/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include #include /* This is stright-forward port v3 of Matlab calibration engine by Jean-Yves Bouguet that is (in a large extent) based on the paper: Z. Zhang. "A flexible new technique for camera calibration". IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334, 2000. The 1st initial port was done by Valery Mosyagin. */ using namespace cv; CvLevMarq::CvLevMarq() { mask = prevParam = param = J = err = JtJ = JtJN = JtErr = JtJV = JtJW = Ptr(); lambdaLg10 = 0; state = DONE; criteria = cvTermCriteria(0,0,0); iters = 0; completeSymmFlag = false; } CvLevMarq::CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria0, bool _completeSymmFlag ) { mask = prevParam = param = J = err = JtJ = JtJN = JtErr = JtJV = JtJW = Ptr(); init(nparams, nerrs, criteria0, _completeSymmFlag); } void CvLevMarq::clear() { mask.release(); prevParam.release(); param.release(); J.release(); err.release(); JtJ.release(); JtJN.release(); JtErr.release(); JtJV.release(); JtJW.release(); } CvLevMarq::~CvLevMarq() { clear(); } void CvLevMarq::init( int nparams, int nerrs, CvTermCriteria criteria0, bool _completeSymmFlag ) { if( !param || param->rows != nparams || nerrs != (err ? err->rows : 0) ) clear(); mask = cvCreateMat( nparams, 1, CV_8U ); cvSet(mask, cvScalarAll(1)); prevParam = cvCreateMat( nparams, 1, CV_64F ); param = cvCreateMat( nparams, 1, CV_64F ); JtJ = cvCreateMat( nparams, nparams, CV_64F ); JtJN = cvCreateMat( nparams, nparams, CV_64F ); JtJV = cvCreateMat( nparams, nparams, CV_64F ); JtJW = cvCreateMat( nparams, 1, CV_64F ); JtErr = cvCreateMat( nparams, 1, CV_64F ); if( nerrs > 0 ) { J = cvCreateMat( nerrs, nparams, CV_64F ); err = cvCreateMat( nerrs, 1, CV_64F ); } prevErrNorm = DBL_MAX; lambdaLg10 = -3; criteria = criteria0; if( criteria.type & CV_TERMCRIT_ITER ) criteria.max_iter = MIN(MAX(criteria.max_iter,1),1000); else criteria.max_iter = 30; if( criteria.type & CV_TERMCRIT_EPS ) criteria.epsilon = MAX(criteria.epsilon, 0); else criteria.epsilon = DBL_EPSILON; state = STARTED; iters = 0; completeSymmFlag = _completeSymmFlag; } bool CvLevMarq::update( const CvMat*& _param, CvMat*& matJ, CvMat*& _err ) { double change; matJ = _err = 0; assert( !err.empty() ); if( state == DONE ) { _param = param; return false; } if( state == STARTED ) { _param = param; cvZero( J ); cvZero( err ); matJ = J; _err = err; state = CALC_J; return true; } if( state == CALC_J ) { cvMulTransposed( J, JtJ, 1 ); cvGEMM( J, err, 1, 0, 0, JtErr, CV_GEMM_A_T ); cvCopy( param, prevParam ); step(); if( iters == 0 ) prevErrNorm = cvNorm(err, 0, CV_L2); _param = param; cvZero( err ); _err = err; state = CHECK_ERR; return true; } assert( state == CHECK_ERR ); errNorm = cvNorm( err, 0, CV_L2 ); if( errNorm > prevErrNorm ) { lambdaLg10++; step(); _param = param; cvZero( err ); _err = err; state = CHECK_ERR; return true; } lambdaLg10 = MAX(lambdaLg10-1, -16); if( ++iters >= criteria.max_iter || (change = cvNorm(param, prevParam, CV_RELATIVE_L2)) < criteria.epsilon ) { _param = param; state = DONE; return true; } prevErrNorm = errNorm; _param = param; cvZero(J); matJ = J; _err = err; state = CALC_J; return true; } bool CvLevMarq::updateAlt( const CvMat*& _param, CvMat*& _JtJ, CvMat*& _JtErr, double*& _errNorm ) { double change; CV_Assert( err.empty() ); if( state == DONE ) { _param = param; return false; } if( state == STARTED ) { _param = param; cvZero( JtJ ); cvZero( JtErr ); errNorm = 0; _JtJ = JtJ; _JtErr = JtErr; _errNorm = &errNorm; state = CALC_J; return true; } if( state == CALC_J ) { cvCopy( param, prevParam ); step(); _param = param; prevErrNorm = errNorm; errNorm = 0; _errNorm = &errNorm; state = CHECK_ERR; return true; } assert( state == CHECK_ERR ); if( errNorm > prevErrNorm ) { lambdaLg10++; step(); _param = param; errNorm = 0; _errNorm = &errNorm; state = CHECK_ERR; return true; } lambdaLg10 = MAX(lambdaLg10-1, -16); if( ++iters >= criteria.max_iter || (change = cvNorm(param, prevParam, CV_RELATIVE_L2)) < criteria.epsilon ) { _param = param; state = DONE; return false; } prevErrNorm = errNorm; cvZero( JtJ ); cvZero( JtErr ); _param = param; _JtJ = JtJ; _JtErr = JtErr; state = CALC_J; return true; } void CvLevMarq::step() { const double LOG10 = log(10.); double lambda = exp(lambdaLg10*LOG10); int i, j, nparams = param->rows; for( i = 0; i < nparams; i++ ) if( mask->data.ptr[i] == 0 ) { double *row = JtJ->data.db + i*nparams, *col = JtJ->data.db + i; for( j = 0; j < nparams; j++ ) row[j] = col[j*nparams] = 0; JtErr->data.db[i] = 0; } if( !err ) cvCompleteSymm( JtJ, completeSymmFlag ); #if 1 cvCopy( JtJ, JtJN ); for( i = 0; i < nparams; i++ ) JtJN->data.db[(nparams+1)*i] *= 1. + lambda; #else cvSetIdentity(JtJN, cvRealScalar(lambda)); cvAdd( JtJ, JtJN, JtJN ); #endif cvSVD( JtJN, JtJW, 0, JtJV, CV_SVD_MODIFY_A + CV_SVD_U_T + CV_SVD_V_T ); cvSVBkSb( JtJW, JtJV, JtJV, JtErr, param, CV_SVD_U_T + CV_SVD_V_T ); for( i = 0; i < nparams; i++ ) param->data.db[i] = prevParam->data.db[i] - (mask->data.ptr[i] ? param->data.db[i] : 0); } // reimplementation of dAB.m CV_IMPL void cvCalcMatMulDeriv( const CvMat* A, const CvMat* B, CvMat* dABdA, CvMat* dABdB ) { int i, j, M, N, L; int bstep; CV_Assert( CV_IS_MAT(A) && CV_IS_MAT(B) ); CV_Assert( CV_ARE_TYPES_EQ(A, B) && (CV_MAT_TYPE(A->type) == CV_32F || CV_MAT_TYPE(A->type) == CV_64F) ); CV_Assert( A->cols == B->rows ); M = A->rows; L = A->cols; N = B->cols; bstep = B->step/CV_ELEM_SIZE(B->type); if( dABdA ) { CV_Assert( CV_ARE_TYPES_EQ(A, dABdA) && dABdA->rows == A->rows*B->cols && dABdA->cols == A->rows*A->cols ); } if( dABdB ) { CV_Assert( CV_ARE_TYPES_EQ(A, dABdB) && dABdB->rows == A->rows*B->cols && dABdB->cols == B->rows*B->cols ); } if( CV_MAT_TYPE(A->type) == CV_32F ) { for( i = 0; i < M*N; i++ ) { int i1 = i / N, i2 = i % N; if( dABdA ) { float* dcda = (float*)(dABdA->data.ptr + dABdA->step*i); const float* b = (const float*)B->data.ptr + i2; for( j = 0; j < M*L; j++ ) dcda[j] = 0; for( j = 0; j < L; j++ ) dcda[i1*L + j] = b[j*bstep]; } if( dABdB ) { float* dcdb = (float*)(dABdB->data.ptr + dABdB->step*i); const float* a = (const float*)(A->data.ptr + A->step*i1); for( j = 0; j < L*N; j++ ) dcdb[j] = 0; for( j = 0; j < L; j++ ) dcdb[j*N + i2] = a[j]; } } } else { for( i = 0; i < M*N; i++ ) { int i1 = i / N, i2 = i % N; if( dABdA ) { double* dcda = (double*)(dABdA->data.ptr + dABdA->step*i); const double* b = (const double*)B->data.ptr + i2; for( j = 0; j < M*L; j++ ) dcda[j] = 0; for( j = 0; j < L; j++ ) dcda[i1*L + j] = b[j*bstep]; } if( dABdB ) { double* dcdb = (double*)(dABdB->data.ptr + dABdB->step*i); const double* a = (const double*)(A->data.ptr + A->step*i1); for( j = 0; j < L*N; j++ ) dcdb[j] = 0; for( j = 0; j < L; j++ ) dcdb[j*N + i2] = a[j]; } } } } // reimplementation of compose_motion.m CV_IMPL void cvComposeRT( const CvMat* _rvec1, const CvMat* _tvec1, const CvMat* _rvec2, const CvMat* _tvec2, CvMat* _rvec3, CvMat* _tvec3, CvMat* dr3dr1, CvMat* dr3dt1, CvMat* dr3dr2, CvMat* dr3dt2, CvMat* dt3dr1, CvMat* dt3dt1, CvMat* dt3dr2, CvMat* dt3dt2 ) { double _r1[3], _r2[3]; double _R1[9], _d1[9*3], _R2[9], _d2[9*3]; CvMat r1 = cvMat(3,1,CV_64F,_r1), r2 = cvMat(3,1,CV_64F,_r2); CvMat R1 = cvMat(3,3,CV_64F,_R1), R2 = cvMat(3,3,CV_64F,_R2); CvMat dR1dr1 = cvMat(9,3,CV_64F,_d1), dR2dr2 = cvMat(9,3,CV_64F,_d2); CV_Assert( CV_IS_MAT(_rvec1) && CV_IS_MAT(_rvec2) ); CV_Assert( CV_MAT_TYPE(_rvec1->type) == CV_32F || CV_MAT_TYPE(_rvec1->type) == CV_64F ); CV_Assert( _rvec1->rows == 3 && _rvec1->cols == 1 && CV_ARE_SIZES_EQ(_rvec1, _rvec2) ); cvConvert( _rvec1, &r1 ); cvConvert( _rvec2, &r2 ); cvRodrigues2( &r1, &R1, &dR1dr1 ); cvRodrigues2( &r2, &R2, &dR2dr2 ); if( _rvec3 || dr3dr1 || dr3dr1 ) { double _r3[3], _R3[9], _dR3dR1[9*9], _dR3dR2[9*9], _dr3dR3[9*3]; double _W1[9*3], _W2[3*3]; CvMat r3 = cvMat(3,1,CV_64F,_r3), R3 = cvMat(3,3,CV_64F,_R3); CvMat dR3dR1 = cvMat(9,9,CV_64F,_dR3dR1), dR3dR2 = cvMat(9,9,CV_64F,_dR3dR2); CvMat dr3dR3 = cvMat(3,9,CV_64F,_dr3dR3); CvMat W1 = cvMat(3,9,CV_64F,_W1), W2 = cvMat(3,3,CV_64F,_W2); cvMatMul( &R2, &R1, &R3 ); cvCalcMatMulDeriv( &R2, &R1, &dR3dR2, &dR3dR1 ); cvRodrigues2( &R3, &r3, &dr3dR3 ); if( _rvec3 ) cvConvert( &r3, _rvec3 ); if( dr3dr1 ) { cvMatMul( &dr3dR3, &dR3dR1, &W1 ); cvMatMul( &W1, &dR1dr1, &W2 ); cvConvert( &W2, dr3dr1 ); } if( dr3dr2 ) { cvMatMul( &dr3dR3, &dR3dR2, &W1 ); cvMatMul( &W1, &dR2dr2, &W2 ); cvConvert( &W2, dr3dr2 ); } } if( dr3dt1 ) cvZero( dr3dt1 ); if( dr3dt2 ) cvZero( dr3dt2 ); if( _tvec3 || dt3dr2 || dt3dt1 ) { double _t1[3], _t2[3], _t3[3], _dxdR2[3*9], _dxdt1[3*3], _W3[3*3]; CvMat t1 = cvMat(3,1,CV_64F,_t1), t2 = cvMat(3,1,CV_64F,_t2); CvMat t3 = cvMat(3,1,CV_64F,_t3); CvMat dxdR2 = cvMat(3, 9, CV_64F, _dxdR2); CvMat dxdt1 = cvMat(3, 3, CV_64F, _dxdt1); CvMat W3 = cvMat(3, 3, CV_64F, _W3); CV_Assert( CV_IS_MAT(_tvec1) && CV_IS_MAT(_tvec2) ); CV_Assert( CV_ARE_SIZES_EQ(_tvec1, _tvec2) && CV_ARE_SIZES_EQ(_tvec1, _rvec1) ); cvConvert( _tvec1, &t1 ); cvConvert( _tvec2, &t2 ); cvMatMulAdd( &R2, &t1, &t2, &t3 ); if( _tvec3 ) cvConvert( &t3, _tvec3 ); if( dt3dr2 || dt3dt1 ) { cvCalcMatMulDeriv( &R2, &t1, &dxdR2, &dxdt1 ); if( dt3dr2 ) { cvMatMul( &dxdR2, &dR2dr2, &W3 ); cvConvert( &W3, dt3dr2 ); } if( dt3dt1 ) cvConvert( &dxdt1, dt3dt1 ); } } if( dt3dt2 ) cvSetIdentity( dt3dt2 ); if( dt3dr1 ) cvZero( dt3dr1 ); } CV_IMPL int cvRodrigues2( const CvMat* src, CvMat* dst, CvMat* jacobian ) { int depth, elem_size; int i, k; double J[27]; CvMat matJ = cvMat( 3, 9, CV_64F, J ); if( !CV_IS_MAT(src) ) CV_Error( !src ? CV_StsNullPtr : CV_StsBadArg, "Input argument is not a valid matrix" ); if( !CV_IS_MAT(dst) ) CV_Error( !dst ? CV_StsNullPtr : CV_StsBadArg, "The first output argument is not a valid matrix" ); depth = CV_MAT_DEPTH(src->type); elem_size = CV_ELEM_SIZE(depth); if( depth != CV_32F && depth != CV_64F ) CV_Error( CV_StsUnsupportedFormat, "The matrices must have 32f or 64f data type" ); if( !CV_ARE_DEPTHS_EQ(src, dst) ) CV_Error( CV_StsUnmatchedFormats, "All the matrices must have the same data type" ); if( jacobian ) { if( !CV_IS_MAT(jacobian) ) CV_Error( CV_StsBadArg, "Jacobian is not a valid matrix" ); if( !CV_ARE_DEPTHS_EQ(src, jacobian) || CV_MAT_CN(jacobian->type) != 1 ) CV_Error( CV_StsUnmatchedFormats, "Jacobian must have 32fC1 or 64fC1 datatype" ); if( (jacobian->rows != 9 || jacobian->cols != 3) && (jacobian->rows != 3 || jacobian->cols != 9)) CV_Error( CV_StsBadSize, "Jacobian must be 3x9 or 9x3" ); } if( src->cols == 1 || src->rows == 1 ) { double rx, ry, rz, theta; int step = src->rows > 1 ? src->step / elem_size : 1; if( src->rows + src->cols*CV_MAT_CN(src->type) - 1 != 3 ) CV_Error( CV_StsBadSize, "Input matrix must be 1x3, 3x1 or 3x3" ); if( dst->rows != 3 || dst->cols != 3 || CV_MAT_CN(dst->type) != 1 ) CV_Error( CV_StsBadSize, "Output matrix must be 3x3, single-channel floating point matrix" ); if( depth == CV_32F ) { rx = src->data.fl[0]; ry = src->data.fl[step]; rz = src->data.fl[step*2]; } else { rx = src->data.db[0]; ry = src->data.db[step]; rz = src->data.db[step*2]; } theta = sqrt(rx*rx + ry*ry + rz*rz); if( theta < DBL_EPSILON ) { cvSetIdentity( dst ); if( jacobian ) { memset( J, 0, sizeof(J) ); J[5] = J[15] = J[19] = -1; J[7] = J[11] = J[21] = 1; } } else { const double I[] = { 1, 0, 0, 0, 1, 0, 0, 0, 1 }; double c = cos(theta); double s = sin(theta); double c1 = 1. - c; double itheta = theta ? 1./theta : 0.; rx *= itheta; ry *= itheta; rz *= itheta; double rrt[] = { rx*rx, rx*ry, rx*rz, rx*ry, ry*ry, ry*rz, rx*rz, ry*rz, rz*rz }; double _r_x_[] = { 0, -rz, ry, rz, 0, -rx, -ry, rx, 0 }; double R[9]; CvMat matR = cvMat( 3, 3, CV_64F, R ); // R = cos(theta)*I + (1 - cos(theta))*r*rT + sin(theta)*[r_x] // where [r_x] is [0 -rz ry; rz 0 -rx; -ry rx 0] for( k = 0; k < 9; k++ ) R[k] = c*I[k] + c1*rrt[k] + s*_r_x_[k]; cvConvert( &matR, dst ); if( jacobian ) { double drrt[] = { rx+rx, ry, rz, ry, 0, 0, rz, 0, 0, 0, rx, 0, rx, ry+ry, rz, 0, rz, 0, 0, 0, rx, 0, 0, ry, rx, ry, rz+rz }; double d_r_x_[] = { 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0 }; for( i = 0; i < 3; i++ ) { double ri = i == 0 ? rx : i == 1 ? ry : rz; double a0 = -s*ri, a1 = (s - 2*c1*itheta)*ri, a2 = c1*itheta; double a3 = (c - s*itheta)*ri, a4 = s*itheta; for( k = 0; k < 9; k++ ) J[i*9+k] = a0*I[k] + a1*rrt[k] + a2*drrt[i*9+k] + a3*_r_x_[k] + a4*d_r_x_[i*9+k]; } } } } else if( src->cols == 3 && src->rows == 3 ) { double R[9], U[9], V[9], W[3], rx, ry, rz; CvMat matR = cvMat( 3, 3, CV_64F, R ); CvMat matU = cvMat( 3, 3, CV_64F, U ); CvMat matV = cvMat( 3, 3, CV_64F, V ); CvMat matW = cvMat( 3, 1, CV_64F, W ); double theta, s, c; int step = dst->rows > 1 ? dst->step / elem_size : 1; if( (dst->rows != 1 || dst->cols*CV_MAT_CN(dst->type) != 3) && (dst->rows != 3 || dst->cols != 1 || CV_MAT_CN(dst->type) != 1)) CV_Error( CV_StsBadSize, "Output matrix must be 1x3 or 3x1" ); cvConvert( src, &matR ); if( !cvCheckArr( &matR, CV_CHECK_RANGE+CV_CHECK_QUIET, -100, 100 ) ) { cvZero(dst); if( jacobian ) cvZero(jacobian); return 0; } cvSVD( &matR, &matW, &matU, &matV, CV_SVD_MODIFY_A + CV_SVD_U_T + CV_SVD_V_T ); cvGEMM( &matU, &matV, 1, 0, 0, &matR, CV_GEMM_A_T ); rx = R[7] - R[5]; ry = R[2] - R[6]; rz = R[3] - R[1]; s = sqrt((rx*rx + ry*ry + rz*rz)*0.25); c = (R[0] + R[4] + R[8] - 1)*0.5; c = c > 1. ? 1. : c < -1. ? -1. : c; theta = acos(c); if( s < 1e-5 ) { double t; if( c > 0 ) rx = ry = rz = 0; else { t = (R[0] + 1)*0.5; rx = sqrt(MAX(t,0.)); t = (R[4] + 1)*0.5; ry = sqrt(MAX(t,0.))*(R[1] < 0 ? -1. : 1.); t = (R[8] + 1)*0.5; rz = sqrt(MAX(t,0.))*(R[2] < 0 ? -1. : 1.); if( fabs(rx) < fabs(ry) && fabs(rx) < fabs(rz) && (R[5] > 0) != (ry*rz > 0) ) rz = -rz; theta /= sqrt(rx*rx + ry*ry + rz*rz); rx *= theta; ry *= theta; rz *= theta; } if( jacobian ) { memset( J, 0, sizeof(J) ); if( c > 0 ) { J[5] = J[15] = J[19] = -0.5; J[7] = J[11] = J[21] = 0.5; } } } else { double vth = 1/(2*s); if( jacobian ) { double t, dtheta_dtr = -1./s; // var1 = [vth;theta] // var = [om1;var1] = [om1;vth;theta] double dvth_dtheta = -vth*c/s; double d1 = 0.5*dvth_dtheta*dtheta_dtr; double d2 = 0.5*dtheta_dtr; // dvar1/dR = dvar1/dtheta*dtheta/dR = [dvth/dtheta; 1] * dtheta/dtr * dtr/dR double dvardR[5*9] = { 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, d1, 0, 0, 0, d1, 0, 0, 0, d1, d2, 0, 0, 0, d2, 0, 0, 0, d2 }; // var2 = [om;theta] double dvar2dvar[] = { vth, 0, 0, rx, 0, 0, vth, 0, ry, 0, 0, 0, vth, rz, 0, 0, 0, 0, 0, 1 }; double domegadvar2[] = { theta, 0, 0, rx*vth, 0, theta, 0, ry*vth, 0, 0, theta, rz*vth }; CvMat _dvardR = cvMat( 5, 9, CV_64FC1, dvardR ); CvMat _dvar2dvar = cvMat( 4, 5, CV_64FC1, dvar2dvar ); CvMat _domegadvar2 = cvMat( 3, 4, CV_64FC1, domegadvar2 ); double t0[3*5]; CvMat _t0 = cvMat( 3, 5, CV_64FC1, t0 ); cvMatMul( &_domegadvar2, &_dvar2dvar, &_t0 ); cvMatMul( &_t0, &_dvardR, &matJ ); // transpose every row of matJ (treat the rows as 3x3 matrices) CV_SWAP(J[1], J[3], t); CV_SWAP(J[2], J[6], t); CV_SWAP(J[5], J[7], t); CV_SWAP(J[10], J[12], t); CV_SWAP(J[11], J[15], t); CV_SWAP(J[14], J[16], t); CV_SWAP(J[19], J[21], t); CV_SWAP(J[20], J[24], t); CV_SWAP(J[23], J[25], t); } vth *= theta; rx *= vth; ry *= vth; rz *= vth; } if( depth == CV_32F ) { dst->data.fl[0] = (float)rx; dst->data.fl[step] = (float)ry; dst->data.fl[step*2] = (float)rz; } else { dst->data.db[0] = rx; dst->data.db[step] = ry; dst->data.db[step*2] = rz; } } if( jacobian ) { if( depth == CV_32F ) { if( jacobian->rows == matJ.rows ) cvConvert( &matJ, jacobian ); else { float Jf[3*9]; CvMat _Jf = cvMat( matJ.rows, matJ.cols, CV_32FC1, Jf ); cvConvert( &matJ, &_Jf ); cvTranspose( &_Jf, jacobian ); } } else if( jacobian->rows == matJ.rows ) cvCopy( &matJ, jacobian ); else cvTranspose( &matJ, jacobian ); } return 1; } static const char* cvDistCoeffErr = "Distortion coefficients must be 1x4, 4x1, 1x5, 5x1, 1x8 or 8x1 floating-point vector"; CV_IMPL void cvProjectPoints2( const CvMat* objectPoints, const CvMat* r_vec, const CvMat* t_vec, const CvMat* A, const CvMat* distCoeffs, CvMat* imagePoints, CvMat* dpdr, CvMat* dpdt, CvMat* dpdf, CvMat* dpdc, CvMat* dpdk, double aspectRatio ) { Ptr matM, _m; Ptr _dpdr, _dpdt, _dpdc, _dpdf, _dpdk; int i, j, count; int calc_derivatives; const CvPoint3D64f* M; CvPoint2D64f* m; double r[3], R[9], dRdr[27], t[3], a[9], k[8] = {0,0,0,0,0,0,0,0}, fx, fy, cx, cy; CvMat _r, _t, _a = cvMat( 3, 3, CV_64F, a ), _k; CvMat matR = cvMat( 3, 3, CV_64F, R ), _dRdr = cvMat( 3, 9, CV_64F, dRdr ); double *dpdr_p = 0, *dpdt_p = 0, *dpdk_p = 0, *dpdf_p = 0, *dpdc_p = 0; int dpdr_step = 0, dpdt_step = 0, dpdk_step = 0, dpdf_step = 0, dpdc_step = 0; bool fixedAspectRatio = aspectRatio > FLT_EPSILON; if( !CV_IS_MAT(objectPoints) || !CV_IS_MAT(r_vec) || !CV_IS_MAT(t_vec) || !CV_IS_MAT(A) || /*!CV_IS_MAT(distCoeffs) ||*/ !CV_IS_MAT(imagePoints) ) CV_Error( CV_StsBadArg, "One of required arguments is not a valid matrix" ); count = MAX(objectPoints->rows, objectPoints->cols); if( CV_IS_CONT_MAT(objectPoints->type) && CV_MAT_DEPTH(objectPoints->type) == CV_64F && ((objectPoints->rows == 1 && CV_MAT_CN(objectPoints->type) == 3) || (objectPoints->rows == count && CV_MAT_CN(objectPoints->type)*objectPoints->cols == 3))) { matM = cvCloneMat(objectPoints); } else { matM = cvCreateMat( 1, count, CV_64FC3 ); cvConvertPointsHomogeneous( objectPoints, matM ); } if( CV_IS_CONT_MAT(imagePoints->type) && CV_MAT_DEPTH(imagePoints->type) == CV_64F && ((imagePoints->rows == 1 && CV_MAT_CN(imagePoints->type) == 2) || (imagePoints->rows == count && CV_MAT_CN(imagePoints->type)*imagePoints->cols == 2))) { _m = cvCloneMat(imagePoints); } else _m = cvCreateMat( 1, count, CV_64FC2 ); M = (CvPoint3D64f*)matM->data.db; m = (CvPoint2D64f*)_m->data.db; if( (CV_MAT_DEPTH(r_vec->type) != CV_64F && CV_MAT_DEPTH(r_vec->type) != CV_32F) || (((r_vec->rows != 1 && r_vec->cols != 1) || r_vec->rows*r_vec->cols*CV_MAT_CN(r_vec->type) != 3) && ((r_vec->rows != 3 && r_vec->cols != 3) || CV_MAT_CN(r_vec->type) != 1))) CV_Error( CV_StsBadArg, "Rotation must be represented by 1x3 or 3x1 " "floating-point rotation vector, or 3x3 rotation matrix" ); if( r_vec->rows == 3 && r_vec->cols == 3 ) { _r = cvMat( 3, 1, CV_64FC1, r ); cvRodrigues2( r_vec, &_r ); cvRodrigues2( &_r, &matR, &_dRdr ); cvCopy( r_vec, &matR ); } else { _r = cvMat( r_vec->rows, r_vec->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(r_vec->type)), r ); cvConvert( r_vec, &_r ); cvRodrigues2( &_r, &matR, &_dRdr ); } if( (CV_MAT_DEPTH(t_vec->type) != CV_64F && CV_MAT_DEPTH(t_vec->type) != CV_32F) || (t_vec->rows != 1 && t_vec->cols != 1) || t_vec->rows*t_vec->cols*CV_MAT_CN(t_vec->type) != 3 ) CV_Error( CV_StsBadArg, "Translation vector must be 1x3 or 3x1 floating-point vector" ); _t = cvMat( t_vec->rows, t_vec->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(t_vec->type)), t ); cvConvert( t_vec, &_t ); if( (CV_MAT_TYPE(A->type) != CV_64FC1 && CV_MAT_TYPE(A->type) != CV_32FC1) || A->rows != 3 || A->cols != 3 ) CV_Error( CV_StsBadArg, "Instrinsic parameters must be 3x3 floating-point matrix" ); cvConvert( A, &_a ); fx = a[0]; fy = a[4]; cx = a[2]; cy = a[5]; if( fixedAspectRatio ) fx = fy*aspectRatio; if( distCoeffs ) { if( !CV_IS_MAT(distCoeffs) || (CV_MAT_DEPTH(distCoeffs->type) != CV_64F && CV_MAT_DEPTH(distCoeffs->type) != CV_32F) || (distCoeffs->rows != 1 && distCoeffs->cols != 1) || (distCoeffs->rows*distCoeffs->cols*CV_MAT_CN(distCoeffs->type) != 4 && distCoeffs->rows*distCoeffs->cols*CV_MAT_CN(distCoeffs->type) != 5 && distCoeffs->rows*distCoeffs->cols*CV_MAT_CN(distCoeffs->type) != 8) ) CV_Error( CV_StsBadArg, cvDistCoeffErr ); _k = cvMat( distCoeffs->rows, distCoeffs->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(distCoeffs->type)), k ); cvConvert( distCoeffs, &_k ); } if( dpdr ) { if( !CV_IS_MAT(dpdr) || (CV_MAT_TYPE(dpdr->type) != CV_32FC1 && CV_MAT_TYPE(dpdr->type) != CV_64FC1) || dpdr->rows != count*2 || dpdr->cols != 3 ) CV_Error( CV_StsBadArg, "dp/drot must be 2Nx3 floating-point matrix" ); if( CV_MAT_TYPE(dpdr->type) == CV_64FC1 ) { _dpdr = cvCloneMat(dpdr); } else _dpdr = cvCreateMat( 2*count, 3, CV_64FC1 ); dpdr_p = _dpdr->data.db; dpdr_step = _dpdr->step/sizeof(dpdr_p[0]); } if( dpdt ) { if( !CV_IS_MAT(dpdt) || (CV_MAT_TYPE(dpdt->type) != CV_32FC1 && CV_MAT_TYPE(dpdt->type) != CV_64FC1) || dpdt->rows != count*2 || dpdt->cols != 3 ) CV_Error( CV_StsBadArg, "dp/dT must be 2Nx3 floating-point matrix" ); if( CV_MAT_TYPE(dpdt->type) == CV_64FC1 ) { _dpdt = cvCloneMat(dpdt); } else _dpdt = cvCreateMat( 2*count, 3, CV_64FC1 ); dpdt_p = _dpdt->data.db; dpdt_step = _dpdt->step/sizeof(dpdt_p[0]); } if( dpdf ) { if( !CV_IS_MAT(dpdf) || (CV_MAT_TYPE(dpdf->type) != CV_32FC1 && CV_MAT_TYPE(dpdf->type) != CV_64FC1) || dpdf->rows != count*2 || dpdf->cols != 2 ) CV_Error( CV_StsBadArg, "dp/df must be 2Nx2 floating-point matrix" ); if( CV_MAT_TYPE(dpdf->type) == CV_64FC1 ) { _dpdf = cvCloneMat(dpdf); } else _dpdf = cvCreateMat( 2*count, 2, CV_64FC1 ); dpdf_p = _dpdf->data.db; dpdf_step = _dpdf->step/sizeof(dpdf_p[0]); } if( dpdc ) { if( !CV_IS_MAT(dpdc) || (CV_MAT_TYPE(dpdc->type) != CV_32FC1 && CV_MAT_TYPE(dpdc->type) != CV_64FC1) || dpdc->rows != count*2 || dpdc->cols != 2 ) CV_Error( CV_StsBadArg, "dp/dc must be 2Nx2 floating-point matrix" ); if( CV_MAT_TYPE(dpdc->type) == CV_64FC1 ) { _dpdc = cvCloneMat(dpdc); } else _dpdc = cvCreateMat( 2*count, 2, CV_64FC1 ); dpdc_p = _dpdc->data.db; dpdc_step = _dpdc->step/sizeof(dpdc_p[0]); } if( dpdk ) { if( !CV_IS_MAT(dpdk) || (CV_MAT_TYPE(dpdk->type) != CV_32FC1 && CV_MAT_TYPE(dpdk->type) != CV_64FC1) || dpdk->rows != count*2 || (dpdk->cols != 8 && dpdk->cols != 5 && dpdk->cols != 4 && dpdk->cols != 2) ) CV_Error( CV_StsBadArg, "dp/df must be 2Nx8, 2Nx5, 2Nx4 or 2Nx2 floating-point matrix" ); if( !distCoeffs ) CV_Error( CV_StsNullPtr, "distCoeffs is NULL while dpdk is not" ); if( CV_MAT_TYPE(dpdk->type) == CV_64FC1 ) { _dpdk = cvCloneMat(dpdk); } else _dpdk = cvCreateMat( dpdk->rows, dpdk->cols, CV_64FC1 ); dpdk_p = _dpdk->data.db; dpdk_step = _dpdk->step/sizeof(dpdk_p[0]); } calc_derivatives = dpdr || dpdt || dpdf || dpdc || dpdk; for( i = 0; i < count; i++ ) { double X = M[i].x, Y = M[i].y, Z = M[i].z; double x = R[0]*X + R[1]*Y + R[2]*Z + t[0]; double y = R[3]*X + R[4]*Y + R[5]*Z + t[1]; double z = R[6]*X + R[7]*Y + R[8]*Z + t[2]; double r2, r4, r6, a1, a2, a3, cdist, icdist2; double xd, yd; z = z ? 1./z : 1; x *= z; y *= z; r2 = x*x + y*y; r4 = r2*r2; r6 = r4*r2; a1 = 2*x*y; a2 = r2 + 2*x*x; a3 = r2 + 2*y*y; cdist = 1 + k[0]*r2 + k[1]*r4 + k[4]*r6; icdist2 = 1./(1 + k[5]*r2 + k[6]*r4 + k[7]*r6); xd = x*cdist*icdist2 + k[2]*a1 + k[3]*a2; yd = y*cdist*icdist2 + k[2]*a3 + k[3]*a1; m[i].x = xd*fx + cx; m[i].y = yd*fy + cy; if( calc_derivatives ) { if( dpdc_p ) { dpdc_p[0] = 1; dpdc_p[1] = 0; dpdc_p[dpdc_step] = 0; dpdc_p[dpdc_step+1] = 1; dpdc_p += dpdc_step*2; } if( dpdf_p ) { if( fixedAspectRatio ) { dpdf_p[0] = 0; dpdf_p[1] = xd*aspectRatio; dpdf_p[dpdf_step] = 0; dpdf_p[dpdf_step+1] = yd; } else { dpdf_p[0] = xd; dpdf_p[1] = 0; dpdf_p[dpdf_step] = 0; dpdf_p[dpdf_step+1] = yd; } dpdf_p += dpdf_step*2; } if( dpdk_p ) { dpdk_p[0] = fx*x*icdist2*r2; dpdk_p[1] = fx*x*icdist2*r4; dpdk_p[dpdk_step] = fy*y*icdist2*r2; dpdk_p[dpdk_step+1] = fy*y*icdist2*r4; if( _dpdk->cols > 2 ) { dpdk_p[2] = fx*a1; dpdk_p[3] = fx*a2; dpdk_p[dpdk_step+2] = fy*a3; dpdk_p[dpdk_step+3] = fy*a1; if( _dpdk->cols > 4 ) { dpdk_p[4] = fx*x*icdist2*r6; dpdk_p[dpdk_step+4] = fy*y*icdist2*r6; if( _dpdk->cols > 5 ) { dpdk_p[5] = fx*x*cdist*(-icdist2)*icdist2*r2; dpdk_p[dpdk_step+5] = fy*y*cdist*(-icdist2)*icdist2*r2; dpdk_p[6] = fx*x*icdist2*cdist*(-icdist2)*icdist2*r4; dpdk_p[dpdk_step+6] = fy*y*cdist*(-icdist2)*icdist2*r4; dpdk_p[7] = fx*x*icdist2*cdist*(-icdist2)*icdist2*r6; dpdk_p[dpdk_step+7] = fy*y*cdist*(-icdist2)*icdist2*r6; } } } dpdk_p += dpdk_step*2; } if( dpdt_p ) { double dxdt[] = { z, 0, -x*z }, dydt[] = { 0, z, -y*z }; for( j = 0; j < 3; j++ ) { double dr2dt = 2*x*dxdt[j] + 2*y*dydt[j]; double dcdist_dt = k[0]*dr2dt + 2*k[1]*r2*dr2dt + 3*k[4]*r4*dr2dt; double dicdist2_dt = -icdist2*icdist2*(k[5]*dr2dt + 2*k[6]*r2*dr2dt + 3*k[7]*r4*dr2dt); double da1dt = 2*(x*dydt[j] + y*dxdt[j]); double dmxdt = fx*(dxdt[j]*cdist*icdist2 + x*dcdist_dt*icdist2 + x*cdist*dicdist2_dt + k[2]*da1dt + k[3]*(dr2dt + 2*x*dxdt[j])); double dmydt = fy*(dydt[j]*cdist*icdist2 + y*dcdist_dt*icdist2 + y*cdist*dicdist2_dt + k[2]*(dr2dt + 2*y*dydt[j]) + k[3]*da1dt); dpdt_p[j] = dmxdt; dpdt_p[dpdt_step+j] = dmydt; } dpdt_p += dpdt_step*2; } if( dpdr_p ) { double dx0dr[] = { X*dRdr[0] + Y*dRdr[1] + Z*dRdr[2], X*dRdr[9] + Y*dRdr[10] + Z*dRdr[11], X*dRdr[18] + Y*dRdr[19] + Z*dRdr[20] }; double dy0dr[] = { X*dRdr[3] + Y*dRdr[4] + Z*dRdr[5], X*dRdr[12] + Y*dRdr[13] + Z*dRdr[14], X*dRdr[21] + Y*dRdr[22] + Z*dRdr[23] }; double dz0dr[] = { X*dRdr[6] + Y*dRdr[7] + Z*dRdr[8], X*dRdr[15] + Y*dRdr[16] + Z*dRdr[17], X*dRdr[24] + Y*dRdr[25] + Z*dRdr[26] }; for( j = 0; j < 3; j++ ) { double dxdr = z*(dx0dr[j] - x*dz0dr[j]); double dydr = z*(dy0dr[j] - y*dz0dr[j]); double dr2dr = 2*x*dxdr + 2*y*dydr; double dcdist_dr = k[0]*dr2dr + 2*k[1]*r2*dr2dr + 3*k[4]*r4*dr2dr; double dicdist2_dr = -icdist2*icdist2*(k[5]*dr2dr + 2*k[6]*r2*dr2dr + 3*k[7]*r4*dr2dr); double da1dr = 2*(x*dydr + y*dxdr); double dmxdr = fx*(dxdr*cdist*icdist2 + x*dcdist_dr*icdist2 + x*cdist*dicdist2_dr + k[2]*da1dr + k[3]*(dr2dr + 2*x*dxdr)); double dmydr = fy*(dydr*cdist*icdist2 + y*dcdist_dr*icdist2 + y*cdist*dicdist2_dr + k[2]*(dr2dr + 2*y*dydr) + k[3]*da1dr); dpdr_p[j] = dmxdr; dpdr_p[dpdr_step+j] = dmydr; } dpdr_p += dpdr_step*2; } } } if( _m != imagePoints ) cvConvertPointsHomogeneous( _m, imagePoints ); if( _dpdr != dpdr ) cvConvert( _dpdr, dpdr ); if( _dpdt != dpdt ) cvConvert( _dpdt, dpdt ); if( _dpdf != dpdf ) cvConvert( _dpdf, dpdf ); if( _dpdc != dpdc ) cvConvert( _dpdc, dpdc ); if( _dpdk != dpdk ) cvConvert( _dpdk, dpdk ); } CV_IMPL void cvFindExtrinsicCameraParams2( const CvMat* objectPoints, const CvMat* imagePoints, const CvMat* A, const CvMat* distCoeffs, CvMat* rvec, CvMat* tvec, int useExtrinsicGuess ) { const int max_iter = 20; Ptr matM, _Mxy, _m, _mn, matL, matJ; int i, count; double a[9], ar[9]={1,0,0,0,1,0,0,0,1}, R[9]; double MM[9], U[9], V[9], W[3]; CvScalar Mc; double param[6]; CvMat matA = cvMat( 3, 3, CV_64F, a ); CvMat _Ar = cvMat( 3, 3, CV_64F, ar ); CvMat matR = cvMat( 3, 3, CV_64F, R ); CvMat _r = cvMat( 3, 1, CV_64F, param ); CvMat _t = cvMat( 3, 1, CV_64F, param + 3 ); CvMat _Mc = cvMat( 1, 3, CV_64F, Mc.val ); CvMat _MM = cvMat( 3, 3, CV_64F, MM ); CvMat matU = cvMat( 3, 3, CV_64F, U ); CvMat matV = cvMat( 3, 3, CV_64F, V ); CvMat matW = cvMat( 3, 1, CV_64F, W ); CvMat _param = cvMat( 6, 1, CV_64F, param ); CvMat _dpdr, _dpdt; CV_Assert( CV_IS_MAT(objectPoints) && CV_IS_MAT(imagePoints) && CV_IS_MAT(A) && CV_IS_MAT(rvec) && CV_IS_MAT(tvec) ); count = MAX(objectPoints->cols, objectPoints->rows); matM = cvCreateMat( 1, count, CV_64FC3 ); _m = cvCreateMat( 1, count, CV_64FC2 ); cvConvertPointsHomogeneous( objectPoints, matM ); cvConvertPointsHomogeneous( imagePoints, _m ); cvConvert( A, &matA ); CV_Assert( (CV_MAT_DEPTH(rvec->type) == CV_64F || CV_MAT_DEPTH(rvec->type) == CV_32F) && (rvec->rows == 1 || rvec->cols == 1) && rvec->rows*rvec->cols*CV_MAT_CN(rvec->type) == 3 ); CV_Assert( (CV_MAT_DEPTH(tvec->type) == CV_64F || CV_MAT_DEPTH(tvec->type) == CV_32F) && (tvec->rows == 1 || tvec->cols == 1) && tvec->rows*tvec->cols*CV_MAT_CN(tvec->type) == 3 ); _mn = cvCreateMat( 1, count, CV_64FC2 ); _Mxy = cvCreateMat( 1, count, CV_64FC2 ); // normalize image points // (unapply the intrinsic matrix transformation and distortion) cvUndistortPoints( _m, _mn, &matA, distCoeffs, 0, &_Ar ); if( useExtrinsicGuess ) { CvMat _r_temp = cvMat(rvec->rows, rvec->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(rvec->type)), param ); CvMat _t_temp = cvMat(tvec->rows, tvec->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(tvec->type)), param + 3); cvConvert( rvec, &_r_temp ); cvConvert( tvec, &_t_temp ); } else { Mc = cvAvg(matM); cvReshape( matM, matM, 1, count ); cvMulTransposed( matM, &_MM, 1, &_Mc ); cvSVD( &_MM, &matW, 0, &matV, CV_SVD_MODIFY_A + CV_SVD_V_T ); // initialize extrinsic parameters if( W[2]/W[1] < 1e-3 || count < 4 ) { // a planar structure case (all M's lie in the same plane) double tt[3], h[9], h1_norm, h2_norm; CvMat* R_transform = &matV; CvMat T_transform = cvMat( 3, 1, CV_64F, tt ); CvMat matH = cvMat( 3, 3, CV_64F, h ); CvMat _h1, _h2, _h3; if( V[2]*V[2] + V[5]*V[5] < 1e-10 ) cvSetIdentity( R_transform ); if( cvDet(R_transform) < 0 ) cvScale( R_transform, R_transform, -1 ); cvGEMM( R_transform, &_Mc, -1, 0, 0, &T_transform, CV_GEMM_B_T ); for( i = 0; i < count; i++ ) { const double* Rp = R_transform->data.db; const double* Tp = T_transform.data.db; const double* src = matM->data.db + i*3; double* dst = _Mxy->data.db + i*2; dst[0] = Rp[0]*src[0] + Rp[1]*src[1] + Rp[2]*src[2] + Tp[0]; dst[1] = Rp[3]*src[0] + Rp[4]*src[1] + Rp[5]*src[2] + Tp[1]; } cvFindHomography( _Mxy, _mn, &matH ); cvGetCol( &matH, &_h1, 0 ); _h2 = _h1; _h2.data.db++; _h3 = _h2; _h3.data.db++; h1_norm = sqrt(h[0]*h[0] + h[3]*h[3] + h[6]*h[6]); h2_norm = sqrt(h[1]*h[1] + h[4]*h[4] + h[7]*h[7]); cvScale( &_h1, &_h1, 1./h1_norm ); cvScale( &_h2, &_h2, 1./h2_norm ); cvScale( &_h3, &_t, 2./(h1_norm + h2_norm)); cvCrossProduct( &_h1, &_h2, &_h3 ); cvRodrigues2( &matH, &_r ); cvRodrigues2( &_r, &matH ); cvMatMulAdd( &matH, &T_transform, &_t, &_t ); cvMatMul( &matH, R_transform, &matR ); cvRodrigues2( &matR, &_r ); } else { // non-planar structure. Use DLT method double* L; double LL[12*12], LW[12], LV[12*12], sc; CvMat _LL = cvMat( 12, 12, CV_64F, LL ); CvMat _LW = cvMat( 12, 1, CV_64F, LW ); CvMat _LV = cvMat( 12, 12, CV_64F, LV ); CvMat _RRt, _RR, _tt; CvPoint3D64f* M = (CvPoint3D64f*)matM->data.db; CvPoint2D64f* mn = (CvPoint2D64f*)_mn->data.db; matL = cvCreateMat( 2*count, 12, CV_64F ); L = matL->data.db; for( i = 0; i < count; i++, L += 24 ) { double x = -mn[i].x, y = -mn[i].y; L[0] = L[16] = M[i].x; L[1] = L[17] = M[i].y; L[2] = L[18] = M[i].z; L[3] = L[19] = 1.; L[4] = L[5] = L[6] = L[7] = 0.; L[12] = L[13] = L[14] = L[15] = 0.; L[8] = x*M[i].x; L[9] = x*M[i].y; L[10] = x*M[i].z; L[11] = x; L[20] = y*M[i].x; L[21] = y*M[i].y; L[22] = y*M[i].z; L[23] = y; } cvMulTransposed( matL, &_LL, 1 ); cvSVD( &_LL, &_LW, 0, &_LV, CV_SVD_MODIFY_A + CV_SVD_V_T ); _RRt = cvMat( 3, 4, CV_64F, LV + 11*12 ); cvGetCols( &_RRt, &_RR, 0, 3 ); cvGetCol( &_RRt, &_tt, 3 ); sc = cvNorm(&_RR); cvSVD( &_RR, &matW, &matU, &matV, CV_SVD_MODIFY_A + CV_SVD_U_T + CV_SVD_V_T ); if( W[0]*W[1]*W[2] < 0 ) sc = -sc; cvGEMM( &matU, &matV, 1, 0, 0, &matR, CV_GEMM_A_T ); cvScale( &_tt, &_t, cvNorm(&matR)/sc ); cvRodrigues2( &matR, &_r ); } } cvReshape( matM, matM, 3, 1 ); cvReshape( _mn, _mn, 2, 1 ); // refine extrinsic parameters using iterative algorithm CvLevMarq solver( 6, count*2, cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,max_iter,FLT_EPSILON), true); cvCopy( &_param, solver.param ); for(;;) { CvMat *matJ = 0, *_err = 0; const CvMat *__param = 0; bool proceed = solver.update( __param, matJ, _err ); cvCopy( __param, &_param ); if( !proceed || !_err ) break; cvReshape( _err, _err, 2, 1 ); if( matJ ) { cvGetCols( matJ, &_dpdr, 0, 3 ); cvGetCols( matJ, &_dpdt, 3, 6 ); cvProjectPoints2( matM, &_r, &_t, &matA, distCoeffs, _err, &_dpdr, &_dpdt, 0, 0, 0 ); } else { cvProjectPoints2( matM, &_r, &_t, &matA, distCoeffs, _err, 0, 0, 0, 0, 0 ); } cvSub(_err, _m, _err); cvReshape( _err, _err, 1, 2*count ); } cvCopy( solver.param, &_param ); _r = cvMat( rvec->rows, rvec->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(rvec->type)), param ); _t = cvMat( tvec->rows, tvec->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(tvec->type)), param + 3 ); cvConvert( &_r, rvec ); cvConvert( &_t, tvec ); } CV_IMPL void cvInitIntrinsicParams2D( const CvMat* objectPoints, const CvMat* imagePoints, const CvMat* npoints, CvSize imageSize, CvMat* cameraMatrix, double aspectRatio ) { Ptr matA, _b, _allH, _allK; int i, j, pos, nimages, total, ni = 0; double a[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 1 }; double H[9], f[2]; CvMat _a = cvMat( 3, 3, CV_64F, a ); CvMat matH = cvMat( 3, 3, CV_64F, H ); CvMat _f = cvMat( 2, 1, CV_64F, f ); assert( CV_MAT_TYPE(npoints->type) == CV_32SC1 && CV_IS_MAT_CONT(npoints->type) ); nimages = npoints->rows + npoints->cols - 1; if( (CV_MAT_TYPE(objectPoints->type) != CV_32FC3 && CV_MAT_TYPE(objectPoints->type) != CV_64FC3) || (CV_MAT_TYPE(imagePoints->type) != CV_32FC2 && CV_MAT_TYPE(imagePoints->type) != CV_64FC2) ) CV_Error( CV_StsUnsupportedFormat, "Both object points and image points must be 2D" ); if( objectPoints->rows != 1 || imagePoints->rows != 1 ) CV_Error( CV_StsBadSize, "object points and image points must be a single-row matrices" ); matA = cvCreateMat( 2*nimages, 2, CV_64F ); _b = cvCreateMat( 2*nimages, 1, CV_64F ); a[2] = (imageSize.width - 1)*0.5; a[5] = (imageSize.height - 1)*0.5; _allH = cvCreateMat( nimages, 9, CV_64F ); total = cvRound(cvSum(npoints).val[0]); // extract vanishing points in order to obtain initial value for the focal length for( i = 0, pos = 0; i < nimages; i++, pos += ni ) { double* Ap = matA->data.db + i*4; double* bp = _b->data.db + i*2; ni = npoints->data.i[i]; double h[3], v[3], d1[3], d2[3]; double n[4] = {0,0,0,0}; CvMat _m, matM; cvGetCols( objectPoints, &matM, pos, pos + ni ); cvGetCols( imagePoints, &_m, pos, pos + ni ); cvFindHomography( &matM, &_m, &matH ); memcpy( _allH->data.db + i*9, H, sizeof(H) ); H[0] -= H[6]*a[2]; H[1] -= H[7]*a[2]; H[2] -= H[8]*a[2]; H[3] -= H[6]*a[5]; H[4] -= H[7]*a[5]; H[5] -= H[8]*a[5]; for( j = 0; j < 3; j++ ) { double t0 = H[j*3], t1 = H[j*3+1]; h[j] = t0; v[j] = t1; d1[j] = (t0 + t1)*0.5; d2[j] = (t0 - t1)*0.5; n[0] += t0*t0; n[1] += t1*t1; n[2] += d1[j]*d1[j]; n[3] += d2[j]*d2[j]; } for( j = 0; j < 4; j++ ) n[j] = 1./sqrt(n[j]); for( j = 0; j < 3; j++ ) { h[j] *= n[0]; v[j] *= n[1]; d1[j] *= n[2]; d2[j] *= n[3]; } Ap[0] = h[0]*v[0]; Ap[1] = h[1]*v[1]; Ap[2] = d1[0]*d2[0]; Ap[3] = d1[1]*d2[1]; bp[0] = -h[2]*v[2]; bp[1] = -d1[2]*d2[2]; } cvSolve( matA, _b, &_f, CV_NORMAL + CV_SVD ); a[0] = sqrt(fabs(1./f[0])); a[4] = sqrt(fabs(1./f[1])); if( aspectRatio != 0 ) { double tf = (a[0] + a[4])/(aspectRatio + 1.); a[0] = aspectRatio*tf; a[4] = tf; } cvConvert( &_a, cameraMatrix ); } /* finds intrinsic and extrinsic camera parameters from a few views of known calibration pattern */ CV_IMPL double cvCalibrateCamera2( const CvMat* objectPoints, const CvMat* imagePoints, const CvMat* npoints, CvSize imageSize, CvMat* cameraMatrix, CvMat* distCoeffs, CvMat* rvecs, CvMat* tvecs, int flags ) { const int NINTRINSIC = 12; Ptr matM, _m, _Ji, _Je, _err; CvLevMarq solver; double reprojErr = 0; double A[9], k[8] = {0,0,0,0,0,0,0,0}; CvMat matA = cvMat(3, 3, CV_64F, A), _k; int i, nimages, maxPoints = 0, ni = 0, pos, total = 0, nparams, npstep, cn; double aspectRatio = 0.; // 0. check the parameters & allocate buffers if( !CV_IS_MAT(objectPoints) || !CV_IS_MAT(imagePoints) || !CV_IS_MAT(npoints) || !CV_IS_MAT(cameraMatrix) || !CV_IS_MAT(distCoeffs) ) CV_Error( CV_StsBadArg, "One of required vector arguments is not a valid matrix" ); if( imageSize.width <= 0 || imageSize.height <= 0 ) CV_Error( CV_StsOutOfRange, "image width and height must be positive" ); if( CV_MAT_TYPE(npoints->type) != CV_32SC1 || (npoints->rows != 1 && npoints->cols != 1) ) CV_Error( CV_StsUnsupportedFormat, "the array of point counters must be 1-dimensional integer vector" ); nimages = npoints->rows*npoints->cols; npstep = npoints->rows == 1 ? 