/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Niko Li, newlife20080214@gmail.com // Jia Haipeng, jiahaipeng95@gmail.com // Shengen Yan, yanshengen@gmail.com // Jiang Liyuan, jlyuan001.good@163.com // Rock Li, Rock.Li@amd.com // Zailong Wu, bullet@yeah.net // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other oclMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include using namespace cv; using namespace cv::ocl; namespace cv { namespace ocl { ////////////////////////////////OpenCL kernel strings///////////////////// extern const char *bitwise; extern const char *bitwiseM; extern const char *transpose_kernel; extern const char *arithm_nonzero; extern const char *arithm_sum; extern const char *arithm_2_mat; extern const char *arithm_sum_3; extern const char *arithm_minMax; extern const char *arithm_minMax_mask; extern const char *arithm_minMaxLoc; extern const char *arithm_minMaxLoc_mask; extern const char *arithm_LUT; extern const char *arithm_add; extern const char *arithm_add_scalar; extern const char *arithm_add_scalar_mask; extern const char *arithm_bitwise_not; extern const char *arithm_bitwise_and; extern const char *arithm_bitwise_and_mask; extern const char *arithm_bitwise_and_scalar; extern const char *arithm_bitwise_and_scalar_mask; extern const char *arithm_bitwise_or; extern const char *arithm_bitwise_or_mask; extern const char *arithm_bitwise_or_scalar; extern const char *arithm_bitwise_or_scalar_mask; extern const char *arithm_bitwise_xor; extern const char *arithm_bitwise_xor_mask; extern const char *arithm_bitwise_xor_scalar; extern const char *arithm_bitwise_xor_scalar_mask; extern const char *arithm_compare_eq; extern const char *arithm_compare_ne; extern const char *arithm_sub; extern const char *arithm_sub_scalar; extern const char *arithm_sub_scalar_mask; extern const char *arithm_mul; extern const char *arithm_div; extern const char *arithm_absdiff; extern const char *arithm_transpose; extern const char *arithm_flip; extern const char *arithm_flip_rc; extern const char *arithm_magnitude; extern const char *arithm_cartToPolar; extern const char *arithm_polarToCart; extern const char *arithm_exp; extern const char *arithm_log; extern const char *arithm_addWeighted; extern const char *arithm_phase; extern const char *arithm_pow; extern const char *arithm_magnitudeSqr; //extern const char * jhp_transpose_kernel; int64 kernelrealtotal = 0; int64 kernelalltotal = 0; int64 reducetotal = 0; int64 downloadtotal = 0; int64 alltotal = 0; } } ////////////////////////////////////////////////////////////////////////// //////////////////common///////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////// inline int divUp(int total, int grain) { return (total + grain - 1) / grain; } ////////////////////////////////////////////////////////////////////////////// /////////////////////// add subtract multiply divide ///////////////////////// ////////////////////////////////////////////////////////////////////////////// template void arithmetic_run(const oclMat &src1, const oclMat &src2, oclMat &dst, String kernelName, const char **kernelString, void *_scalar) { if(!src1.clCxt->supportsFeature(Context::CL_DOUBLE) && src1.type() == CV_64F) { CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); return; } dst.create(src1.size(), src1.type()); CV_Assert(src1.cols == src2.cols && src2.cols == dst.cols && src1.rows == src2.rows && src2.rows == dst.rows); CV_Assert(src1.type() == src2.type() && src1.type() == dst.type()); CV_Assert(src1.depth() != CV_8S); Context *clCxt = src1.clCxt; int channels = dst.oclchannels(); int depth = dst.depth(); int vector_lengths[4][7] = {{4, 0, 4, 4, 1, 1, 1}, {4, 0, 4, 4, 1, 1, 1}, {4, 0, 4, 4, 1, 1, 1}, {4, 0, 4, 4, 1, 1, 1} }; size_t vector_length = vector_lengths[channels - 1][depth]; int offset_cols = (dst.offset / dst.elemSize1()) & (vector_length - 1); int cols = divUp(dst.cols * channels + offset_cols, vector_length); size_t localThreads[3] = { 64, 4, 1 }; size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], divUp(dst.rows, localThreads[1]) *localThreads[1], 1 }; int dst_step1 = dst.cols * dst.elemSize(); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src2.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_step1 )); T scalar; if(_scalar != NULL) { double scalar1 = *((double *)_scalar); scalar = (T)scalar1; args.push_back( std::make_pair( sizeof(T), (void *)&scalar )); } openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, depth); } static void arithmetic_run(const oclMat &src1, const oclMat &src2, oclMat &dst, String kernelName, const char **kernelString) { arithmetic_run(src1, src2, dst, kernelName, kernelString, (void *)NULL); } static void arithmetic_run(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask, String kernelName, const char **kernelString) { if(!src1.clCxt->supportsFeature(Context::CL_DOUBLE) && src1.type() == CV_64F) { CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); return; } dst.create(src1.size(), src1.type()); CV_Assert(src1.cols == src2.cols && src2.cols == dst.cols && src1.rows == src2.rows && src2.rows == dst.rows && src1.rows == mask.rows && src1.cols == mask.cols); CV_Assert(src1.type() == src2.type() && src1.type() == dst.type()); CV_Assert(src1.depth() != CV_8S); CV_Assert(mask.type() == CV_8U); Context *clCxt = src1.clCxt; int channels = dst.oclchannels(); int depth = dst.depth(); int vector_lengths[4][7] = {{4, 4, 2, 2, 1, 1, 1}, {2, 2, 1, 1, 1, 1, 1}, {4, 4, 2, 2 , 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1} }; size_t vector_length = vector_lengths[channels - 1][depth]; int offset_cols = ((dst.offset % dst.step) / dst.elemSize()) & (vector_length - 1); int cols = divUp(dst.cols + offset_cols, vector_length); size_t localThreads[3] = { 64, 4, 1 }; size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], divUp(dst.rows, localThreads[1]) *localThreads[1], 1 }; int dst_step1 = dst.cols * dst.elemSize(); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src2.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&mask.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&mask.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&mask.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_step1 )); openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, channels, depth); } void cv::ocl::add(const oclMat &src1, const oclMat &src2, oclMat &dst) { arithmetic_run(src1, src2, dst, "arithm_add", &arithm_add); } void cv::ocl::add(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask) { arithmetic_run(src1, src2, dst, mask, "arithm_add_with_mask", &arithm_add); } void cv::ocl::subtract(const oclMat &src1, const oclMat &src2, oclMat &dst) { arithmetic_run(src1, src2, dst, "arithm_sub", &arithm_sub); } void cv::ocl::subtract(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask) { arithmetic_run(src1, src2, dst, mask, "arithm_sub_with_mask", &arithm_sub); } typedef void (*MulDivFunc)(const oclMat &src1, const oclMat &src2, oclMat &dst, String kernelName, const char **kernelString, void *scalar); void cv::ocl::multiply(const oclMat &src1, const oclMat &src2, oclMat &dst, double scalar) { if(src1.clCxt->supportsFeature(Context::CL_DOUBLE) && (src1.depth() == CV_64F)) arithmetic_run(src1, src2, dst, "arithm_mul", &arithm_mul, (void *)(&scalar)); else arithmetic_run(src1, src2, dst, "arithm_mul", &arithm_mul, (void *)(&scalar)); } void cv::ocl::divide(const oclMat &src1, const oclMat &src2, oclMat &dst, double scalar) { if(src1.clCxt->supportsFeature(Context::CL_DOUBLE)) arithmetic_run(src1, src2, dst, "arithm_div", &arithm_div, (void *)(&scalar)); else arithmetic_run(src1, src2, dst, "arithm_div", &arithm_div, (void *)(&scalar)); } template void arithmetic_scalar_run(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask, String kernelName, const char **kernelString, int isMatSubScalar) { if(!src1.clCxt->supportsFeature(Context::CL_DOUBLE) && src1.type() == CV_64F) { CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); return; } dst.create(src1.size(), src1.type()); CV_Assert(src1.cols == dst.cols && src1.rows == dst.rows && src1.type() == dst.type()); //CV_Assert(src1.depth() != CV_8S); if(mask.data) { CV_Assert(mask.type() == CV_8U && src1.rows == mask.rows && src1.cols == mask.cols); } Context *clCxt = src1.clCxt; int channels = dst.oclchannels(); int depth = dst.depth(); WT s[4] = { saturate_cast(src2.val[0]), saturate_cast(src2.val[1]), saturate_cast(src2.val[2]), saturate_cast(src2.val[3]) }; int vector_lengths[4][7] = {{4, 0, 2, 2, 1, 1, 1}, {2, 0, 1, 1, 1, 1, 1}, {4, 0, 2, 2 , 1, 1, 1}, {1, 0, 1, 1, 1, 1, 1} }; size_t vector_length = vector_lengths[channels - 1][depth]; int offset_cols = ((dst.offset % dst.step) / dst.elemSize()) & (vector_length - 1); int cols = divUp(dst.cols + offset_cols, vector_length); size_t localThreads[3] = { 64, 4, 1 }; size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], divUp(dst.rows, localThreads[1]) *localThreads[1], 1 }; int dst_step1 = dst.cols * dst.elemSize(); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src1.step )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src1.offset)); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dst.step )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dst.offset)); if(mask.data) { args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&mask.