstType res = tid < gridDim.x * gridDim.y ? result[tid] : VecTraits::all(0); smem[tid] = res.x; smem[tid + nthreads] = res.y; __syncthreads(); sum_in_smem(smem, tid); sum_in_smem(smem + nthreads, tid); if (tid == 0) { res.x = smem[0]; res.y = smem[nthreads]; result[0] = res; blocks_finished = 0; } } #else if (tid == 0) { DstType res; res.x = smem[0]; res.y = smem[nthreads]; result[bid] = res; } #endif } template __global__ void sum_pass2_kernel_C2(typename TypeVec::vec_t* result, int size) { typedef typename TypeVec::vec_t DstType; __shared__ R smem[nthreads * 2]; const int tid = threadIdx.y * blockDim.x + threadIdx.x; DstType res = tid < gridDim.x * gridDim.y ? result[tid] : VecTraits::all(0); smem[tid] = res.x; smem[tid + nthreads] = res.y; __syncthreads(); sum_in_smem(smem, tid); sum_in_smem(smem + nthreads, tid); if (tid == 0) { res.x = smem[0]; res.y = smem[nthreads]; result[0] = res; } } template __global__ void sum_kernel_C3(const DevMem2D src, typename TypeVec::vec_t* result) { typedef typename TypeVec::vec_t SrcType; typedef typename TypeVec::vec_t DstType; __shared__ R smem[nthreads * 3]; const int x0 = blockIdx.x * blockDim.x * ctwidth + threadIdx.x; const int y0 = blockIdx.y * blockDim.y * ctheight + threadIdx.y; const int tid = threadIdx.y * blockDim.x + threadIdx.x; const int bid = blockIdx.y * gridDim.x + blockIdx.x; SrcType val; DstType sum = VecTraits::all(0); for (int y = 0; y < ctheight && y0 + y * blockDim.y < src.rows; ++y) { const SrcType* ptr = (const SrcType*)src.ptr(y0 + y * blockDim.y); for (int x = 0; x < ctwidth && x0 + x * blockDim.x < src.cols; ++x) { val = ptr[x0 + x * blockDim.x]; sum = sum + VecTraits::make(Op::call(val.x), Op::call(val.y), Op::call(val.z)); } } smem[tid] = sum.x; smem[tid + nthreads] = sum.y; smem[tid + 2 * nthreads] = sum.z; __syncthreads(); sum_in_smem(smem, tid); sum_in_smem(smem + nthreads, tid); sum_in_smem(smem + 2 * nthreads, tid); #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110 __shared__ bool is_last; if (tid == 0) { DstType res; res.x = smem[0]; res.y = smem[nthreads]; res.z = smem[2 * nthreads]; result[bid] = res; __threadfence(); uint ticket = atomicInc(&blocks_finished, gridDim.x * gridDim.y); is_last = (ticket == gridDim.x * gridDim.y - 1); } __syncthreads(); if (is_last) { DstType res = tid < gridDim.x * gridDim.y ? result[tid] : VecTraits::all(0); smem[tid] = res.x; smem[tid + nthreads] = res.y; smem[tid + 2 * nthreads] = res.z; __syncthreads(); sum_in_smem(smem, tid); sum_in_smem(smem + nthreads, tid); sum_in_smem(smem + 2 * nthreads, tid); if (tid == 0) { res.x = smem[0]; res.y = smem[nthreads]; res.z = smem[2 * nthreads]; result[0] = res; blocks_finished = 0; } } #else if (tid == 0) { DstType res; res.x = smem[0]; res.y = smem[nthreads]; res.z = smem[2 * nthreads]; result[bid] = res; } #endif } template __global__ void sum_pass2_kernel_C3(typename TypeVec::vec_t* result, int size) { typedef typename TypeVec::vec_t DstType; __shared__ R smem[nthreads * 3]; const int tid = threadIdx.y * blockDim.x + threadIdx.x; DstType res = tid < gridDim.x * gridDim.y ? result[tid] : VecTraits::all(0); smem[tid] = res.x; smem[tid + nthreads] = res.y; smem[tid + 2 * nthreads] = res.z; __syncthreads(); sum_in_smem(smem, tid); sum_in_smem(smem + nthreads, tid); sum_in_smem(smem + 2 * nthreads, tid); if (tid == 0) { res.x = smem[0]; res.y = smem[nthreads]; res.z = smem[2 * nthreads]; result[0] = res; } } template __global__ void sum_kernel_C4(const DevMem2D src, typename TypeVec::vec_t* result) { typedef typename TypeVec::vec_t SrcType; typedef typename TypeVec::vec_t DstType; __shared__ R smem[nthreads * 4]; const int x0 = blockIdx.x * blockDim.x * ctwidth + threadIdx.x; const int y0 = blockIdx.y * blockDim.y * ctheight + threadIdx.y; const int tid = threadIdx.y * blockDim.x + threadIdx.x; const int bid = blockIdx.y * gridDim.x + blockIdx.x; SrcType val; DstType sum = VecTraits::all(0); for (int y = 0; y < ctheight && y0 + y * blockDim.y < src.rows; ++y) { const SrcType* ptr = (const SrcType*)src.ptr(y0 + y * blockDim.y); for (int x = 0; x < ctwidth && x0 + x * blockDim.x < src.cols; ++x) { val = ptr[x0 + x * blockDim.x]; sum = sum + VecTraits::make(Op::call(val.x), Op::call(val.y), Op::call(val.z), Op::call(val.w)); } } smem[tid] = sum.x; smem[tid + nthreads] = sum.y; smem[tid + 2 * nthreads] = sum.z; smem[tid + 3 * nthreads] = sum.w; __syncthreads(); sum_in_smem(smem, tid); sum_in_smem(smem + nthreads, tid); sum_in_smem(smem + 2 * nthreads, tid); sum_in_smem(smem + 3 * nthreads, tid); #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110 __shared__ bool is_last; if (tid == 0) { DstType res; res.x = smem[0]; res.y = smem[nthreads]; res.z = smem[2 * nthreads]; res.w = smem[3 * nthreads]; result[bid] = res; __threadfence(); uint ticket = atomicInc(&blocks_finished, gridDim.x * gridDim.y); is_last = (ticket == gridDim.x * gridDim.y - 1); } __syncthreads(); if (is_last) { DstType res = tid < gridDim.x * gridDim.y ? result[tid] : VecTraits::all(0); smem[tid] = res.x; smem[tid + nthreads] = res.y; smem[tid + 2 * nthreads] = res.z; smem[tid + 3 * nthreads] = res.w; __syncthreads(); sum_in_smem(smem, tid); sum_in_smem(smem + nthreads, tid); sum_in_smem(smem + 2 * nthreads, tid); sum_in_smem(smem + 3 * nthreads, tid); if (tid == 0) { res.x = smem[0]; res.y = smem[nthreads]; res.z = smem[2 * nthreads]; res.w = smem[3 * nthreads]; result[0] = res; blocks_finished = 0; } } #else if (tid == 0) { DstType res; res.x = smem[0]; res.y = smem[nthreads]; res.z = smem[2 * nthreads]; res.w = smem[3 * nthreads]; result[bid] = res; } #endif } template __global__ void sum_pass2_kernel_C4(typename TypeVec::vec_t* result, int size) { typedef typename TypeVec::vec_t DstType; __shared__ R smem[nthreads * 4]; const int tid = threadIdx.y * blockDim.x + threadIdx.x; DstType res = tid < gridDim.x * gridDim.y ? result[tid] : VecTraits::all(0); smem[tid] = res.x; smem[tid + nthreads] = res.y; smem[tid + 2 * nthreads] = res.z; smem[tid + 3 * nthreads] = res.z; __syncthreads(); sum_in_smem(smem, tid); sum_in_smem(smem + nthreads, tid); sum_in_smem(smem + 2 * nthreads, tid); sum_in_smem(smem + 3 * nthreads, tid); if (tid == 0) { res.x = smem[0]; res.y = smem[nthreads]; res.z = smem[2 * nthreads]; res.w = smem[3 * nthreads]; result[0] = res; } } } // namespace sum template void sum_multipass_caller(const DevMem2D src, PtrStep buf, double* sum, int cn) { using namespace sum; typedef typename SumType::R R; dim3 threads, grid; estimate_thread_cfg(src.cols, src.rows, threads, grid); set_kernel_consts(src.cols, src.rows, threads, grid); switch (cn) { case 1: sum_kernel, threads_x * threads_y><<>>( src, (typename TypeVec::vec_t*)buf.ptr(0)); sum_pass2_kernel<<<1, threads_x * threads_y>>>( (typename TypeVec::vec_t*)buf.ptr(0), grid.x * grid.y); case 2: sum_kernel_C2, threads_x * threads_y><<>>( src, (typename TypeVec::vec_t*)buf.ptr(0)); sum_pass2_kernel_C2<<<1, threads_x * threads_y>>>( (typename TypeVec::vec_t*)buf.ptr(0), grid.x * grid.y); case 3: sum_kernel_C3, threads_x * threads_y><<>>( src, (typename TypeVec::vec_t*)buf.ptr(0)); sum_pass2_kernel_C3<<<1, threads_x * threads_y>>>( (typename TypeVec::vec_t*)buf.ptr(0), grid.x * grid.y); case 4: sum_kernel_C4, threads_x * threads_y><<>>( src, (typename TypeVec::vec_t*)buf.ptr(0)); sum_pass2_kernel_C4<<<1, threads_x * threads_y>>>( (typename TypeVec::vec_t*)buf.ptr(0), grid.x * grid.y); } cudaSafeCall(cudaThreadSynchronize()); R result[4] = {0, 0, 0, 0}; cudaSafeCall(cudaMemcpy(&result, buf.ptr(0), sizeof(R) * cn, cudaMemcpyDeviceToHost)); sum[0] = result[0]; sum[1] = result[1]; sum[2] = result[2]; sum[3] = result[3]; } template void sum_multipass_caller(const DevMem2D, PtrStep, double*, int); template void sum_multipass_caller(const DevMem2D, PtrStep, double*, int); template void sum_multipass_caller(const DevMem2D, PtrStep, double*, int); template void sum_multipass_caller(const DevMem2D, PtrStep, double*, int); template void sum_multipass_caller(const DevMem2D, PtrStep, double*, int); template void sum_multipass_caller(const DevMem2D, PtrStep, double*, int); template void sum_caller(const DevMem2D src, PtrStep buf, double* sum, int cn) { using namespace sum; typedef typename SumType::R R; dim3 threads, grid; estimate_thread_cfg(src.cols, src.rows, threads, grid); set_kernel_consts(src.cols, src.rows, threads, grid); switch (cn) { case 1: sum_kernel, threads_x * threads_y><<>>( src, (typename TypeVec::vec_t*)buf.ptr(0)); break; case 2: sum_kernel_C2, threads_x * threads_y><<>>( src, (typename TypeVec::vec_t*)buf.ptr(0)); break; case 3: sum_kernel_C3, threads_x * threads_y><<>>( src, (typename TypeVec::vec_t*)buf.ptr(0)); break; case 4: sum_kernel_C4, threads_x * threads_y><<>>( src, (typename TypeVec::vec_t*)buf.ptr(0)); break; } cudaSafeCall(cudaThreadSynchronize()); R result[4] = {0, 0, 0, 0}; cudaSafeCall(cudaMemcpy(&result, buf.ptr(0), sizeof(R) * cn, cudaMemcpyDeviceToHost)); sum[0] = result[0]; sum[1] = result[1]; sum[2] = result[2]; sum[3] = result[3]; } template void sum_caller(const DevMem2D, PtrStep, double*, int); template void sum_caller(const DevMem2D, PtrStep, double*, int); template void sum_caller(const DevMem2D, PtrStep, double*, int); template void sum_caller(const DevMem2D, PtrStep, double*, int); template void sum_caller(const DevMem2D, PtrStep, double*, int); template void sum_caller(const DevMem2D, PtrStep, double*, int); template