1 : npoints->step/CV_ELEM_SIZE(npoints->type); if( rvecs ) { cn = CV_MAT_CN(rvecs->type); if( !CV_IS_MAT(rvecs) || (CV_MAT_DEPTH(rvecs->type) != CV_32F && CV_MAT_DEPTH(rvecs->type) != CV_64F) || ((rvecs->rows != nimages || (rvecs->cols*cn != 3 && rvecs->cols*cn != 9)) && (rvecs->rows != 1 || rvecs->cols != nimages || cn != 3)) ) CV_Error( CV_StsBadArg, "the output array of rotation vectors must be 3-channel " "1xn or nx1 array or 1-channel nx3 or nx9 array, where n is the number of views" ); } if( tvecs ) { cn = CV_MAT_CN(tvecs->type); if( !CV_IS_MAT(tvecs) || (CV_MAT_DEPTH(tvecs->type) != CV_32F && CV_MAT_DEPTH(tvecs->type) != CV_64F) || ((tvecs->rows != nimages || tvecs->cols*cn != 3) && (tvecs->rows != 1 || tvecs->cols != nimages || cn != 3)) ) CV_Error( CV_StsBadArg, "the output array of translation vectors must be 3-channel " "1xn or nx1 array or 1-channel nx3 array, where n is the number of views" ); } if( (CV_MAT_TYPE(cameraMatrix->type) != CV_32FC1 && CV_MAT_TYPE(cameraMatrix->type) != CV_64FC1) || cameraMatrix->rows != 3 || cameraMatrix->cols != 3 ) CV_Error( CV_StsBadArg, "Intrinsic parameters must be 3x3 floating-point matrix" ); if( (CV_MAT_TYPE(distCoeffs->type) != CV_32FC1 && CV_MAT_TYPE(distCoeffs->type) != CV_64FC1) || (distCoeffs->cols != 1 && distCoeffs->rows != 1) || (distCoeffs->cols*distCoeffs->rows != 4 && distCoeffs->cols*distCoeffs->rows != 5 && distCoeffs->cols*distCoeffs->rows != 8) ) CV_Error( CV_StsBadArg, cvDistCoeffErr ); for( i = 0; i < nimages; i++ ) { ni = npoints->data.i[i*npstep]; if( ni < 4 ) { char buf[100]; sprintf( buf, "The number of points in the view #%d is < 4", i ); CV_Error( CV_StsOutOfRange, buf ); } maxPoints = MAX( maxPoints, ni ); total += ni; } matM = cvCreateMat( 1, total, CV_64FC3 ); _m = cvCreateMat( 1, total, CV_64FC2 ); cvConvertPointsHomogeneous( objectPoints, matM ); cvConvertPointsHomogeneous( imagePoints, _m ); nparams = NINTRINSIC + nimages*6; _Ji = cvCreateMat( maxPoints*2, NINTRINSIC, CV_64FC1 ); _Je = cvCreateMat( maxPoints*2, 6, CV_64FC1 ); _err = cvCreateMat( maxPoints*2, 1, CV_64FC1 ); cvZero( _Ji ); _k = cvMat( distCoeffs->rows, distCoeffs->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(distCoeffs->type)), k); if( distCoeffs->rows*distCoeffs->cols*CV_MAT_CN(distCoeffs->type) < 8 ) { if( distCoeffs->rows*distCoeffs->cols*CV_MAT_CN(distCoeffs->type) < 5 ) flags |= CV_CALIB_FIX_K3; flags |= CV_CALIB_FIX_K4 | CV_CALIB_FIX_K5 | CV_CALIB_FIX_K6; } // 1. initialize intrinsic parameters & LM solver if( flags & CV_CALIB_USE_INTRINSIC_GUESS ) { cvConvert( cameraMatrix, &matA ); if( A[0] <= 0 || A[4] <= 0 ) CV_Error( CV_StsOutOfRange, "Focal length (fx and fy) must be positive" ); if( A[2] < 0 || A[2] >= imageSize.width || A[5] < 0 || A[5] >= imageSize.height ) CV_Error( CV_StsOutOfRange, "Principal point must be within the image" ); if( fabs(A[1]) > 1e-5 ) CV_Error( CV_StsOutOfRange, "Non-zero skew is not supported by the function" ); if( fabs(A[3]) > 1e-5 || fabs(A[6]) > 1e-5 || fabs(A[7]) > 1e-5 || fabs(A[8]-1) > 1e-5 ) CV_Error( CV_StsOutOfRange, "The intrinsic matrix must have [fx 0 cx; 0 fy cy; 0 0 1] shape" ); A[1] = A[3] = A[6] = A[7] = 0.; A[8] = 1.; if( flags & CV_CALIB_FIX_ASPECT_RATIO ) aspectRatio = A[0]/A[4]; cvConvert( distCoeffs, &_k ); } else { CvScalar mean, sdv; cvAvgSdv( matM, &mean, &sdv ); if( fabs(mean.val[2]) > 1e-5 || fabs(sdv.val[2]) > 1e-5 ) CV_Error( CV_StsBadArg, "For non-planar calibration rigs the initial intrinsic matrix must be specified" ); for( i = 0; i < total; i++ ) ((CvPoint3D64f*)matM->data.db)[i].z = 0.; if( flags & CV_CALIB_FIX_ASPECT_RATIO ) { aspectRatio = cvmGet(cameraMatrix,0,0); aspectRatio /= cvmGet(cameraMatrix,1,1); if( aspectRatio < 0.01 || aspectRatio > 100 ) CV_Error( CV_StsOutOfRange, "The specified aspect ratio (=A[0][0]/A[1][1]) is incorrect" ); } cvInitIntrinsicParams2D( matM, _m, npoints, imageSize, &matA, aspectRatio ); } solver.init( nparams, 0, cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,DBL_EPSILON) ); { double* param = solver.param->data.db; uchar* mask = solver.mask->data.ptr; param[0] = A[0]; param[1] = A[4]; param[2] = A[2]; param[3] = A[5]; param[4] = k[0]; param[5] = k[1]; param[6] = k[2]; param[7] = k[3]; param[8] = k[4]; param[9] = k[5]; param[10] = k[6]; param[11] = k[7]; if( flags & CV_CALIB_FIX_FOCAL_LENGTH ) mask[0] = mask[1] = 0; if( flags & CV_CALIB_FIX_PRINCIPAL_POINT ) mask[2] = mask[3] = 0; if( flags & CV_CALIB_ZERO_TANGENT_DIST ) { param[6] = param[7] = 0; mask[6] = mask[7] = 0; } if( flags & CV_CALIB_FIX_K1 ) mask[4] = 0; if( flags & CV_CALIB_FIX_K2 ) mask[5] = 0; if( flags & CV_CALIB_FIX_K3 ) mask[8] = 0; if( flags & CV_CALIB_FIX_K4 ) mask[9] = 0; if( flags & CV_CALIB_FIX_K5 ) mask[10] = 0; if( flags & CV_CALIB_FIX_K6 ) mask[11] = 0; } // 2. initialize extrinsic parameters for( i = 0, pos = 0; i < nimages; i++, pos += ni ) { CvMat _Mi, _mi, _ri, _ti; ni = npoints->data.i[i*npstep]; cvGetRows( solver.param, &_ri, NINTRINSIC + i*6, NINTRINSIC + i*6 + 3 ); cvGetRows( solver.param, &_ti, NINTRINSIC + i*6 + 3, NINTRINSIC + i*6 + 6 ); cvGetCols( matM, &_Mi, pos, pos + ni ); cvGetCols( _m, &_mi, pos, pos + ni ); cvFindExtrinsicCameraParams2( &_Mi, &_mi, &matA, &_k, &_ri, &_ti ); } // 3. run the optimization for(;;) { const CvMat* _param = 0; CvMat *_JtJ = 0, *_JtErr = 0; double* _errNorm = 0; bool proceed = solver.updateAlt( _param, _JtJ, _JtErr, _errNorm ); double *param = solver.param->data.db, *pparam = solver.prevParam->data.db; if( flags & CV_CALIB_FIX_ASPECT_RATIO ) { param[0] = param[1]*aspectRatio; pparam[0] = pparam[1]*aspectRatio; } A[0] = param[0]; A[4] = param[1]; A[2] = param[2]; A[5] = param[3]; k[0] = param[4]; k[1] = param[5]; k[2] = param[6]; k[3] = param[7]; k[4] = param[8]; k[5] = param[9]; k[6] = param[10]; k[7] = param[11]; if( !proceed ) break; reprojErr = 0; for( i = 0, pos = 0; i < nimages; i++, pos += ni ) { CvMat _Mi, _mi, _ri, _ti, _dpdr, _dpdt, _dpdf, _dpdc, _dpdk, _mp, _part; ni = npoints->data.i[i*npstep]; cvGetRows( solver.param, &_ri, NINTRINSIC + i*6, NINTRINSIC + i*6 + 3 ); cvGetRows( solver.param, &_ti, NINTRINSIC + i*6 + 3, NINTRINSIC + i*6 + 6 ); cvGetCols( matM, &_Mi, pos, pos + ni ); cvGetCols( _m, &_mi, pos, pos + ni ); _Je->rows = _Ji->rows = _err->rows = ni*2; cvGetCols( _Je, &_dpdr, 0, 3 ); cvGetCols( _Je, &_dpdt, 3, 6 ); cvGetCols( _Ji, &_dpdf, 0, 2 ); cvGetCols( _Ji, &_dpdc, 2, 4 ); cvGetCols( _Ji, &_dpdk, 4, NINTRINSIC ); cvReshape( _err, &_mp, 2, 1 ); if( _JtJ || _JtErr ) { cvProjectPoints2( &_Mi, &_ri, &_ti, &matA, &_k, &_mp, &_dpdr, &_dpdt, (flags & CV_CALIB_FIX_FOCAL_LENGTH) ? 0 : &_dpdf, (flags & CV_CALIB_FIX_PRINCIPAL_POINT) ? 0 : &_dpdc, &_dpdk, (flags & CV_CALIB_FIX_ASPECT_RATIO) ? aspectRatio : 0); } else cvProjectPoints2( &_Mi, &_ri, &_ti, &matA, &_k, &_mp ); cvSub( &_mp, &_mi, &_mp ); if( _JtJ || _JtErr ) { cvGetSubRect( _JtJ, &_part, cvRect(0,0,NINTRINSIC,NINTRINSIC) ); cvGEMM( _Ji, _Ji, 1, &_part, 1, &_part, CV_GEMM_A_T ); cvGetSubRect( _JtJ, &_part, cvRect(NINTRINSIC+i*6,NINTRINSIC+i*6,6,6) ); cvGEMM( _Je, _Je, 1, 0, 0, &_part, CV_GEMM_A_T ); cvGetSubRect( _JtJ, &_part, cvRect(NINTRINSIC+i*6,0,6,NINTRINSIC) ); cvGEMM( _Ji, _Je, 1, 0, 0, &_part, CV_GEMM_A_T ); cvGetRows( _JtErr, &_part, 0, NINTRINSIC ); cvGEMM( _Ji, _err, 1, &_part, 1, &_part, CV_GEMM_A_T ); cvGetRows( _JtErr, &_part, NINTRINSIC + i*6, NINTRINSIC + (i+1)*6 ); cvGEMM( _Je, _err, 1, 0, 0, &_part, CV_GEMM_A_T ); } double errNorm = cvNorm( &_mp, 0, CV_L2 ); reprojErr += errNorm*errNorm; } if( _errNorm ) *_errNorm = reprojErr; } // 4. store the results cvConvert( &matA, cameraMatrix ); cvConvert( &_k, distCoeffs ); for( i = 0; i < nimages; i++ ) { CvMat src, dst; if( rvecs ) { src = cvMat( 3, 1, CV_64F, solver.param->data.db + NINTRINSIC + i*6 ); if( rvecs->rows == nimages && rvecs->cols*CV_MAT_CN(rvecs->type) == 9 ) { dst = cvMat( 3, 3, CV_MAT_DEPTH(rvecs->type), rvecs->data.ptr + rvecs->step*i ); cvRodrigues2( &src, &matA ); cvConvert( &matA, &dst ); } else { dst = cvMat( 3, 1, CV_MAT_DEPTH(rvecs->type), rvecs->rows == 1 ? rvecs->data.ptr + i*CV_ELEM_SIZE(rvecs->type) : rvecs->data.ptr + rvecs->step*i ); cvConvert( &src, &dst ); } } if( tvecs ) { src = cvMat( 3, 1, CV_64F, solver.param->data.db + NINTRINSIC + i*6 + 3 ); dst = cvMat( 3, 1, CV_MAT_TYPE(tvecs->type), tvecs->rows == 1 ? tvecs->data.ptr + i*CV_ELEM_SIZE(tvecs->type) : tvecs->data.ptr + tvecs->step*i ); cvConvert( &src, &dst ); } } return reprojErr; } void cvCalibrationMatrixValues( const CvMat *calibMatr, CvSize imgSize, double apertureWidth, double apertureHeight, double *fovx, double *fovy, double *focalLength, CvPoint2D64f *principalPoint, double *pasp ) { double alphax, alphay, mx, my; int imgWidth = imgSize.width, imgHeight = imgSize.height; /* Validate parameters. */ if(calibMatr == 0) CV_Error(CV_StsNullPtr, "Some of parameters is a NULL pointer!"); if(!CV_IS_MAT(calibMatr)) CV_Error(CV_StsUnsupportedFormat, "Input parameters must be a matrices!"); if(calibMatr->cols != 3 || calibMatr->rows != 3) CV_Error(CV_StsUnmatchedSizes, "Size of matrices must be 3x3!"); alphax = cvmGet(calibMatr, 0, 0); alphay = cvmGet(calibMatr, 1, 1); assert(imgWidth != 0 && imgHeight != 0 && alphax != 0.0 && alphay != 0.0); /* Calculate pixel aspect ratio. */ if(pasp) *pasp = alphay / alphax; /* Calculate number of pixel per realworld unit. */ if(apertureWidth != 0.0 && apertureHeight != 0.0) { mx = imgWidth / apertureWidth; my = imgHeight / apertureHeight; } else { mx = 1.0; my = *pasp; } /* Calculate fovx and fovy. */ if(fovx) *fovx = 2 * atan(imgWidth / (2 * alphax)) * 180.0 / CV_PI; if(fovy) *fovy = 2 * atan(imgHeight / (2 * alphay)) * 180.0 / CV_PI; /* Calculate focal length. */ if(focalLength) *focalLength = alphax / mx; /* Calculate principle point. */ if(principalPoint) *principalPoint = cvPoint2D64f(cvmGet(calibMatr, 0, 2) / mx, cvmGet(calibMatr, 1, 2) / my); } //////////////////////////////// Stereo Calibration /////////////////////////////////// static int dbCmp( const void* _a, const void* _b ) { double a = *(const double*)_a; double b = *(const double*)_b; return (a > b) - (a < b); } double cvStereoCalibrate( const CvMat* _objectPoints, const CvMat* _imagePoints1, const CvMat* _imagePoints2, const CvMat* _npoints, CvMat* _cameraMatrix1, CvMat* _distCoeffs1, CvMat* _cameraMatrix2, CvMat* _distCoeffs2, CvSize imageSize, CvMat* matR, CvMat* matT, CvMat* matE, CvMat* matF, CvTermCriteria termCrit, int flags ) { const int NINTRINSIC = 12; Ptr npoints, err, J_LR, Je, Ji, imagePoints[2], objectPoints, RT0; CvLevMarq