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&mask.step )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&mask.offset)); } args.push_back( std::make_pair( sizeof(CL_WT) , (void *)&s )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src1.rows )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dst_step1 )); if(isMatSubScalar != 0) { isMatSubScalar = isMatSubScalar > 0 ? 1 : 0; args.push_back( std::make_pair( sizeof(cl_int) , (void *)&isMatSubScalar)); } openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, channels, depth); } static void arithmetic_scalar_run(const oclMat &src, oclMat &dst, String kernelName, const char **kernelString, double scalar) { if(!src.clCxt->supportsFeature(Context::CL_DOUBLE) && src.type() == CV_64F) { CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); return; } dst.create(src.size(), src.type()); CV_Assert(src.cols == dst.cols && src.rows == dst.rows); CV_Assert(src.type() == dst.type()); CV_Assert(src.depth() != CV_8S); Context *clCxt = src.clCxt; int channels = dst.oclchannels(); int depth = dst.depth(); int vector_lengths[4][7] = {{4, 0, 4, 4, 1, 1, 1}, {4, 0, 4, 4, 1, 1, 1}, {4, 0, 4, 4 , 1, 1, 1}, {4, 0, 4, 4, 1, 1, 1} }; size_t vector_length = vector_lengths[channels - 1][depth]; int offset_cols = (dst.offset / dst.elemSize1()) & (vector_length - 1); int cols = divUp(dst.cols * channels + offset_cols, vector_length); size_t localThreads[3] = { 64, 4, 1 }; size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], divUp(dst.rows, localThreads[1]) *localThreads[1], 1 }; int dst_step1 = dst.cols * dst.elemSize(); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_step1 )); if(src.clCxt->supportsFeature(Context::CL_DOUBLE)) args.push_back( std::make_pair( sizeof(cl_double), (void *)&scalar )); else { float f_scalar = (float)scalar; args.push_back( std::make_pair( sizeof(cl_float), (void *)&f_scalar)); } openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, depth); } typedef void (*ArithmeticFuncS)(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask, String kernelName, const char **kernelString, int isMatSubScalar); static void arithmetic_scalar(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask, String kernelName, const char **kernelString, int isMatSubScalar) { static ArithmeticFuncS tab[8] = { arithmetic_scalar_run, arithmetic_scalar_run, arithmetic_scalar_run, arithmetic_scalar_run, arithmetic_scalar_run, arithmetic_scalar_run, arithmetic_scalar_run, 0 }; ArithmeticFuncS func = tab[src1.depth()]; if(func == 0) cv::ocl::error("Unsupported arithmetic operation", __FILE__, __LINE__); func(src1, src2, dst, mask, kernelName, kernelString, isMatSubScalar); } static void arithmetic_scalar(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask, String kernelName, const char **kernelString) { arithmetic_scalar(src1, src2, dst, mask, kernelName, kernelString, 0); } void cv::ocl::add(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask) { String kernelName = mask.data ? "arithm_s_add_with_mask" : "arithm_s_add"; const char **kernelString = mask.data ? &arithm_add_scalar_mask : &arithm_add_scalar; arithmetic_scalar( src1, src2, dst, mask, kernelName, kernelString); } void cv::ocl::subtract(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask) { String kernelName = mask.data ? "arithm_s_sub_with_mask" : "arithm_s_sub"; const char **kernelString = mask.data ? &arithm_sub_scalar_mask : &arithm_sub_scalar; arithmetic_scalar( src1, src2, dst, mask, kernelName, kernelString, 1); } void cv::ocl::subtract(const Scalar &src2, const oclMat &src1, oclMat &dst, const oclMat &mask) { String kernelName = mask.data ? "arithm_s_sub_with_mask" : "arithm_s_sub"; const char **kernelString = mask.data ? &arithm_sub_scalar_mask : &arithm_sub_scalar; arithmetic_scalar( src1, src2, dst, mask, kernelName, kernelString, -1); } void cv::ocl::divide(double scalar, const oclMat &src, oclMat &dst) { if(!src.clCxt->supportsFeature(Context::CL_DOUBLE)) { CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); return; } String kernelName = "arithm_s_div"; arithmetic_scalar_run(src, dst, kernelName, &arithm_div, scalar); } ////////////////////////////////////////////////////////////////////////////// ///////////////////////////////// Absdiff /////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// void cv::ocl::absdiff(const oclMat &src1, const oclMat &src2, oclMat &dst) { arithmetic_run(src1, src2, dst, "arithm_absdiff", &arithm_absdiff); } void cv::ocl::absdiff(const oclMat &src1, const Scalar &src2, oclMat &dst) { String kernelName = "arithm_s_absdiff"; oclMat mask; arithmetic_scalar( src1, src2, dst, mask, kernelName, &arithm_absdiff); } ////////////////////////////////////////////////////////////////////////////// ///////////////////////////////// compare /////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static void compare_run(const oclMat &src1, const oclMat &src2, oclMat &dst, String kernelName, const char **kernelString) { dst.create(src1.size(), CV_8UC1); CV_Assert(src1.oclchannels() == 1); CV_Assert(src1.type() == src2.type()); Context *clCxt = src1.clCxt; int depth = src1.depth(); int vector_lengths[7] = {4, 0, 4, 4, 4, 4, 4}; size_t vector_length = vector_lengths[depth]; int offset_cols = (dst.offset / dst.elemSize1()) & (vector_length - 1); int cols = divUp(dst.cols + offset_cols, vector_length); size_t localThreads[3] = { 64, 4, 1 }; size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], divUp(dst.rows, localThreads[1]) *localThreads[1], 1 }; int dst_step1 = dst.cols * dst.elemSize(); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src2.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_step1 )); openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, depth); } void cv::ocl::compare(const oclMat &src1, const oclMat &src2, oclMat &dst , int cmpOp) { if(!src1.clCxt->supportsFeature(Context::CL_DOUBLE) && src1.type() == CV_64F) { std::cout << "Selected device do not support double" << std::endl; return; } String kernelName; const char **kernelString = NULL; switch( cmpOp ) { case CMP_EQ: kernelName = "arithm_compare_eq"; kernelString = &arithm_compare_eq; break; case CMP_GT: kernelName = "arithm_compare_gt"; kernelString = &arithm_compare_eq; break; case CMP_GE: kernelName = "arithm_compare_ge"; kernelString = &arithm_compare_eq; break; case CMP_NE: kernelName = "arithm_compare_ne"; kernelString = &arithm_compare_ne; break; case CMP_LT: kernelName = "arithm_compare_lt"; kernelString = &arithm_compare_ne; break; case CMP_LE: kernelName = "arithm_compare_le"; kernelString = &arithm_compare_ne; break; default: CV_Error(CV_StsBadArg, "Unknown comparison method"); } compare_run(src1, src2, dst, kernelName, kernelString); } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////// sum ////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// //type = 0 sum,type = 1 absSum,type = 2 sqrSum static void arithmetic_sum_buffer_run(const oclMat &src, cl_mem &dst, int vlen , int groupnum, int type = 0) { std::vector > args; int all_cols = src.step / (vlen * src.elemSize1()); int pre_cols = (src.offset % src.step) / (vlen * src.elemSize1()); int sec_cols = all_cols - (src.offset % src.step + src.cols * src.elemSize() - 1) / (vlen * src.elemSize1()) - 1; int invalid_cols = pre_cols + sec_cols; int cols = all_cols - invalid_cols , elemnum = cols * src.rows;; int offset = src.offset / (vlen * src.elemSize1()); int repeat_s = src.offset / src.elemSize1() - offset * vlen; int repeat_e = (offset + cols) * vlen - src.offset / src.elemSize1() - src.cols * src.oclchannels(); char build_options[512]; CV_Assert(type == 0 || type == 1 || type == 2); sprintf(build_options, "-D DEPTH_%d -D REPEAT_S%d -D REPEAT_E%d -D FUNC_TYPE_%d", src.depth(), repeat_s, repeat_e, type); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&invalid_cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&offset)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&elemnum)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&groupnum)); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data)); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst )); size_t gt[3] = {groupnum * 256, 1, 1}, lt[3] = {256, 1, 1}; if(src.oclchannels() != 3) openCLExecuteKernel(src.clCxt, &arithm_sum, "arithm_op_sum", gt, lt, args, -1, -1, build_options); else openCLExecuteKernel(src.clCxt, &arithm_sum_3, "arithm_op_sum_3", gt, lt, args, -1, -1, build_options); } template Scalar arithmetic_sum(const oclMat &src, int type = 0) { size_t groupnum = src.clCxt->computeUnits(); CV_Assert(groupnum != 0); int vlen = src.oclchannels() == 3 ? 