void sqsum_multipass_caller(const DevMem2D src, PtrStep buf, double* sum, int cn) { using namespace sum; typedef typename SumType::R R; dim3 threads, grid; estimate_thread_cfg(src.cols, src.rows, threads, grid); set_kernel_consts(src.cols, src.rows, threads, grid); switch (cn) { case 1: sum_kernel, threads_x * threads_y><<>>( src, (typename TypeVec::vec_t*)buf.ptr(0)); sum_pass2_kernel<<<1, threads_x * threads_y>>>( (typename TypeVec::vec_t*)buf.ptr(0), grid.x * grid.y); break; case 2: sum_kernel_C2, threads_x * threads_y><<>>( src, (typename TypeVec::vec_t*)buf.ptr(0)); sum_pass2_kernel_C2<<<1, threads_x * threads_y>>>( (typename TypeVec::vec_t*)buf.ptr(0), grid.x * grid.y); break; case 3: sum_kernel_C3, threads_x * threads_y><<>>( src, (typename TypeVec::vec_t*)buf.ptr(0)); sum_pass2_kernel_C3<<<1, threads_x * threads_y>>>( (typename TypeVec::vec_t*)buf.ptr(0), grid.x * grid.y); break; case 4: sum_kernel_C4, threads_x * threads_y><<>>( src, (typename TypeVec::vec_t*)buf.ptr(0)); sum_pass2_kernel_C4<<<1, threads_x * threads_y>>>( (typename TypeVec::vec_t*)buf.ptr(0), grid.x * grid.y); break; } cudaSafeCall(cudaThreadSynchronize()); R result[4] = {0, 0, 0, 0}; cudaSafeCall(cudaMemcpy(result, buf.ptr(0), sizeof(R) * cn, cudaMemcpyDeviceToHost)); sum[0] = result[0]; sum[1] = result[1]; sum[2] = result[2]; sum[3] = result[3]; } template void sqsum_multipass_caller(const DevMem2D, PtrStep, double*, int); template void sqsum_multipass_caller(const DevMem2D, PtrStep, double*, int); template void sqsum_multipass_caller(const DevMem2D, PtrStep, double*, int); template void sqsum_multipass_caller(const DevMem2D, PtrStep, double*, int); template void sqsum_multipass_caller(const DevMem2D, PtrStep, double*, int); template void sqsum_multipass_caller(const DevMem2D, PtrStep, double*, int); template void sqsum_caller(const DevMem2D src, PtrStep buf, double* sum, int cn) { using namespace sum; typedef typename SumType::R R; dim3 threads, grid; estimate_thread_cfg(src.cols, src.rows, threads, grid); set_kernel_consts(src.cols, src.rows, threads, grid); switch (cn) { case 1: sum_kernel, threads_x * threads_y><<>>( src, (typename TypeVec::vec_t*)buf.ptr(0)); break; case 2: sum_kernel_C2, threads_x * threads_y><<>>( src, (typename TypeVec::vec_t*)buf.ptr(0)); break; case 3: sum_kernel_C3, threads_x * threads_y><<>>( src, (typename TypeVec::vec_t*)buf.ptr(0)); break; case 4: sum_kernel_C4, threads_x * threads_y><<>>( src, (typename TypeVec::vec_t*)buf.ptr(0)); break; } cudaSafeCall(cudaThreadSynchronize()); R result[4] = {0, 0, 0, 0}; cudaSafeCall(cudaMemcpy(result, buf.ptr(0), sizeof(R) * cn, cudaMemcpyDeviceToHost)); sum[0] = result[0]; sum[1] = result[1]; sum[2] = result[2]; sum[3] = result[3]; } template void sqsum_caller(const DevMem2D, PtrStep, double*, int); template void sqsum_caller(const DevMem2D, PtrStep, double*, int); template void sqsum_caller(const DevMem2D, PtrStep, double*, int); template void sqsum_caller(const DevMem2D, PtrStep, double*, int); template void sqsum_caller(const DevMem2D, PtrStep, double*, int); template void sqsum_caller(const DevMem2D, PtrStep, double*, int); }}}