solver; double reprojErr = 0; double A[2][9], dk[2][8]={{0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0}}, rlr[9]; CvMat K[2], Dist[2], om_LR, T_LR; CvMat R_LR = cvMat(3, 3, CV_64F, rlr); int i, k, p, ni = 0, ofs, nimages, pointsTotal, maxPoints = 0; int nparams; bool recomputeIntrinsics = false; double aspectRatio[2] = {0,0}; CV_Assert( CV_IS_MAT(_imagePoints1) && CV_IS_MAT(_imagePoints2) && CV_IS_MAT(_objectPoints) && CV_IS_MAT(_npoints) && CV_IS_MAT(matR) && CV_IS_MAT(matT) ); CV_Assert( CV_ARE_TYPES_EQ(_imagePoints1, _imagePoints2) && CV_ARE_DEPTHS_EQ(_imagePoints1, _objectPoints) ); CV_Assert( (_npoints->cols == 1 || _npoints->rows == 1) && CV_MAT_TYPE(_npoints->type) == CV_32SC1 ); nimages = _npoints->cols + _npoints->rows - 1; npoints = cvCreateMat( _npoints->rows, _npoints->cols, _npoints->type ); cvCopy( _npoints, npoints ); for( i = 0, pointsTotal = 0; i < nimages; i++ ) { maxPoints = MAX(maxPoints, npoints->data.i[i]); pointsTotal += npoints->data.i[i]; } objectPoints = cvCreateMat( _objectPoints->rows, _objectPoints->cols, CV_64FC(CV_MAT_CN(_objectPoints->type))); cvConvert( _objectPoints, objectPoints ); cvReshape( objectPoints, objectPoints, 3, 1 ); for( k = 0; k < 2; k++ ) { const CvMat* points = k == 0 ? _imagePoints1 : _imagePoints2; const CvMat* cameraMatrix = k == 0 ? _cameraMatrix1 : _cameraMatrix2; const CvMat* distCoeffs = k == 0 ? _distCoeffs1 : _distCoeffs2; int cn = CV_MAT_CN(_imagePoints1->type); CV_Assert( (CV_MAT_DEPTH(_imagePoints1->type) == CV_32F || CV_MAT_DEPTH(_imagePoints1->type) == CV_64F) && ((_imagePoints1->rows == pointsTotal && _imagePoints1->cols*cn == 2) || (_imagePoints1->rows == 1 && _imagePoints1->cols == pointsTotal && cn == 2)) ); K[k] = cvMat(3,3,CV_64F,A[k]); Dist[k] = cvMat(1,8,CV_64F,dk[k]); imagePoints[k] = cvCreateMat( points->rows, points->cols, CV_64FC(CV_MAT_CN(points->type))); cvConvert( points, imagePoints[k] ); cvReshape( imagePoints[k], imagePoints[k], 2, 1 ); if( flags & (CV_CALIB_FIX_INTRINSIC|CV_CALIB_USE_INTRINSIC_GUESS| CV_CALIB_FIX_ASPECT_RATIO|CV_CALIB_FIX_FOCAL_LENGTH) ) cvConvert( cameraMatrix, &K[k] ); if( flags & (CV_CALIB_FIX_INTRINSIC|CV_CALIB_USE_INTRINSIC_GUESS| CV_CALIB_FIX_K1|CV_CALIB_FIX_K2|CV_CALIB_FIX_K3|CV_CALIB_FIX_K4|CV_CALIB_FIX_K5|CV_CALIB_FIX_K6) ) { CvMat tdist = cvMat( distCoeffs->rows, distCoeffs->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(distCoeffs->type)), Dist[k].data.db ); cvConvert( distCoeffs, &tdist ); } if( !(flags & (CV_CALIB_FIX_INTRINSIC|CV_CALIB_USE_INTRINSIC_GUESS))) { cvCalibrateCamera2( objectPoints, imagePoints[k], npoints, imageSize, &K[k], &Dist[k], 0, 0, flags ); } } if( flags & CV_CALIB_SAME_FOCAL_LENGTH ) { static const int avg_idx[] = { 0, 4, 2, 5, -1 }; for( k = 0; avg_idx[k] >= 0; k++ ) A[0][avg_idx[k]] = A[1][avg_idx[k]] = (A[0][avg_idx[k]] + A[1][avg_idx[k]])*0.5; } if( flags & CV_CALIB_FIX_ASPECT_RATIO ) { for( k = 0; k < 2; k++ ) aspectRatio[k] = A[k][0]/A[k][4]; } recomputeIntrinsics = (flags & CV_CALIB_FIX_INTRINSIC) == 0; err = cvCreateMat( maxPoints*2, 1, CV_64F ); Je = cvCreateMat( maxPoints*2, 6, CV_64F ); J_LR = cvCreateMat( maxPoints*2, 6, CV_64F ); Ji = cvCreateMat( maxPoints*2, NINTRINSIC, CV_64F ); cvZero( Ji ); // we optimize for the inter-camera R(3),t(3), then, optionally, // for intrinisic parameters of each camera ((fx,fy,cx,cy,k1,k2,p1,p2) ~ 8 parameters). nparams = 6*(nimages+1) + (recomputeIntrinsics ? NINTRINSIC*2 : 0); // storage for initial [om(R){i}|t{i}] (in order to compute the median for each component) RT0 = cvCreateMat( 6, nimages, CV_64F ); solver.init( nparams, 0, termCrit ); if( recomputeIntrinsics ) { uchar* imask = solver.mask->data.ptr + nparams - NINTRINSIC*2; if( flags & CV_CALIB_FIX_ASPECT_RATIO ) imask[0] = imask[NINTRINSIC] = 0; if( flags & CV_CALIB_FIX_FOCAL_LENGTH ) imask[0] = imask[1] = imask[NINTRINSIC] = imask[NINTRINSIC+1] = 0; if( flags & CV_CALIB_FIX_PRINCIPAL_POINT ) imask[2] = imask[3] = imask[NINTRINSIC+2] = imask[NINTRINSIC+3] = 0; if( flags & CV_CALIB_ZERO_TANGENT_DIST ) imask[6] = imask[7] = imask[NINTRINSIC+6] = imask[NINTRINSIC+7] = 0; if( flags & CV_CALIB_FIX_K1 ) imask[4] = imask[NINTRINSIC+4] = 0; if( flags & CV_CALIB_FIX_K2 ) imask[5] = imask[NINTRINSIC+5] = 0; if( flags & CV_CALIB_FIX_K3 ) imask[8] = imask[NINTRINSIC+8] = 0; if( flags & CV_CALIB_FIX_K4 ) imask[9] = imask[NINTRINSIC+9] = 0; if( flags & CV_CALIB_FIX_K5 ) imask[10] = imask[NINTRINSIC+10] = 0; if( flags & CV_CALIB_FIX_K6 ) imask[11] = imask[NINTRINSIC+11] = 0; } /* Compute initial estimate of pose For each image, compute: R(om) is the rotation matrix of om om(R) is the rotation vector of R R_ref = R(om_right) * R(om_left)' T_ref_list = [T_ref_list; T_right - R_ref * T_left] om_ref_list = {om_ref_list; om(R_ref)] om = median(om_ref_list) T = median(T_ref_list) */ for( i = ofs = 0; i < nimages; ofs += ni, i++ ) { ni = npoints->data.i[i]; CvMat objpt_i; double _om[2][3], r[2][9], t[2][3]; CvMat om[2], R[2], T[2], imgpt_i[2]; objpt_i = cvMat(1, ni, CV_64FC3, objectPoints->data.db + ofs*3); for( k = 0; k < 2; k++ ) { imgpt_i[k] = cvMat(1, ni, CV_64FC2, imagePoints[k]->data.db + ofs*2); om[k] = cvMat(3, 1, CV_64F, _om[k]); R[k] = cvMat(3, 3, CV_64F, r[k]); T[k] = cvMat(3, 1, CV_64F, t[k]); // FIXME: here we ignore activePoints[k] because of // the limited API of cvFindExtrnisicCameraParams2 cvFindExtrinsicCameraParams2( &objpt_i, &imgpt_i[k], &K[k], &Dist[k], &om[k], &T[k] ); cvRodrigues2( &om[k], &R[k] ); if( k == 0 ) { // save initial om_left and T_left solver.param->data.db[(i+1)*6] = _om[0][0]; solver.param->data.db[(i+1)*6 + 1] = _om[0][1]; solver.param->data.db[(i+1)*6 + 2] = _om[0][2]; solver.param->data.db[(i+1)*6 + 3] = t[0][0]; solver.param->data.db[(i+1)*6 + 4] = t[0][1]; solver.param->data.db[(i+1)*6 + 5] = t[0][2]; } } cvGEMM( &R[1], &R[0], 1, 0, 0, &R[0], CV_GEMM_B_T ); cvGEMM( &R[0], &T[0], -1, &T[1], 1, &T[1] ); cvRodrigues2( &R[0], &T[0] ); RT0->data.db[i] = t[0][0]; RT0->data.db[i + nimages] = t[0][1]; RT0->data.db[i + nimages*2] = t[0][2]; RT0->data.db[i + nimages*3] = t[1][0]; RT0->data.db[i + nimages*4] = t[1][1]; RT0->data.db[i + nimages*5] = t[1][2]; } // find the medians and save the first 6 parameters for( i = 0; i < 6; i++ ) { qsort( RT0->data.db + i*nimages, nimages, CV_ELEM_SIZE(RT0->type), dbCmp ); solver.param->data.db[i] = nimages % 2 != 0 ? RT0->data.db[i*nimages + nimages/2] : (RT0->data.db[i*nimages + nimages/2 - 1] + RT0->data.db[i*nimages + nimages/2])*0.5; } if( recomputeIntrinsics ) for( k = 0; k < 2; k++ ) { double* iparam = solver.param->data.db + (nimages+1)*6 + k*NINTRINSIC; if( flags & CV_CALIB_ZERO_TANGENT_DIST ) dk[k][2] = dk[k][3] = 0; iparam[0] = A[k][0]; iparam[1] = A[k][4]; iparam[2] = A[k][2]; iparam[3] = A[k][5]; iparam[4] = dk[k][0]; iparam[5] = dk[k][1]; iparam[6] = dk[k][2]; iparam[7] = dk[k][3]; iparam[8] = dk[k][4]; iparam[9] = dk[k][5]; iparam[10] = dk[k][6]; iparam[11] = dk[k][7]; } om_LR = cvMat(3, 1, CV_64F, solver.param->data.db); T_LR = cvMat(3, 1, CV_64F, solver.param->data.db + 3); for(;;) { const CvMat* param = 0; CvMat tmpimagePoints; CvMat *JtJ = 0, *JtErr = 0; double *_errNorm = 0; double _omR[3], _tR[3]; double _dr3dr1[9], _dr3dr2[9], /*_dt3dr1[9],*/ _dt3dr2[9], _dt3dt1[9], _dt3dt2[9]; CvMat dr3dr1 = cvMat(3, 3, CV_64F, _dr3dr1); CvMat dr3dr2 = cvMat(3, 3, CV_64F, _dr3dr2); //CvMat dt3dr1 = cvMat(3, 3, CV_64F, _dt3dr1); CvMat dt3dr2 = cvMat(3, 3, CV_64F, _dt3dr2); CvMat dt3dt1 = cvMat(3, 3, CV_64F, _dt3dt1); CvMat dt3dt2 = cvMat(3, 3, CV_64F, _dt3dt2); CvMat om[2], T[2], imgpt_i[2]; CvMat dpdrot_hdr, dpdt_hdr, dpdf_hdr, dpdc_hdr, dpdk_hdr; CvMat *dpdrot = &dpdrot_hdr, *dpdt = &dpdt_hdr, *dpdf = 0, *dpdc = 0, *dpdk = 0; if( !solver.updateAlt( param, JtJ, JtErr, _errNorm )) break; reprojErr = 0; cvRodrigues2( &om_LR, &R_LR ); om[1] = cvMat(3,1,CV_64F,_omR); T[1] = cvMat(3,1,CV_64F,_tR); if( recomputeIntrinsics ) { double* iparam = solver.param->data.db + (nimages+1)*6; double* ipparam = solver.prevParam->data.db + (nimages+1)*6; dpdf = &dpdf_hdr; dpdc = &dpdc_hdr; dpdk = &dpdk_hdr; if( flags & CV_CALIB_SAME_FOCAL_LENGTH ) { iparam[NINTRINSIC] = iparam[0]; iparam[NINTRINSIC+1] = iparam[1]; ipparam[NINTRINSIC] = ipparam[0]; ipparam[NINTRINSIC+1] = ipparam[1]; } if( flags & CV_CALIB_FIX_ASPECT_RATIO ) { iparam[0] = iparam[1]*aspectRatio[0]; iparam[NINTRINSIC] = iparam[NINTRINSIC+1]*aspectRatio[1]; ipparam[0] = ipparam[1]*aspectRatio[0]; ipparam[NINTRINSIC] = ipparam[NINTRINSIC+1]*aspectRatio[1]; } for( k = 0; k < 2; k++ ) { A[k][0] = iparam[k*NINTRINSIC+0]; A[k][4] = iparam[k*NINTRINSIC+1]; A[k][2] = iparam[k*NINTRINSIC+2]; A[k][5] = iparam[k*NINTRINSIC+3]; dk[k][0] = iparam[k*NINTRINSIC+4]; dk[k][1] = iparam[k*NINTRINSIC+5]; dk[k][2] = iparam[k*NINTRINSIC+6]; dk[k][3] = iparam[k*NINTRINSIC+7]; dk[k][4] = iparam[k*NINTRINSIC+8]; dk[k][5] = iparam[k*NINTRINSIC+9]; dk[k][6] = iparam[k*NINTRINSIC+10]; dk[k][7] = iparam[k*NINTRINSIC+11]; } } for( i = ofs = 0; i < nimages; ofs += ni, i++ ) { ni = npoints->data.i[i]; CvMat objpt_i, _part; om[0] = cvMat(3,1,CV_64F,solver.param->data.db+(i+1)*6); T[0] = cvMat(3,1,CV_64F,solver.param->data.db+(i+1)*6+3); if( JtJ || JtErr ) cvComposeRT( &om[0], &T[0], &om_LR, &T_LR, &om[1], &T[1], &dr3dr1, 