12 : 8, dbsize = groupnum * vlen; Context *clCxt = src.clCxt; T *p = new T[dbsize]; cl_mem dstBuffer = openCLCreateBuffer(clCxt, CL_MEM_WRITE_ONLY, dbsize * sizeof(T)); Scalar s; s.val[0] = 0.0; s.val[1] = 0.0; s.val[2] = 0.0; s.val[3] = 0.0; arithmetic_sum_buffer_run(src, dstBuffer, vlen, groupnum, type); memset(p, 0, dbsize * sizeof(T)); openCLReadBuffer(clCxt, dstBuffer, (void *)p, dbsize * sizeof(T)); for(int i = 0; i < dbsize;) { for(int j = 0; j < src.oclchannels(); j++, i++) s.val[j] += p[i]; } delete[] p; openCLFree(dstBuffer); return s; } typedef Scalar (*sumFunc)(const oclMat &src, int type); Scalar cv::ocl::sum(const oclMat &src) { if(!src.clCxt->supportsFeature(Context::CL_DOUBLE) && src.depth() == CV_64F) { CV_Error(CV_GpuNotSupported, "select device don't support double"); } static sumFunc functab[2] = { arithmetic_sum, arithmetic_sum }; sumFunc func; func = functab[(int)src.clCxt->supportsFeature(Context::CL_DOUBLE)]; return func(src, 0); } Scalar cv::ocl::absSum(const oclMat &src) { if(!src.clCxt->supportsFeature(Context::CL_DOUBLE) && src.depth() == CV_64F) { CV_Error(CV_GpuNotSupported, "select device don't support double"); } static sumFunc functab[2] = { arithmetic_sum, arithmetic_sum }; sumFunc func; func = functab[(int)src.clCxt->supportsFeature(Context::CL_DOUBLE)]; return func(src, 1); } Scalar cv::ocl::sqrSum(const oclMat &src) { if(!src.clCxt->supportsFeature(Context::CL_DOUBLE) && src.depth() == CV_64F) { CV_Error(CV_GpuNotSupported, "select device don't support double"); } static sumFunc functab[2] = { arithmetic_sum, arithmetic_sum }; sumFunc func; func = functab[(int)src.clCxt->supportsFeature(Context::CL_DOUBLE)]; return func(src, 2); } ////////////////////////////////////////////////////////////////////////////// //////////////////////////////// meanStdDev ////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// void cv::ocl::meanStdDev(const oclMat &src, Scalar &mean, Scalar &stddev) { CV_Assert(src.depth() <= CV_32S); cv::Size sz(1, 1); int channels = src.oclchannels(); Mat m1(sz, CV_MAKETYPE(CV_32S, channels), cv::Scalar::all(0)), m2(sz, CV_MAKETYPE(CV_32S, channels), cv::Scalar::all(0)); oclMat dst1(m1), dst2(m2); //arithmetic_sum_run(src, dst1,"arithm_op_sum"); //arithmetic_sum_run(src, dst2,"arithm_op_squares_sum"); m1 = (Mat)dst1; m2 = (Mat)dst2; int i = 0, *p = (int *)m1.data, *q = (int *)m2.data; for(; i < channels; i++) { mean.val[i] = (double)p[i] / (src.cols * src.rows); stddev.val[i] = std::sqrt(std::max((double) q[i] / (src.cols * src.rows) - mean.val[i] * mean.val[i] , 0.)); } } ////////////////////////////////////////////////////////////////////////////// //////////////////////////////////// minMax ///////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static void arithmetic_minMax_run(const oclMat &src, const oclMat &mask, cl_mem &dst, int vlen , int groupnum, String kernelName) { std::vector > args; int all_cols = src.step / (vlen * src.elemSize1()); int pre_cols = (src.offset % src.step) / (vlen * src.elemSize1()); int sec_cols = all_cols - (src.offset % src.step + src.cols * src.elemSize() - 1) / (vlen * src.elemSize1()) - 1; int invalid_cols = pre_cols + sec_cols; int cols = all_cols - invalid_cols , elemnum = cols * src.rows;; int offset = src.offset / (vlen * src.elemSize1()); int repeat_s = src.offset / src.elemSize1() - offset * vlen; int repeat_e = (offset + cols) * vlen - src.offset / src.elemSize1() - src.cols * src.oclchannels(); char build_options[50]; sprintf(build_options, "-D DEPTH_%d -D REPEAT_S%d -D REPEAT_E%d", src.depth(), repeat_s, repeat_e); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&invalid_cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&offset)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&elemnum)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&groupnum)); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data)); if(!mask.empty()) { int mall_cols = mask.step / (vlen * mask.elemSize1()); int mpre_cols = (mask.offset % mask.step) / (vlen * mask.elemSize1()); int msec_cols = mall_cols - (mask.offset % mask.step + mask.cols * mask.elemSize() - 1) / (vlen * mask.elemSize1()) - 1; int minvalid_cols = mpre_cols + msec_cols; int moffset = mask.offset / (vlen * mask.elemSize1()); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&minvalid_cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&moffset )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&mask.data )); } args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst )); size_t gt[3] = {groupnum * 256, 1, 1}, lt[3] = {256, 1, 1}; openCLExecuteKernel(src.clCxt, &arithm_minMax, kernelName, gt, lt, args, -1, -1, build_options); } static void arithmetic_minMax_mask_run(const oclMat &src, const oclMat &mask, cl_mem &dst, int vlen, int groupnum, String kernelName) { std::vector > args; size_t gt[3] = {groupnum * 256, 1, 1}, lt[3] = {256, 1, 1}; char build_options[50]; if(src.oclchannels() == 1) { int cols = (src.cols - 1) / vlen + 1; int invalid_cols = src.step / (vlen * src.elemSize1()) - cols; int offset = src.offset / src.elemSize1(); int repeat_me = vlen - (mask.cols % vlen == 0 ? vlen : mask.cols % vlen); int minvalid_cols = mask.step / (vlen * mask.elemSize1()) - cols; int moffset = mask.offset / mask.elemSize1(); int elemnum = cols * src.rows; sprintf(build_options, "-D DEPTH_%d -D REPEAT_E%d", src.depth(), repeat_me); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&invalid_cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&offset)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&elemnum)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&groupnum)); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&minvalid_cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&moffset )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&mask.data )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst )); // printf("elemnum:%d,cols:%d,invalid_cols:%d,offset:%d,minvalid_cols:%d,moffset:%d,repeat_e:%d\r\n", // elemnum,cols,invalid_cols,offset,minvalid_cols,moffset,repeat_me); openCLExecuteKernel(src.clCxt, &arithm_minMax_mask, kernelName, gt, lt, args, -1, -1, build_options); } } template void arithmetic_minMax(const oclMat &src, double *minVal, double *maxVal, const oclMat &mask) { size_t groupnum = src.clCxt->computeUnits(); CV_Assert(groupnum != 0); groupnum = groupnum * 2; int vlen = 8; int dbsize = groupnum * 2 * vlen * sizeof(T) ; Context *clCxt = src.clCxt; cl_mem dstBuffer = openCLCreateBuffer(clCxt, CL_MEM_WRITE_ONLY, dbsize); *minVal = std::numeric_limits::max() , *maxVal = -std::numeric_limits::max(); if (mask.empty()) { arithmetic_minMax_run(src, mask, dstBuffer, vlen, groupnum, "arithm_op_minMax"); } else { arithmetic_minMax_mask_run(src, mask, dstBuffer, vlen, groupnum, "arithm_op_minMax_mask"); } T *p = new T[groupnum * vlen * 2]; memset(p, 0, dbsize); openCLReadBuffer(clCxt, dstBuffer, (void *)p, dbsize); if(minVal != NULL){ for(int i = 0; i < vlen * (int)groupnum; i++) { *minVal = *minVal < p[i] ? *minVal : p[i]; } } if(maxVal != NULL){ for(int i = vlen * (int)groupnum; i < 2 * vlen * (int)groupnum; i++) { *maxVal = *maxVal > p[i] ? *maxVal : p[i]; } } delete[] p; openCLFree(dstBuffer); } typedef void (*minMaxFunc)(const oclMat &src, double *minVal, double *maxVal, const oclMat &mask); void cv::ocl::minMax(const oclMat &src, double *minVal, double *maxVal, const oclMat &mask) { CV_Assert(src.oclchannels() == 1); if(!src.clCxt->supportsFeature(Context::CL_DOUBLE) && src.depth() == CV_64F) { CV_Error(CV_GpuNotSupported, "select device don't support double"); } static minMaxFunc functab[8] = { arithmetic_minMax, arithmetic_minMax, arithmetic_minMax, arithmetic_minMax, arithmetic_minMax, arithmetic_minMax, arithmetic_minMax, 0 }; minMaxFunc func; func = functab[src.depth()]; func(src, minVal, maxVal, mask); } ////////////////////////////////////////////////////////////////////////////// /////////////////////////////////// norm ///////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// double cv::ocl::norm(const oclMat &src1, int normType) { return norm(src1, oclMat(src1.size(), src1.type(), Scalar::all(0)), normType); } double cv::ocl::norm(const oclMat &src1, const oclMat &src2, int normType) { bool isRelative = (normType & NORM_RELATIVE) != 0; normType &= 7; CV_Assert(src1.depth() <= CV_32S && src1.type() == src2.type() && ( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2)); int channels = src1.oclchannels(), i = 0, *p; double r = 0; oclMat gm1(src1.size(), src1.type()); int min_int = (normType == NORM_INF ? CL_INT_MIN : 0); Mat m(1, 1, CV_MAKETYPE(CV_32S, channels), cv::Scalar::all(min_int)); oclMat gm2(m), emptyMat; switch(normType) { case NORM_INF: // arithmetic_run(src1, src2, gm1, "arithm_op_absdiff"); //arithmetic_minMax_run(gm1,emptyMat, gm2,"arithm_op_max"); m = (gm2); p = (int *)m.data; r = -std::numeric_limits::max(); for(i = 0; i < channels; i++) { r = std::max(r, (double)p[i]); } break; case NORM_L1: //arithmetic_run(src1, src2, gm1, "arithm_op_absdiff"); //arithmetic_sum_run(gm1, gm2,"arithm_op_sum"); m = (gm2); p = (int *)m.data; for(i = 0; i < channels; i++) { r = r + (double)p[i]; } break; case NORM_L2: //arithmetic_run(src1, src2, gm1, "arithm_op_absdiff"); //arithmetic_sum_run(gm1, gm2,"arithm_op_squares_sum"); m = (gm2); p = (int *)m.data; for(i = 0; i < channels; i++) { r = r + (double)p[i]; } r = std::sqrt(r); break; } if(isRelative) r = r / norm(src2, normType); return r; } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////// flip ////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static void arithmetic_flip_rows_run(const oclMat &src, oclMat &dst, String kernelName) { if(!src.clCxt->supportsFeature(Context::CL_DOUBLE) && src.type() == CV_64F) { CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); return; } CV_Assert(src.cols == dst.cols && src.rows == dst.rows); CV_Assert(src.type() == dst.type()); Context *clCxt = src.clCxt; int channels = dst.oclchannels(); int depth = dst.depth(); int vector_lengths[4][7] = {{4, 4, 4, 4, 1, 1, 1}, {4, 4, 4, 4, 1, 1, 1}, {4, 4, 4, 4, 1, 1, 1}, {4, 4, 4, 4, 1, 1, 1} }; size_t vector_length = vector_lengths[channels - 1][depth]; int offset_cols = ((dst.offset % dst.step) / dst.elemSize1()) & (vector_length - 1); int cols = divUp(dst.cols * channels + offset_cols, vector_length); int rows = divUp(dst.rows, 2); size_t localThreads[3] = { 64, 4, 1 }; size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], divUp(rows, localThreads[1]) *localThreads[1], 1 }; int dst_step1 = dst.cols * dst.elemSize(); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_step1 )); openCLExecuteKernel(clCxt, &arithm_flip, kernelName, globalThreads, localThreads, args, -1, depth); } static void arithmetic_flip_cols_run(const oclMat &src, oclMat &dst, String kernelName, bool isVertical) { if(!src.clCxt->supportsFeature(Context::CL_DOUBLE) && src.type() == CV_64F) { CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); return; } CV_Assert(src.cols == dst.cols && src.rows == dst.rows); CV_Assert(src.type() == dst.type()); Context *clCxt = src.clCxt; int channels = dst.oclchannels(); int depth = dst.depth(); int vector_lengths[4][7] = {{1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1} }; size_t vector_length = vector_lengths[channels - 1][depth]; int offset_cols = ((dst.offset % dst.step) / dst.elemSize()) & (vector_length - 1); int cols = divUp(dst.cols + offset_cols, vector_length); cols = isVertical ? cols : divUp(cols, 2); int rows = isVertical ? divUp(dst.rows, 2) : dst.rows; size_t localThreads[3] = { 64, 4, 1 }; size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], divUp(rows, localThreads[1]) *localThreads[1], 1 }; int dst_step1 = dst.cols * dst.elemSize(); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.cols )); if(isVertical) args.push_back( std::make_pair( sizeof(cl_int), (void *)&rows )); else args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_step1 )); const char **kernelString = isVertical ? &arithm_flip_rc : &arithm_flip; openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, src.oclchannels(), depth); } void cv::ocl::flip(const oclMat &src, oclMat &dst, int flipCode) { dst.create(src.size(), src.type()); if(flipCode == 0) { arithmetic_flip_rows_run(src, dst, "arithm_flip_rows"); } else if(flipCode > 0) arithmetic_flip_cols_run(src, dst, "arithm_flip_cols", false); else arithmetic_flip_cols_run(src, dst, "arithm_flip_rc", true); } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////// LUT ////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static void arithmetic_lut_run(const oclMat &src1, const oclMat &src2, oclMat &dst, String kernelName) { Context *clCxt = src1.clCxt; int channels = src1.oclchannels(); int rows = src1.rows; int cols = src1.cols; //int step = src1.step; int src_step = src1.step / src1.elemSize(); int dst_step = dst.step / dst.elemSize(); int whole_rows = src1.wholerows; int whole_cols = src1.wholecols; int src_offset = src1.offset / src1.elemSize(); int dst_offset = dst.offset / dst.elemSize(); int lut_offset = src2.offset / src2.elemSize(); int left_col = 0, right_col = 0; size_t localSize[] = {16, 16, 1}; //cl_kernel kernel = openCLGetKernelFromSource(clCxt,&arithm_LUT,kernelName); size_t globalSize[] = {(cols + localSize[0] - 1) / localSize[0] *localSize[0], (rows + localSize[1] - 1) / localSize[1] *localSize[1], 1}; if(channels == 1 && cols > 6) { left_col = 4 - (dst_offset & 3); left_col &= 3; dst_offset += left_col; src_offset += left_col; cols -= left_col; right_col = cols & 3; cols -= right_col; globalSize[0] = (cols / 4 + localSize[0] - 1) / localSize[0] * localSize[0]; } else if(channels == 1) { left_col = cols; right_col = 0; cols = 0; globalSize[0] = 0; } CV_Assert(clCxt == dst.clCxt); CV_Assert(src1.cols == dst.cols); CV_Assert(src1.rows == dst.rows); CV_Assert(src1.oclchannels() == dst.oclchannels()); // CV_Assert(src1.step == dst.step); std::vector > args; if(globalSize[0] != 0) { args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src2.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&channels )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&whole_rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&whole_cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src_offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&lut_offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src_step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_step )); openCLExecuteKernel(clCxt, &arithm_LUT, kernelName, globalSize, localSize, args, src1.oclchannels(), src1.depth()); } if(channels == 1 && (left_col != 0 || right_col != 0)) { src_offset = src1.offset; dst_offset = dst.offset; localSize[0] = 1; localSize[1] = 256; globalSize[0] = left_col + right_col; globalSize[1] = (rows + localSize[1] - 1) / localSize[1] * localSize[1]; //kernel = openCLGetKernelFromSource(clCxt,&arithm_LUT,"LUT2"); args.clear(); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src2.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&left_col )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&channels )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&whole_rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src_offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&lut_offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src_step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_step )); openCLExecuteKernel(clCxt, &arithm_LUT, "LUT2", globalSize, localSize, args, src1.oclchannels(), src1.depth()); } } void cv::ocl::LUT(const oclMat &src, const oclMat &lut, oclMat &dst) { int cn = src.channels(); CV_Assert(src.depth() == CV_8U); CV_Assert((lut.oclchannels() == 1 || lut.oclchannels() == cn) && lut.rows == 1 && lut.cols == 256); dst.create(src.size(), CV_MAKETYPE(lut.depth(), cn)); //oclMat _lut(lut); String kernelName = "LUT"; arithmetic_lut_run(src, lut, dst, kernelName); } ////////////////////////////////////////////////////////////////////////////// //////////////////////////////// exp log ///////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static void arithmetic_exp_log_run(const oclMat &src, oclMat &dst, String kernelName, const char **kernelString) { dst.create(src.size(), src.type()); CV_Assert(src.cols == dst.cols && src.rows == dst.rows ); CV_Assert(src.type() == dst.type()); CV_Assert( src.type() == CV_32F || src.type() == CV_64F); Context *clCxt = src.clCxt; if(!clCxt->supportsFeature(Context::CL_DOUBLE) && src.type() == CV_64F) { CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); return; } //int channels = dst.oclchannels(); int depth = dst.depth(); size_t localThreads[3] = { 64, 4, 1 }; size_t globalThreads[3] = { divUp(dst.cols, localThreads[0]) *localThreads[0], divUp(dst.rows, localThreads[1]) *localThreads[1], 1 }; std::vector > args; args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src.data )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, depth); } void cv::ocl::exp(const oclMat &src, oclMat &dst) { arithmetic_exp_log_run(src, dst, "arithm_exp", &arithm_exp); } void cv::ocl::log(const oclMat &src, oclMat &dst) { arithmetic_exp_log_run(src, dst, "arithm_log", &arithm_log); } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////// magnitude phase /////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static void arithmetic_magnitude_phase_run(const oclMat &src1, const oclMat &src2, oclMat &dst, String kernelName) { if(!src1.clCxt->supportsFeature(Context::CL_DOUBLE) && src1.type() == CV_64F) { CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); return; } Context *clCxt = src1.clCxt; int channels = dst.oclchannels(); int depth = dst.depth(); size_t vector_length = 1; int offset_cols = ((dst.offset % dst.step) / dst.elemSize1()) & (vector_length - 1); int cols = divUp(dst.cols * channels + offset_cols, vector_length); int rows = dst.rows; size_t localThreads[3] = { 64, 4, 1 }; size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], divUp(rows, localThreads[1]) *localThreads[1], 1 }; std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src2.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols )); openCLExecuteKernel(clCxt, &arithm_magnitude, kernelName, globalThreads, localThreads, args, -1, depth); } void cv::ocl::magnitude(const oclMat &src1, const oclMat &src2, oclMat &dst) { CV_Assert(src1.type() == src2.type() && src1.size() == src2.size() && (src1.depth() == CV_32F || src1.depth() == CV_64F)); dst.create(src1.size(), src1.type()); arithmetic_magnitude_phase_run(src1, src2, dst, "arithm_magnitude"); } static void arithmetic_phase_run(const oclMat &src1, const oclMat &src2, oclMat &dst, String kernelName, const char **kernelString) { if(!src1.clCxt->supportsFeature(Context::CL_DOUBLE) && src1.type() == CV_64F) { CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); return; } CV_Assert(src1.cols == src2.cols && src2.cols == dst.cols && src1.rows == src2.rows && src2.rows == dst.rows); CV_Assert(src1.type() == src2.type() && src1.type() == dst.type()); Context *clCxt = src1.clCxt; int channels = dst.oclchannels(); int depth = dst.depth(); size_t vector_length = 1; int offset_cols = ((dst.offset % dst.step) / dst.elemSize1()) & (vector_length - 1); int cols = divUp(dst.cols * channels + offset_cols, vector_length); int rows = dst.rows; size_t localThreads[3] = { 64, 4, 1 }; size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], divUp(rows, localThreads[1]) *localThreads[1], 1 }; int dst_step1 = dst.cols * dst.elemSize(); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src2.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_step1 )); openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, depth); } void cv::ocl::phase(const oclMat &x, const oclMat &y, oclMat &Angle , bool angleInDegrees) { CV_Assert(x.type() == y.type() && x.size() == y.size() && (x.depth() == CV_32F || x.depth() == CV_64F)); Angle.create(x.size(), x.type()); String kernelName = angleInDegrees ? "arithm_phase_indegrees" : "arithm_phase_inradians"; if(angleInDegrees) { arithmetic_phase_run(x, y, Angle, kernelName, &arithm_phase); //std::cout<<"1"<supportsFeature(Context::CL_DOUBLE) && src1.type() == CV_64F) { CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); return; } Context *clCxt = src1.clCxt; int channels = src1.oclchannels(); int depth = src1.depth(); int cols = src1.cols * channels; int rows = src1.rows; size_t localThreads[3] = { 64, 4, 1 }; size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], divUp(rows, localThreads[1]) *localThreads[1], 1 }; int tmp = angleInDegrees ? 1 : 0; std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src2.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst_mag.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_mag.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_mag.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst_cart.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_cart.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_cart.offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&tmp )); openCLExecuteKernel(clCxt, &arithm_cartToPolar, kernelName, globalThreads, localThreads, args, -1, depth); } void cv::ocl::cartToPolar(const oclMat &x, const oclMat &y, oclMat &mag, oclMat &angle, bool angleInDegrees) { CV_Assert(x.type() == y.type() && x.size() == y.size() && (x.depth() == CV_32F || x.depth() == CV_64F)); mag.create(x.size(), x.type()); angle.create(x.size(), x.type()); arithmetic_cartToPolar_run(x, y, mag, angle, "arithm_cartToPolar", angleInDegrees); } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////// polarToCart /////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static void arithmetic_ptc_run(const oclMat &src1, const oclMat &src2, oclMat &dst1, oclMat &dst2, bool angleInDegrees, String kernelName) { if(!src1.clCxt->supportsFeature(Context::CL_DOUBLE) && src1.type() == CV_64F) { CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); return; } Context *clCxt = src2.clCxt; int channels = src2.oclchannels(); int depth = src2.depth(); int cols = src2.cols * channels; int rows = src2.rows; size_t localThreads[3] = { 64, 4, 1 }; size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], divUp(rows, localThreads[1]) *localThreads[1], 1 }; int tmp = angleInDegrees ? 1 : 0; std::vector > args; if(src1.data) { args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.offset )); } args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src2.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst1.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst1.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst2.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst2.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst2.offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&tmp )); openCLExecuteKernel(clCxt, &arithm_polarToCart, kernelName, globalThreads, localThreads, args, -1, depth); } void cv::ocl::polarToCart(const oclMat &magnitude, const oclMat &angle, oclMat &x, oclMat &y, bool angleInDegrees) { CV_Assert(angle.depth() == CV_32F || angle.depth() == CV_64F); x.create(angle.size(), angle.type()); y.create(angle.size(), angle.type()); if( magnitude.data ) { CV_Assert( magnitude.size() == angle.size() && magnitude.type() == angle.type() ); arithmetic_ptc_run(magnitude, angle, x, y, angleInDegrees, "arithm_polarToCart_mag"); } else arithmetic_ptc_run(magnitude, angle, x, y, angleInDegrees, "arithm_polarToCart"); } ////////////////////////////////////////////////////////////////////////////// /////////////////////////////////// minMaxLoc //////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static void arithmetic_minMaxLoc_run(const oclMat &src, cl_mem &dst, int vlen , int groupnum) { std::vector > args; int all_cols = src.step / (vlen * src.elemSize1()); int pre_cols = (src.offset % src.step) / (vlen * src.elemSize1()); int sec_cols = all_cols - (src.offset % src.step + src.cols * src.elemSize1() - 1) / (vlen * src.elemSize1()) - 1; int invalid_cols = pre_cols + sec_cols; int cols = all_cols - invalid_cols , elemnum = cols * src.rows;; int offset = src.offset / (vlen * src.elemSize1()); int repeat_s = src.offset / src.elemSize1() - offset * vlen; int repeat_e = (offset + cols) * vlen - src.offset / src.elemSize1() - src.cols; args.push_back( std::make_pair( sizeof(cl_int) , (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&invalid_cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&offset)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&elemnum)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&groupnum)); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data)); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst )); char build_options[50]; sprintf(build_options, "-D DEPTH_%d -D REPEAT_S%d -D REPEAT_E%d", src.depth(), repeat_s, repeat_e); size_t gt[3] = {groupnum * 256, 1, 1}, lt[3] = {256, 1, 1}; openCLExecuteKernel(src.clCxt, &arithm_minMaxLoc, "arithm_op_minMaxLoc", gt, lt, args, -1, -1, build_options); } static void arithmetic_minMaxLoc_mask_run(const oclMat &src, const oclMat &mask, cl_mem &dst, int vlen, int groupnum) { std::vector > args; size_t gt[3] = {groupnum * 256, 1, 1}, lt[3] = {256, 1, 1}; char