0, &dr3dr2, 0, 0, &dt3dt1, &dt3dr2, &dt3dt2 ); else cvComposeRT( &om[0], &T[0], &om_LR, &T_LR, &om[1], &T[1] ); objpt_i = cvMat(1, ni, CV_64FC3, objectPoints->data.db + ofs*3); err->rows = Je->rows = J_LR->rows = Ji->rows = ni*2; cvReshape( err, &tmpimagePoints, 2, 1 ); cvGetCols( Ji, &dpdf_hdr, 0, 2 ); cvGetCols( Ji, &dpdc_hdr, 2, 4 ); cvGetCols( Ji, &dpdk_hdr, 4, NINTRINSIC ); cvGetCols( Je, &dpdrot_hdr, 0, 3 ); cvGetCols( Je, &dpdt_hdr, 3, 6 ); for( k = 0; k < 2; k++ ) { double maxErr, l2err; imgpt_i[k] = cvMat(1, ni, CV_64FC2, imagePoints[k]->data.db + ofs*2); if( JtJ || JtErr ) cvProjectPoints2( &objpt_i, &om[k], &T[k], &K[k], &Dist[k], &tmpimagePoints, dpdrot, dpdt, dpdf, dpdc, dpdk, (flags & CV_CALIB_FIX_ASPECT_RATIO) ? aspectRatio[k] : 0); else cvProjectPoints2( &objpt_i, &om[k], &T[k], &K[k], &Dist[k], &tmpimagePoints ); cvSub( &tmpimagePoints, &imgpt_i[k], &tmpimagePoints ); l2err = cvNorm( &tmpimagePoints, 0, CV_L2 ); maxErr = cvNorm( &tmpimagePoints, 0, CV_C ); if( JtJ || JtErr ) { int iofs = (nimages+1)*6 + k*NINTRINSIC, eofs = (i+1)*6; assert( JtJ && JtErr ); if( k == 1 ) { // d(err_{x|y}R) ~ de3 // convert de3/{dr3,dt3} => de3{dr1,dt1} & de3{dr2,dt2} for( p = 0; p < ni*2; p++ ) { CvMat de3dr3 = cvMat( 1, 3, CV_64F, Je->data.ptr + Je->step*p ); CvMat de3dt3 = cvMat( 1, 3, CV_64F, de3dr3.data.db + 3 ); CvMat de3dr2 = cvMat( 1, 3, CV_64F, J_LR->data.ptr + J_LR->step*p ); CvMat de3dt2 = cvMat( 1, 3, CV_64F, de3dr2.data.db + 3 ); double _de3dr1[3], _de3dt1[3]; CvMat de3dr1 = cvMat( 1, 3, CV_64F, _de3dr1 ); CvMat de3dt1 = cvMat( 1, 3, CV_64F, _de3dt1 ); cvMatMul( &de3dr3, &dr3dr1, &de3dr1 ); cvMatMul( &de3dt3, &dt3dt1, &de3dt1 ); cvMatMul( &de3dr3, &dr3dr2, &de3dr2 ); cvMatMulAdd( &de3dt3, &dt3dr2, &de3dr2, &de3dr2 ); cvMatMul( &de3dt3, &dt3dt2, &de3dt2 ); cvCopy( &de3dr1, &de3dr3 ); cvCopy( &de3dt1, &de3dt3 ); } cvGetSubRect( JtJ, &_part, cvRect(0, 0, 6, 6) ); cvGEMM( J_LR, J_LR, 1, &_part, 1, &_part, CV_GEMM_A_T ); cvGetSubRect( JtJ, &_part, cvRect(eofs, 0, 6, 6) ); cvGEMM( J_LR, Je, 1, 0, 0, &_part, CV_GEMM_A_T ); cvGetRows( JtErr, &_part, 0, 6 ); cvGEMM( J_LR, err, 1, &_part, 1, &_part, CV_GEMM_A_T ); } cvGetSubRect( JtJ, &_part, cvRect(eofs, eofs, 6, 6) ); cvGEMM( Je, Je, 1, &_part, 1, &_part, CV_GEMM_A_T ); cvGetRows( JtErr, &_part, eofs, eofs + 6 ); cvGEMM( Je, err, 1, &_part, 1, &_part, CV_GEMM_A_T ); if( recomputeIntrinsics ) { cvGetSubRect( JtJ, &_part, cvRect(iofs, iofs, NINTRINSIC, NINTRINSIC) ); cvGEMM( Ji, Ji, 1, &_part, 1, &_part, CV_GEMM_A_T ); cvGetSubRect( JtJ, &_part, cvRect(iofs, eofs, NINTRINSIC, 6) ); cvGEMM( Je, Ji, 1, &_part, 1, &_part, CV_GEMM_A_T ); if( k == 1 ) { cvGetSubRect( JtJ, &_part, cvRect(iofs, 0, NINTRINSIC, 6) ); cvGEMM( J_LR, Ji, 1, &_part, 1, &_part, CV_GEMM_A_T ); } cvGetRows( JtErr, &_part, iofs, iofs + NINTRINSIC ); cvGEMM( Ji, err, 1, &_part, 1, &_part, CV_GEMM_A_T ); } } reprojErr += l2err*l2err; } } if(_errNorm) *_errNorm = reprojErr; } cvRodrigues2( &om_LR, &R_LR ); if( matR->rows == 1 || matR->cols == 1 ) cvConvert( &om_LR, matR ); else cvConvert( &R_LR, matR ); cvConvert( &T_LR, matT ); if( recomputeIntrinsics ) { cvConvert( &K[0], _cameraMatrix1 ); cvConvert( &K[1], _cameraMatrix2 ); for( k = 0; k < 2; k++ ) { CvMat* distCoeffs = k == 0 ? _distCoeffs1 : _distCoeffs2; CvMat tdist = cvMat( distCoeffs->rows, distCoeffs->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(distCoeffs->type)), Dist[k].data.db ); cvConvert( &tdist, distCoeffs ); } } if( matE || matF ) { double* t = T_LR.data.db; double tx[] = { 0, -t[2], t[1], t[2], 0, -t[0], -t[1], t[0], 0 }; CvMat Tx = cvMat(3, 3, CV_64F, tx); double e[9], f[9]; CvMat E = cvMat(3, 3, CV_64F, e); CvMat F = cvMat(3, 3, CV_64F, f); cvMatMul( &Tx, &R_LR, &E ); if( matE ) cvConvert( &E, matE ); if( matF ) { double ik[9]; CvMat iK = cvMat(3, 3, CV_64F, ik); cvInvert(&K[1], &iK); cvGEMM( &iK, &E, 1, 0, 0, &E, CV_GEMM_A_T ); cvInvert(&K[0], &iK); cvMatMul(&E, &iK, &F); cvConvertScale( &F, matF, fabs(f[8]) > 0 ? 1./f[8] : 1 ); } } return reprojErr; } static void icvGetRectangles( const CvMat* cameraMatrix, const CvMat* distCoeffs, const CvMat* R, const CvMat* newCameraMatrix, CvSize imgSize, cv::Rect_& inner, cv::Rect_& outer ) { const int N = 9; int x, y, k; cv::Ptr _pts = cvCreateMat(1, N*N, CV_32FC2); CvPoint2D32f* pts = (CvPoint2D32f*)(_pts->data.ptr); for( y = k = 0; y < N; y++ ) for( x = 0; x < N; x++ ) pts[k++] = cvPoint2D32f((float)x*imgSize.width/(N-1), (float)y*imgSize.height/(N-1)); cvUndistortPoints(_pts, _pts, cameraMatrix, distCoeffs, R, newCameraMatrix); float iX0=-FLT_MAX, iX1=FLT_MAX, iY0=-FLT_MAX, iY1=FLT_MAX; float oX0=FLT_MAX, oX1=-FLT_MAX, oY0=FLT_MAX, oY1=-FLT_MAX; // find the inscribed rectangle. // the code will likely not work with extreme rotation matrices (R) (>45%) for( y = k = 0; y < N; y++ ) for( x = 0; x < N; x++ ) { CvPoint2D32f p = pts[k++]; oX0 = MIN(oX0, p.x); oX1 = MAX(oX1, p.x); oY0 = MIN(oY0, p.y); oY1 = MAX(oY1, p.y); if( x == 0 ) iX0 = MAX(iX0, p.x); if( x == N-1 ) iX1 = MIN(iX1, p.x); if( y == 0 ) iY0 = MAX(iY0, p.y); if( y == N-1 ) iY1 = MIN(iY1, p.y); } inner = cv::Rect_(iX0, iY0, iX1-iX0, iY1-iY0); outer = cv::Rect_(oX0, oY0, oX1-oX0, oY1-oY0); } void cvStereoRectify( const CvMat* _cameraMatrix1, const CvMat* _cameraMatrix2, const CvMat* _distCoeffs1, const CvMat* _distCoeffs2, CvSize imageSize, const CvMat* matR, const CvMat* matT, CvMat* _R1, CvMat* _R2, CvMat* _P1, CvMat* _P2, CvMat* matQ, int flags, double alpha, CvSize newImgSize, CvRect* roi1, CvRect* roi2 ) { double _om[3], _t[3], _uu[3]={0,0,0}, _r_r[3][3], _pp[3][4]; double _ww[3], _wr[3][3], _z[3] = {0,0,0}, _ri[3][3]; cv::Rect_ inner1, inner2, outer1, outer2; CvMat om = cvMat(3, 1, CV_64F, _om); CvMat t = cvMat(3, 1, CV_64F, _t); CvMat uu = cvMat(3, 1, CV_64F, _uu); CvMat r_r = cvMat(3, 3, CV_64F, _r_r); CvMat pp = cvMat(3, 4, CV_64F, _pp); CvMat ww = cvMat(3, 1, CV_64F, _ww); // temps CvMat wR = cvMat(3, 3, CV_64F, _wr); CvMat Z = cvMat(3, 1, CV_64F, _z); CvMat Ri = cvMat(3, 3, CV_64F, _ri); double nx = imageSize.width, ny = imageSize.height; int i, k; if( matR->rows == 3 && matR->cols == 3 ) cvRodrigues2(matR, &om); // get vector rotation else cvConvert(matR, &om); // it's already a rotation vector cvConvertScale(&om, &om, -0.5); // get average rotation cvRodrigues2(&om, &r_r); // rotate cameras to same orientation by averaging cvMatMul(&r_r, matT, &t); int idx = fabs(_t[0]) > fabs(_t[1]) ? 0 : 1; double c = _t[idx], nt = cvNorm(&t, 0, CV_L2); _uu[idx] = c > 0 ? 1 : -1; // calculate global Z rotation cvCrossProduct(&t,&uu,&ww); double nw = cvNorm(&ww, 0, CV_L2); cvConvertScale(&ww, &ww, acos(fabs(c)/nt)/nw); cvRodrigues2(&ww, &wR); // apply to both views cvGEMM(&wR, &r_r, 1, 0, 0, &Ri, CV_GEMM_B_T); cvConvert( &Ri, _R1 ); cvGEMM(&wR, &r_r, 1, 0, 0, &Ri, 0); cvConvert( &Ri, _R2 ); cvMatMul(&Ri, matT, &t); // calculate projection/camera matrices // these contain the relevant rectified image internal params (fx, fy=fx, cx, cy) double fc_new = DBL_MAX; CvPoint2D64f cc_new[2] = {{0,0}, {0,0}}; for( k = 0; k < 2; k++ ) { const CvMat* A = k == 0 ? _cameraMatrix1 : _cameraMatrix2; const CvMat* Dk = k == 0 ? _distCoeffs1 : _distCoeffs2; double dk1 = Dk ? cvmGet(Dk, 0, 0) : 0; double fc = cvmGet(A,idx^1,idx^1); if( dk1 < 0 ) { fc *= 1 + dk1*(nx*nx + ny*ny)/(4*fc*fc); } fc_new = MIN(fc_new, fc); } for( k = 0; k < 2; k++ ) { const CvMat* A = k == 0 ? _cameraMatrix1 : _cameraMatrix2; const CvMat* Dk = k == 0 ? _distCoeffs1 : _distCoeffs2; CvPoint2D32f _pts[4]; CvPoint3D32f _pts_3[4]; CvMat pts = cvMat(1, 4, CV_32FC2, _pts); CvMat pts_3 = cvMat(1, 4, CV_32FC3, _pts_3); for( i = 0; i < 4; i++ ) { int j = (i<2) ? 0 : 1; _pts[i].x = (float)((i % 2)*(nx-1)); _pts[i].y = (float)(j*(ny-1)); } cvUndistortPoints( &pts, &pts, A, Dk, 0, 0 ); cvConvertPointsHomogeneous( &pts, &pts_3 ); //Change camera matrix to have cc=[0,0] and fc = fc_new double _a_tmp[3][3]; CvMat A_tmp = cvMat(3, 3, CV_64F, _a_tmp); _a_tmp[0][0]=fc_new; _a_tmp[1][1]=fc_new; _a_tmp[0][2]=0.0; _a_tmp[1][2]=0.0; cvProjectPoints2( &pts_3, k == 0 ? _R1 : _R2, &Z, &A_tmp, 0, &pts ); CvScalar avg = cvAvg(&pts); cc_new[k].x = (nx-1)/2 - avg.val[0]; cc_new[k].y = (ny-1)/2 - avg.val[1]; } // vertical focal length must be the same for both images to keep the epipolar constraint // (for horizontal epipolar lines -- TBD: check for vertical epipolar lines) // use fy for fx also, for simplicity // For simplicity, set the principal points for both cameras to be the average // of the two principal points (either one of or both x- and y- coordinates) if( flags & CV_CALIB_ZERO_DISPARITY ) { cc_new[0].x = cc_new[1].x = (cc_new[0].x + cc_new[1].x)*0.5; cc_new[0].y = cc_new[1].y = (cc_new[0].y + cc_new[1].y)*0.5; } else if( idx == 0 ) // horizontal stereo cc_new[0].y = cc_new[1].y = (cc_new[0].y + cc_new[1].y)*0.5; else // vertical stereo cc_new[0].x = cc_new[1].x = (cc_new[0].x + cc_new[1].x)*0.5; cvZero( &pp ); _pp[0][0] = _pp[1][1] = fc_new; _pp[0][2] = cc_new[0].x; _pp[1][2] = cc_new[0].y; _pp[2][2] = 1; cvConvert(&pp, _P1); _pp[0][2] = cc_new[1].x; _pp[1][2] = cc_new[1].y; _pp[idx][3] = _t[idx]*fc_new; // baseline * focal length cvConvert(&pp, _P2); alpha = MIN(alpha, 