build_options[50]; if(src.oclchannels() == 1) { int cols = (src.cols - 1) / vlen + 1; int invalid_cols = src.step / (vlen * src.elemSize1()) - cols; int offset = src.offset / src.elemSize1(); int repeat_me = vlen - (mask.cols % vlen == 0 ? vlen : mask.cols % vlen); int minvalid_cols = mask.step / (vlen * mask.elemSize1()) - cols; int moffset = mask.offset / mask.elemSize1(); int elemnum = cols * src.rows; sprintf(build_options, "-D DEPTH_%d -D REPEAT_E%d", src.depth(), repeat_me); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&invalid_cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&offset)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&elemnum)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&groupnum)); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&minvalid_cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&moffset )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&mask.data )); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst )); // printf("elemnum:%d,cols:%d,invalid_cols:%d,offset:%d,minvalid_cols:%d,moffset:%d,repeat_e:%d\r\n", // elemnum,cols,invalid_cols,offset,minvalid_cols,moffset,repeat_me); openCLExecuteKernel(src.clCxt, &arithm_minMaxLoc_mask, "arithm_op_minMaxLoc_mask", gt, lt, args, -1, -1, build_options); } } template void arithmetic_minMaxLoc(const oclMat &src, double *minVal, double *maxVal, Point *minLoc, Point *maxLoc, const oclMat &mask) { CV_Assert(src.oclchannels() == 1); size_t groupnum = src.clCxt->computeUnits(); CV_Assert(groupnum != 0); int minloc = -1 , maxloc = -1; int vlen = 4, dbsize = groupnum * vlen * 4 * sizeof(T) ; Context *clCxt = src.clCxt; cl_mem dstBuffer = openCLCreateBuffer(clCxt, CL_MEM_WRITE_ONLY, dbsize); *minVal = std::numeric_limits::max() , *maxVal = -std::numeric_limits::max(); if (mask.empty()) { arithmetic_minMaxLoc_run(src, dstBuffer, vlen, groupnum); } else { arithmetic_minMaxLoc_mask_run(src, mask, dstBuffer, vlen, groupnum); } T *p = new T[groupnum * vlen * 4]; memset(p, 0, dbsize); openCLReadBuffer(clCxt, dstBuffer, (void *)p, dbsize); for(int i = 0; i < vlen * (int)groupnum; i++) { *minVal = (*minVal < p[i] || p[i + 2 * vlen * groupnum] == -1) ? *minVal : p[i]; minloc = (*minVal < p[i] || p[i + 2 * vlen * groupnum] == -1) ? minloc : cvRound(p[i + 2 * vlen * groupnum]); } for(int i = vlen * (int)groupnum; i < 2 * vlen * (int)groupnum; i++) { *maxVal = (*maxVal > p[i] || p[i + 2 * vlen * groupnum] == -1) ? *maxVal : p[i]; maxloc = (*maxVal > p[i] || p[i + 2 * vlen * groupnum] == -1) ? maxloc : cvRound(p[i + 2 * vlen * groupnum]); } int pre_rows = src.offset / src.step; int pre_cols = (src.offset % src.step) / src.elemSize1(); int wholecols = src.step / src.elemSize1(); if( minLoc ) { if( minloc >= 0 ) { minLoc->y = minloc / wholecols - pre_rows; minLoc->x = minloc % wholecols - pre_cols; } else minLoc->x = minLoc->y = -1; } if( maxLoc ) { if( maxloc >= 0 ) { maxLoc->y = maxloc / wholecols - pre_rows; maxLoc->x = maxloc % wholecols - pre_cols; } else maxLoc->x = maxLoc->y = -1; } delete[] p; openCLSafeCall(clReleaseMemObject(dstBuffer)); } typedef void (*minMaxLocFunc)(const oclMat &src, double *minVal, double *maxVal, Point *minLoc, Point *maxLoc, const oclMat &mask); void cv::ocl::minMaxLoc(const oclMat &src, double *minVal, double *maxVal, Point *minLoc, Point *maxLoc, const oclMat &mask) { if(!src.clCxt->supportsFeature(Context::CL_DOUBLE) && src.depth() == CV_64F) { CV_Error(CV_GpuNotSupported, "select device don't support double"); } static minMaxLocFunc functab[2] = { arithmetic_minMaxLoc, arithmetic_minMaxLoc }; minMaxLocFunc func; func = functab[(int)src.clCxt->supportsFeature(Context::CL_DOUBLE)]; func(src, minVal, maxVal, minLoc, maxLoc, mask); } ////////////////////////////////////////////////////////////////////////////// ///////////////////////////// countNonZero /////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static void arithmetic_countNonZero_run(const oclMat &src, cl_mem &dst, int vlen , int groupnum, String kernelName) { std::vector > args; int all_cols = src.step / (vlen * src.elemSize1()); int pre_cols = (src.offset % src.step) / (vlen * src.elemSize1()); int sec_cols = all_cols - (src.offset % src.step + src.cols * src.elemSize() - 1) / (vlen * src.elemSize1()) - 1; int invalid_cols = pre_cols + sec_cols; int cols = all_cols - invalid_cols , elemnum = cols * src.rows;; int offset = src.offset / (vlen * src.elemSize1()); int repeat_s = src.offset / src.elemSize1() - offset * vlen; int repeat_e = (offset + cols) * vlen - src.offset / src.elemSize1() - src.cols * src.oclchannels(); char build_options[50]; sprintf(build_options, "-D DEPTH_%d -D REPEAT_S%d -D REPEAT_E%d", src.depth(), repeat_s, repeat_e); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&invalid_cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&offset)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&elemnum)); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&groupnum)); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data)); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst )); size_t gt[3] = {groupnum * 256, 1, 1}, lt[3] = {256, 1, 1}; openCLExecuteKernel(src.clCxt, &arithm_nonzero, kernelName, gt, lt, args, -1, -1, build_options); } int cv::ocl::countNonZero(const oclMat &src) { size_t groupnum = src.clCxt->computeUnits(); if(!src.clCxt->supportsFeature(Context::CL_DOUBLE) && src.depth() == CV_64F) { CV_Error(CV_GpuNotSupported, "select device don't support double"); } CV_Assert(groupnum != 0); groupnum = groupnum * 2; int vlen = 8 , dbsize = groupnum * vlen; //cl_ulong start, end; Context *clCxt = src.clCxt; String kernelName = "arithm_op_nonzero"; int *p = new int[dbsize], nonzero = 0; cl_mem dstBuffer = openCLCreateBuffer(clCxt, CL_MEM_WRITE_ONLY, dbsize * sizeof(int)); arithmetic_countNonZero_run(src, dstBuffer, vlen, groupnum, kernelName); memset(p, 0, dbsize * sizeof(int)); openCLReadBuffer(clCxt, dstBuffer, (void *)p, dbsize * sizeof(int)); for(int i = 0; i < dbsize; i++) { nonzero += p[i]; } delete[] p; openCLSafeCall(clReleaseMemObject(dstBuffer)); return nonzero; } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////bitwise_op//////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static void bitwise_run(const oclMat &src1, oclMat &dst, String kernelName, const char **kernelString) { dst.create(src1.size(), src1.type()); Context *clCxt = src1.clCxt; int channels = dst.oclchannels(); int depth = dst.depth(); int vector_lengths[4][7] = {{4, 4, 4, 4, 1, 1, 1}, {4, 4, 4, 4, 1, 1, 1}, {4, 4, 4, 4, 1, 1, 1}, {4, 4, 4, 4, 1, 1, 1} }; size_t vector_length = vector_lengths[channels - 1][depth]; int offset_cols = (dst.offset / dst.elemSize1()) & (vector_length - 1); int cols = divUp(dst.cols * channels + offset_cols, vector_length); size_t localThreads[3] = { 64, 4, 1 }; size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], divUp(dst.rows, localThreads[1]) *localThreads[1], 1 }; int dst_step1 = dst.cols * dst.elemSize(); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_step1 )); openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, depth); } template void bitwise_run(const oclMat &src1, const oclMat &src2, oclMat &dst, String kernelName, const char **kernelString, void *_scalar) { dst.create(src1.size(), src1.type()); CV_Assert(src1.cols == src2.cols && src2.cols == dst.cols && src1.rows == src2.rows && src2.rows == dst.rows); CV_Assert(src1.type() == src2.type() && src1.type() == dst.type()); Context *clCxt = src1.clCxt; int channels = dst.oclchannels(); int depth = dst.depth(); int vector_lengths[4][7] = {{4, 4, 4, 4, 1, 1, 1}, {4, 4, 4, 4, 1, 1, 1}, {4, 4, 4, 4, 1, 1, 1}, {4, 4, 4, 4, 1, 1, 1} }; size_t vector_length = vector_lengths[channels - 1][depth]; int offset_cols = (dst.offset / dst.elemSize1()) & (vector_length - 1); int cols = divUp(dst.cols * channels + offset_cols, vector_length); size_t localThreads[3] = { 64, 4, 1 }; size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], divUp(dst.rows, localThreads[1]) *localThreads[1], 1 }; int dst_step1 = dst.cols * dst.elemSize(); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src2.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_step1 )); if(_scalar != NULL) { double scalar1 = *((double *)_scalar); T scalar = (T)scalar1; args.push_back( std::make_pair( sizeof(T), (void *)&scalar )); } openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, depth); } static void bitwise_run(const oclMat &src1, const oclMat &src2, oclMat &dst, String kernelName, const char **kernelString) { bitwise_run(src1, src2, dst, kernelName, kernelString, (void *)NULL); } static void bitwise_run(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask, String kernelName, const char **kernelString) { dst.create(src1.size(), src1.type()); CV_Assert(src1.cols == src2.cols && src2.cols == dst.cols && src1.rows == src2.rows && src2.rows == dst.rows && src1.rows == mask.rows && src1.cols == mask.cols); CV_Assert(src1.type() == src2.type() && src1.type() == dst.type()); CV_Assert(mask.type() == CV_8U); Context *clCxt = src1.clCxt; int channels = dst.oclchannels(); int depth = dst.depth(); int vector_lengths[4][7] = {{4, 4, 2, 2, 1, 1, 1}, {2, 2, 1, 1, 1, 1, 1}, {4, 4, 2, 2 , 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1} }; size_t vector_length = vector_lengths[channels - 1][depth]; int offset_cols = ((dst.offset % dst.step) / dst.elemSize()) & (vector_length - 1); int cols = divUp(dst.cols + offset_cols, vector_length); size_t localThreads[3] = { 64, 4, 1 }; size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], divUp(dst.rows, localThreads[1]) *localThreads[1], 1 }; int dst_step1 = dst.cols * dst.elemSize(); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src2.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&mask.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&mask.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&mask.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_step1 )); openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, channels, depth); } template void bitwise_scalar_run(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask, String kernelName, const char **kernelString, int isMatSubScalar) { dst.create(src1.size(), src1.type()); CV_Assert(src1.cols == dst.cols && src1.rows == dst.rows && src1.type() == dst.type()); if(mask.data) { CV_Assert(mask.type() == CV_8U && src1.rows == mask.rows && src1.cols == mask.cols); } Context *clCxt = src1.clCxt; int channels = dst.oclchannels(); int depth = dst.depth(); WT s[4] = { saturate_cast(src2.val[0]), saturate_cast(src2.val[1]), saturate_cast(src2.val[2]), saturate_cast(src2.val[3]) }; int vector_lengths[4][7] = {{4, 4, 2, 2, 1, 1, 1}, {2, 2, 1, 1, 1, 1, 1}, {4, 4, 2, 2 , 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1} }; size_t vector_length = vector_lengths[channels - 1][depth]; int offset_cols = ((dst.offset % dst.step) / dst.elemSize()) & (vector_length - 1); int cols = divUp(dst.cols + offset_cols, vector_length); size_t localThreads[3] = { 64, 4, 1 }; size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], divUp(dst.rows, localThreads[1]) *localThreads[1], 1 }; int dst_step1 = dst.cols * dst.elemSize(); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src1.step )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src1.offset)); args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dst.step )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dst.offset)); if(mask.data) { args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&mask.data )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&mask.step )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&mask.offset)); } args.push_back( std::make_pair( sizeof(CL_WT) , (void *)&s )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src1.rows )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dst_step1 )); if(isMatSubScalar != 0) { isMatSubScalar = isMatSubScalar > 0 ? 1 : 0; args.push_back( std::make_pair( sizeof(cl_int) , (void *)&isMatSubScalar)); } openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, channels, depth); } typedef void (*BitwiseFuncS)(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask, String kernelName, const char **kernelString, int isMatSubScalar); static void bitwise_scalar(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask, String kernelName, const char **kernelString, int isMatSubScalar) { static BitwiseFuncS tab[8] = { #if 0 bitwise_scalar_run, bitwise_scalar_run, bitwise_scalar_run, bitwise_scalar_run, bitwise_scalar_run, bitwise_scalar_run, bitwise_scalar_run, 0 #else bitwise_scalar_run, bitwise_scalar_run, bitwise_scalar_run, bitwise_scalar_run, bitwise_scalar_run, bitwise_scalar_run, bitwise_scalar_run, 0 #endif }; BitwiseFuncS func = tab[src1.depth()]; if(func == 0) cv::ocl::error("Unsupported arithmetic operation", __FILE__, __LINE__); func(src1, src2, dst, mask, kernelName, kernelString, isMatSubScalar); } static void bitwise_scalar(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask, String kernelName, const char **kernelString) { bitwise_scalar(src1, src2, dst, mask, kernelName, kernelString, 0); } void cv::ocl::bitwise_not(const oclMat &src, oclMat &dst) { if(!src.clCxt->supportsFeature(Context::CL_DOUBLE) && src.type() == CV_64F) { std::cout << "Selected device do not support double" << std::endl; return; } dst.create(src.size(), src.type()); String kernelName = "arithm_bitwise_not"; bitwise_run(src, dst, kernelName, &arithm_bitwise_not); } void cv::ocl::bitwise_or(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask) { // dst.create(src1.size(),src1.type()); if(!src1.clCxt->supportsFeature(Context::CL_DOUBLE) && src1.type() == CV_64F) { std::cout << "Selected device do not support double" << std::endl; return; } oclMat emptyMat; String kernelName = mask.empty() ? "arithm_bitwise_or" : "arithm_bitwise_or_with_mask"; if (mask.empty()) bitwise_run(src1, src2, dst, kernelName, &arithm_bitwise_or); else bitwise_run(src1, src2, dst, mask, kernelName, &arithm_bitwise_or_mask); } void cv::ocl::bitwise_or(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask) { if(!src1.clCxt->supportsFeature(Context::CL_DOUBLE) && src1.type() == CV_64F) { std::cout << "Selected device do not support double" << std::endl; return; } String kernelName = mask.data ? "arithm_s_bitwise_or_with_mask" : "arithm_s_bitwise_or"; if (mask.data) bitwise_scalar( src1, src2, dst, mask, kernelName, &arithm_bitwise_or_scalar_mask); else bitwise_scalar( src1, src2, dst, mask, kernelName, &arithm_bitwise_or_scalar); } void cv::ocl::bitwise_and(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask) { // dst.create(src1.size(),src1.type()); if(!src1.clCxt->supportsFeature(Context::CL_DOUBLE) && src1.type() == CV_64F) { std::cout << "Selected device do not support double" << std::endl; return; } oclMat emptyMat; String kernelName = mask.empty() ? "arithm_bitwise_and" : "arithm_bitwise_and_with_mask"; if (mask.empty()) bitwise_run(src1, src2, dst, kernelName, &arithm_bitwise_and); else bitwise_run(src1, src2, dst, mask, kernelName, &arithm_bitwise_and_mask); } void cv::ocl::bitwise_and(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask) { if(!src1.clCxt->supportsFeature(Context::CL_DOUBLE) && src1.type() == CV_64F) { std::cout << "Selected device do not support double" << std::endl; return; } String kernelName = mask.data ? "arithm_s_bitwise_and_with_mask" : "arithm_s_bitwise_and"; if (mask.data) bitwise_scalar(src1, src2, dst, mask, kernelName, &arithm_bitwise_and_scalar_mask); else bitwise_scalar(src1, src2, dst, mask, kernelName, &arithm_bitwise_and_scalar); } void cv::ocl::bitwise_xor(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask) { if(!src1.clCxt->supportsFeature(Context::CL_DOUBLE) && src1.type() == CV_64F) { std::cout << "Selected device do not support double" << std::endl; return; } oclMat emptyMat; String kernelName = mask.empty() ? "arithm_bitwise_xor" : "arithm_bitwise_xor_with_mask"; if (mask.empty()) bitwise_run(src1, src2, dst, kernelName, &arithm_bitwise_xor); else bitwise_run(src1, src2, dst, mask, kernelName, &arithm_bitwise_xor_mask); } void cv::ocl::bitwise_xor(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask) { if(!src1.clCxt->supportsFeature(Context::CL_DOUBLE) && src1.type() == CV_64F) { std::cout << "Selected device do not support double" << std::endl; return; } String kernelName = mask.data ? "arithm_s_bitwise_xor_with_mask" : "arithm_s_bitwise_xor"; if (mask.data) bitwise_scalar( src1, src2, dst, mask, kernelName, &arithm_bitwise_xor_scalar_mask); else bitwise_scalar( src1, src2, dst, mask, kernelName, &arithm_bitwise_xor_scalar); } oclMat cv::ocl::operator ~ (const oclMat &src) { return oclMatExpr(src, oclMat(), MAT_NOT); } oclMat cv::ocl::operator | (const oclMat &src1, const oclMat &src2) { return oclMatExpr(src1, src2, MAT_OR); } oclMat cv::ocl::operator & (const oclMat &src1, const oclMat &src2) { return oclMatExpr(src1, src2, MAT_AND); } oclMat cv::ocl::operator ^ (const oclMat &src1, const oclMat &src2) { return oclMatExpr(src1, src2, MAT_XOR); } cv::ocl::oclMatExpr cv::ocl::operator + (const oclMat &src1, const oclMat &src2) { return oclMatExpr(src1, src2, cv::ocl::MAT_ADD); } cv::ocl::oclMatExpr cv::ocl::operator - (const oclMat &src1, const oclMat &src2) { return oclMatExpr(src1, src2, cv::ocl::MAT_SUB); } cv::ocl::oclMatExpr cv::ocl::operator * (const oclMat &src1, const oclMat &src2) { return oclMatExpr(src1, src2, cv::ocl::MAT_MUL); } cv::ocl::oclMatExpr cv::ocl::operator / (const oclMat &src1, const oclMat &src2) { return oclMatExpr(src1, src2, cv::ocl::MAT_DIV); } void oclMatExpr::assign(oclMat& m) const { switch (op) { case MAT_ADD: add(a, b, m); break; case MAT_SUB: subtract(a, b, m); break; case MAT_MUL: multiply(a, b, m); break; case MAT_DIV: divide(a, b, m); break; case MAT_NOT: bitwise_not(a, m); break; case MAT_AND: bitwise_and(a, b, m); break; case MAT_OR: bitwise_or(a, b, m); break; case MAT_XOR: bitwise_xor(a, b, m); break; } } oclMatExpr::operator oclMat() const { oclMat m; assign(m); return m; } ////////////////////////////////////////////////////////////////////////////// /////////////////////////////// transpose //////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// #define TILE_DIM (32) #define BLOCK_ROWS (256/TILE_DIM) static void transpose_run(const oclMat &src, oclMat &dst, String kernelName) { if(!src.clCxt->supportsFeature(Context::CL_DOUBLE) && src.type() == CV_64F) { CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); return; } CV_Assert(src.cols == dst.rows && src.rows == dst.cols); Context *clCxt = src.clCxt; int channels = src.oclchannels(); int depth = src.depth(); int vector_lengths[4][7] = {{1, 0, 0, 0, 1, 1, 0}, {0, 0, 1, 1, 0, 0, 0}, {0, 0, 0, 0 , 0, 0, 0}, {1, 1, 0, 0, 0, 0, 0} }; size_t vector_length = vector_lengths[channels - 1][depth]; int offset_cols = ((dst.offset % dst.step) / dst.elemSize()) & (vector_length - 1); int cols = divUp(src.cols + offset_cols, vector_length); size_t localThreads[3] = { TILE_DIM, BLOCK_ROWS, 1 }; size_t globalThreads[3] = { divUp(cols, TILE_DIM) *localThreads[0], divUp(src.rows, TILE_DIM) *localThreads[1], 1 }; std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols )); openCLExecuteKernel(clCxt, &arithm_transpose, kernelName, globalThreads, localThreads, args, channels, depth); } void cv::ocl::transpose(const oclMat &src, oclMat &dst) { CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC3 || src.type() == CV_8UC4 || src.type() == CV_8SC3 || src.type() == CV_8SC4 || src.type() == CV_16UC2 || src.type() == CV_16SC2 || src.type() == CV_32SC1 || src.type() == CV_32FC1); oclMat emptyMat; if( src.data == dst.data && dst.cols == dst.rows ) transpose_run( src, emptyMat, "transposeI_"); else { dst.create(src.cols, src.rows, src.type()); transpose_run( src, dst, "transpose"); } } void cv::ocl::addWeighted(const oclMat &src1, double alpha, const oclMat &src2, double beta, double gama, oclMat &dst) { dst.create(src1.size(), src1.type()); CV_Assert(src1.cols == src2.cols && src2.cols == dst.cols && src1.rows == src2.rows && src2.rows == dst.rows); CV_Assert(src1.type() == src2.type() && src1.type() == dst.type()); Context *clCxt = src1.clCxt; int channels = dst.oclchannels(); int depth = dst.depth(); int vector_lengths[4][7] = {{4, 0, 4, 4, 4, 4, 4}, {4, 0, 4, 4, 4, 4, 4}, {4, 0, 4, 4, 4, 4, 4}, {4, 0, 4, 4, 4, 4, 4} }; size_t vector_length = vector_lengths[channels - 1][depth]; int offset_cols = (dst.offset / dst.elemSize1()) & (vector_length - 1); int cols = divUp(dst.cols * channels + offset_cols, vector_length); size_t localThreads[3] = { 256, 1, 1 }; size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], divUp(dst.rows, localThreads[1]) *localThreads[1], 1 }; int dst_step1 = dst.cols * dst.elemSize(); int src1_step = (int) src1.step; int src2_step = (int) src2.step; int dst_step = (int) dst.step; float alpha_f = alpha, beta_f = beta, gama_f = gama; std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1_step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.offset)); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src2.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2_step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2.offset)); if(src1.clCxt->supportsFeature(Context::CL_DOUBLE)) { args.push_back( std::make_pair( sizeof(cl_double), (void *)&alpha )); args.push_back( std::make_pair( sizeof(cl_double), (void *)&beta )); args.push_back( std::make_pair( sizeof(cl_double), (void *)&gama )); } else { args.push_back( std::make_pair( sizeof(cl_float), (void *)&alpha_f )); args.push_back( std::make_pair( sizeof(cl_float), (void *)&beta_f )); args.push_back( std::make_pair( sizeof(cl_float), (void *)&gama_f )); } args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_step1 )); openCLExecuteKernel(clCxt, &arithm_addWeighted, "addWeighted", globalThreads, localThreads, args, -1, depth); } void cv::ocl::magnitudeSqr(const oclMat &src1, const oclMat &src2, oclMat &dst) { CV_Assert(src1.type() == src2.type() && src1.size() == src2.size() && (src1.depth() == CV_32F )); dst.create(src1.size(), src1.type()); Context *clCxt = src1.clCxt; int channels = dst.oclchannels(); int depth = dst.depth(); int vector_lengths[4][7] = {{4, 0, 4, 4, 4, 4, 4}, {4, 0, 4, 4, 4, 4, 4}, {4, 0, 4, 4, 4, 4, 4}, {4, 0, 4, 4, 4, 4, 4} }; size_t vector_length = vector_lengths[channels - 1][depth]; int offset_cols = (dst.offset / dst.elemSize1()) & (vector_length - 1); int cols = divUp(dst.cols * channels + offset_cols, vector_length); size_t localThreads[3] = { 256, 1, 1 }; size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], divUp(dst.rows, localThreads[1]) *localThreads[1], 1 }; int dst_step1 = dst.cols * dst.elemSize(); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.offset)); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src2.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src2.offset)); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_step1 )); openCLExecuteKernel(clCxt, &arithm_magnitudeSqr, "magnitudeSqr", globalThreads, localThreads, args, 1, depth); } void cv::ocl::magnitudeSqr(const oclMat &src1, oclMat &dst) { CV_Assert (src1.depth() == CV_32F ); CV_Assert(src1.size() == dst.size()); dst.create(src1.size(), CV_32FC1); Context *clCxt = src1.clCxt; int channels = dst.oclchannels(); int depth = dst.depth(); int vector_lengths[4][7] = {{4, 0, 4, 4, 4, 4, 4}, {4, 0, 4, 4, 4, 4, 4}, {4, 0, 4, 4, 4, 4, 4}, {4, 0, 4, 4, 4, 4, 4} }; size_t vector_length = vector_lengths[channels - 1][depth]; int offset_cols = (dst.offset / dst.elemSize1()) & (vector_length - 1); int cols = divUp(dst.cols * channels + offset_cols, vector_length); size_t localThreads[3] = { 256, 1, 1 }; size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], divUp(dst.rows, localThreads[1]) *localThreads[1], 1 }; int dst_step1 = dst.cols * dst.elemSize(); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.offset)); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset)); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_step1 )); openCLExecuteKernel(clCxt, &arithm_magnitudeSqr, "magnitudeSqr", globalThreads, localThreads, args, 2, depth); } static void arithmetic_pow_run(const oclMat &src1, double p, oclMat &dst, String kernelName, const char **kernelString) { CV_Assert(src1.cols == dst.cols && src1.rows == dst.rows); CV_Assert(src1.type() == dst.type()); Context *clCxt = src1.clCxt; int channels = dst.oclchannels(); int depth = dst.depth(); size_t vector_length = 1; int offset_cols = ((dst.offset % dst.step) / dst.elemSize1()) & (vector_length - 1); int cols = divUp(dst.cols * channels + offset_cols, vector_length); int rows = dst.rows; size_t localThreads[3] = { 64, 4, 1 }; size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], divUp(rows, localThreads[1]) *localThreads[1], 1 }; int dst_step1 = dst.cols * dst.elemSize(); std::vector > args; args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&src1.offset )); args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.rows )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&cols )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst_step1 )); if(!src1.clCxt->supportsFeature(Context::CL_DOUBLE)) { float pf = p; args.push_back( std::make_pair( sizeof(cl_float), (void *)&pf )); } else args.push_back( std::make_pair( sizeof(cl_double), (void *)&p )); openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, depth); } void cv::ocl::pow(const oclMat &x, double p, oclMat &y) { if(!x.clCxt->supportsFeature(Context::CL_DOUBLE) && x.type() == CV_64F) { std::cout << "Selected device do not support double" << std::endl; return; } CV_Assert((x.type() == y.type() && x.size() == y.size() && x.depth() == CV_32F) || x.depth() == CV_64F); y.create(x.size(), x.type()); String kernelName = "arithm_pow"; arithmetic_pow_run(x, p, y, kernelName, &arithm_pow); }