1.); icvGetRectangles( _cameraMatrix1, _distCoeffs1, _R1, _P1, imageSize, inner1, outer1 ); icvGetRectangles( _cameraMatrix2, _distCoeffs2, _R2, _P2, imageSize, inner2, outer2 ); { newImgSize = newImgSize.width*newImgSize.height != 0 ? newImgSize : imageSize; double cx1_0 = cc_new[0].x; double cy1_0 = cc_new[0].y; double cx2_0 = cc_new[1].x; double cy2_0 = cc_new[1].y; double cx1 = newImgSize.width*cx1_0/imageSize.width; double cy1 = newImgSize.height*cy1_0/imageSize.height; double cx2 = newImgSize.width*cx2_0/imageSize.width; double cy2 = newImgSize.height*cy2_0/imageSize.height; double s = 1.; if( alpha >= 0 ) { double s0 = std::max(std::max(std::max((double)cx1/(cx1_0 - inner1.x), (double)cy1/(cy1_0 - inner1.y)), (double)(newImgSize.width - cx1)/(inner1.x + inner1.width - cx1_0)), (double)(newImgSize.height - cy1)/(inner1.y + inner1.height - cy1_0)); s0 = std::max(std::max(std::max(std::max((double)cx2/(cx2_0 - inner2.x), (double)cy2/(cy2_0 - inner2.y)), (double)(newImgSize.width - cx2)/(inner2.x + inner2.width - cx2_0)), (double)(newImgSize.height - cy2)/(inner2.y + inner2.height - cy2_0)), s0); double s1 = std::min(std::min(std::min((double)cx1/(cx1_0 - outer1.x), (double)cy1/(cy1_0 - outer1.y)), (double)(newImgSize.width - cx1)/(outer1.x + outer1.width - cx1_0)), (double)(newImgSize.height - cy1)/(outer1.y + outer1.height - cy1_0)); s1 = std::min(std::min(std::min(std::min((double)cx2/(cx2_0 - outer2.x), (double)cy2/(cy2_0 - outer2.y)), (double)(newImgSize.width - cx2)/(outer2.x + outer2.width - cx2_0)), (double)(newImgSize.height - cy2)/(outer2.y + outer2.height - cy2_0)), s1); s = s0*(1 - alpha) + s1*alpha; } fc_new *= s; cc_new[0] = cvPoint2D64f(cx1, cy1); cc_new[1] = cvPoint2D64f(cx2, cy2); cvmSet(_P1, 0, 0, fc_new); cvmSet(_P1, 1, 1, fc_new); cvmSet(_P1, 0, 2, cx1); cvmSet(_P1, 1, 2, cy1); cvmSet(_P2, 0, 0, fc_new); cvmSet(_P2, 1, 1, fc_new); cvmSet(_P2, 0, 2, cx2); cvmSet(_P2, 1, 2, cy2); cvmSet(_P2, idx, 3, s*cvmGet(_P2, idx, 3)); if(roi1) { *roi1 = cv::Rect(cvCeil((inner1.x - cx1_0)*s + cx1), cvCeil((inner1.y - cy1_0)*s + cy1), cvFloor(inner1.width*s), cvFloor(inner1.height*s)) & cv::Rect(0, 0, newImgSize.width, newImgSize.height); } if(roi2) { *roi2 = cv::Rect(cvCeil((inner2.x - cx2_0)*s + cx2), cvCeil((inner2.y - cy2_0)*s + cy2), cvFloor(inner2.width*s), cvFloor(inner2.height*s)) & cv::Rect(0, 0, newImgSize.width, newImgSize.height); } } if( matQ ) { double q[] = { 1, 0, 0, -cc_new[0].x, 0, 1, 0, -cc_new[0].y, 0, 0, 0, fc_new, 0, 0, 1./_t[idx], (idx == 0 ? cc_new[0].x - cc_new[1].x : cc_new[0].y - cc_new[1].y)/_t[idx] }; CvMat Q = cvMat(4, 4, CV_64F, q); cvConvert( &Q, matQ ); } } void cvGetOptimalNewCameraMatrix( const CvMat* cameraMatrix, const CvMat* distCoeffs, CvSize imgSize, double alpha, CvMat* newCameraMatrix, CvSize newImgSize, CvRect* validPixROI ) { cv::Rect_ inner, outer; icvGetRectangles( cameraMatrix, distCoeffs, 0, cameraMatrix, imgSize, inner, outer ); newImgSize = newImgSize.width*newImgSize.height != 0 ? newImgSize : imgSize; double M[3][3]; CvMat matM = cvMat(3, 3, CV_64F, M); cvConvert(cameraMatrix, &matM); double cx0 = M[0][2]; double cy0 = M[1][2]; double cx = (newImgSize.width-1)*0.5; double cy = (newImgSize.height-1)*0.5; double s0 = std::max(std::max(std::max((double)cx/(cx0 - inner.x), (double)cy/(cy0 - inner.y)), (double)cx/(inner.x + inner.width - cx0)), (double)cy/(inner.y + inner.height - cy0)); double s1 = std::min(std::min(std::min((double)cx/(cx0 - outer.x), (double)cy/(cy0 - outer.y)), (double)cx/(outer.x + outer.width - cx0)), (double)cy/(outer.y + outer.height - cy0)); double s = s0*(1 - alpha) + s1*alpha; M[0][0] *= s; M[1][1] *= s; M[0][2] = cx; M[1][2] = cy; cvConvert(&matM, newCameraMatrix); if( validPixROI ) { inner = cv::Rect_((float)((inner.x - cx0)*s + cx), (float)((inner.y - cy0)*s + cy), (float)(inner.width*s), (float)(inner.height*s)); cv::Rect r(cvCeil(inner.x), cvCeil(inner.y), cvFloor(inner.width), cvFloor(inner.height)); r &= cv::Rect(0, 0, newImgSize.width, newImgSize.height); *validPixROI = r; } } CV_IMPL int cvStereoRectifyUncalibrated( const CvMat* _points1, const CvMat* _points2, const CvMat* F0, CvSize imgSize, CvMat* _H1, CvMat* _H2, double threshold ) { Ptr _m1, _m2, _lines1, _lines2; int i, j, npoints; double cx, cy; double u[9], v[9], w[9], f[9], h1[9], h2[9], h0[9], e2[3]; CvMat E2 = cvMat( 3, 1, CV_64F, e2 ); CvMat U = cvMat( 3, 3, CV_64F, u ); CvMat V = cvMat( 3, 3, CV_64F, v ); CvMat W = cvMat( 3, 3, CV_64F, w ); CvMat F = cvMat( 3, 3, CV_64F, f ); CvMat H1 = cvMat( 3, 3, CV_64F, h1 ); CvMat H2 = cvMat( 3, 3, CV_64F, h2 ); CvMat H0 = cvMat( 3, 3, CV_64F, h0 ); CvPoint2D64f* m1; CvPoint2D64f* m2; CvPoint3D64f* lines1; CvPoint3D64f* lines2; CV_Assert( CV_IS_MAT(_points1) && CV_IS_MAT(_points2) && (_points1->rows == 1 || _points1->cols == 1) && (_points2->rows == 1 || _points2->cols == 1) && CV_ARE_SIZES_EQ(_points1, _points2) ); npoints = _points1->rows * _points1->cols * CV_MAT_CN(_points1->type) / 2; _m1 = cvCreateMat( _points1->rows, _points1->cols, CV_64FC(CV_MAT_CN(_points1->type)) ); _m2 = cvCreateMat( _points2->rows, _points2->cols, CV_64FC(CV_MAT_CN(_points2->type)) ); _lines1 = cvCreateMat( 1, npoints, CV_64FC3 ); _lines2 = cvCreateMat( 1, npoints, CV_64FC3 ); cvConvert( F0, &F ); cvSVD( (CvMat*)&F, &W, &U, &V, CV_SVD_U_T + CV_SVD_V_T ); W.data.db[8] = 0.; cvGEMM( &U, &W, 1, 0, 0, &W, CV_GEMM_A_T ); cvMatMul( &W, &V, &F ); cx = cvRound( (imgSize.width-1)*0.5 ); cy = cvRound( (imgSize.height-1)*0.5 ); cvZero( _H1 ); cvZero( _H2 ); cvConvert( _points1, _m1 ); cvConvert( _points2, _m2 ); cvReshape( _m1, _m1, 2, 1 ); cvReshape( _m2, _m2, 2, 1 ); m1 = (CvPoint2D64f*)_m1->data.ptr; m2 = (CvPoint2D64f*)_m2->data.ptr; lines1 = (CvPoint3D64f*)_lines1->data.ptr; lines2 = (CvPoint3D64f*)_lines2->data.ptr; if( threshold > 0 ) { cvComputeCorrespondEpilines( _m1, 1, &F, _lines1 ); cvComputeCorrespondEpilines( _m2, 2, &F, _lines2 ); // measure distance from points to the corresponding epilines, mark outliers for( i = j = 0; i < npoints; i++ ) { if( fabs(m1[i].x*lines2[i].x + m1[i].y*lines2[i].y + lines2[i].z) <= threshold && fabs(m2[i].x*lines1[i].x + m2[i].y*lines1[i].y + lines1[i].z) <= threshold ) { if( j > i ) { m1[j] = m1[i]; m2[j] = m2[i]; } j++; } } npoints = j; if( npoints == 0 ) return 0; } _m1->cols = _m2->cols = npoints; memcpy( E2.data.db, U.data.db + 6, sizeof(e2)); cvScale( &E2, &E2, e2[2] > 0 ? 1 : -1 ); double t[] = { 1, 0, -cx, 0, 1, -cy, 0, 0, 1 }; CvMat T = cvMat(3, 3, CV_64F, t); cvMatMul( &T, &E2, &E2 ); int mirror = e2[0] < 0; double d = MAX(sqrt(e2[0]*e2[0] + e2[1]*e2[1]),DBL_EPSILON); double alpha = e2[0]/d; double beta = e2[1]/d; double r[] = { alpha, beta, 0, -beta, alpha, 0, 0, 0, 1 }; CvMat R = cvMat(3, 3, CV_64F, r); cvMatMul( &R, &T, &T ); cvMatMul( &R, &E2, &E2 ); double invf = fabs(e2[2]) < 1e-6*fabs(e2[0]) ? 0 : -e2[2]/e2[0]; double k[] = { 1, 0, 0, 0, 1, 0, invf, 0, 1 }; CvMat K = cvMat(3, 3, CV_64F, k); cvMatMul( &K, &T, &H2 ); cvMatMul( &K, &E2, &E2 ); double it[] = { 1, 0, cx, 0, 1, cy, 0, 0, 1 }; CvMat iT = cvMat( 3, 3, CV_64F, it ); cvMatMul( &iT, &H2, &H2 ); memcpy( E2.data.db, U.data.db + 6, sizeof(e2)); cvScale( &E2, &E2, e2[2] > 0 ? 1 : -1 ); double e2_x[] = { 0, -e2[2], e2[1], e2[2], 0, -e2[0], -e2[1], e2[0], 0 }; double e2_111[] = { e2[0], e2[0], e2[0], e2[1], e2[1], e2[1], e2[2], e2[2], e2[2], }; CvMat E2_x = cvMat(3, 3, CV_64F, e2_x); CvMat E2_111 = cvMat(3, 3, CV_64F, e2_111); cvMatMulAdd(&E2_x, &F, &E2_111, &H0 ); cvMatMul(&H2, &H0, &H0); CvMat E1=cvMat(3, 1, CV_64F, V.data.db+6); cvMatMul(&H0, &E1, &E1); cvPerspectiveTransform( _m1, _m1, &H0 ); cvPerspectiveTransform( _m2, _m2, &H2 ); CvMat A = cvMat( 1, npoints, CV_64FC3, lines1 ), BxBy, B; double a[9], atb[3], x[3]; CvMat AtA = cvMat( 3, 3, CV_64F, a ); CvMat AtB = cvMat( 3, 1, CV_64F, atb ); CvMat X = cvMat( 3, 1, CV_64F, x ); cvConvertPointsHomogeneous( _m1, &A ); cvReshape( &A, &A, 1, npoints ); cvReshape( _m2, &BxBy, 1, npoints ); cvGetCol( &BxBy, &B, 0 ); cvGEMM( &A, &A, 1, 0, 0, &AtA, CV_GEMM_A_T ); cvGEMM( &A, &B, 1, 0, 0, &AtB, CV_GEMM_A_T ); cvSolve( &AtA, &AtB, &X, CV_SVD_SYM ); double ha[] = { x[0], x[1], x[2], 0, 1, 0, 0, 0, 1 }; CvMat Ha = cvMat(3, 3, CV_64F, ha); cvMatMul( &Ha, &H0, &H1 ); cvPerspectiveTransform( _m1, _m1, &Ha ); if( mirror ) { double mm[] = { -1, 0, cx*2, 0, -1, cy*2, 0, 0, 1 }; CvMat MM = cvMat(3, 3, CV_64F, mm); cvMatMul( &MM, &H1, &H1 ); cvMatMul( &MM, &H2, &H2 ); } cvConvert( &H1, _H1 ); cvConvert( &H2, _H2 ); return 1; } CV_IMPL void cvReprojectImageTo3D( const CvArr* disparityImage, CvArr* _3dImage, const CvMat* matQ, int handleMissingValues ) { const double bigZ = 10000.; double q[4][4]; CvMat Q = cvMat(4, 4, CV_64F, q); CvMat sstub, *src = cvGetMat( disparityImage, &sstub ); CvMat dstub, *dst = cvGetMat( _3dImage, &dstub ); int stype = CV_MAT_TYPE(src->type), dtype = CV_MAT_TYPE(dst->type); int x, y, rows = src->rows, cols = src->cols; float* sbuf = (float*)cvStackAlloc( cols*sizeof(sbuf[0]) ); float* dbuf = (float*)cvStackAlloc( cols*3*sizeof(dbuf[0]) ); double minDisparity = FLT_MAX; CV_Assert( CV_ARE_SIZES_EQ(src, dst) && (CV_MAT_TYPE(stype) == CV_8UC1 || CV_MAT_TYPE(stype) == CV_16SC1 || CV_MAT_TYPE(stype) == CV_32SC1 || CV_MAT_TYPE(stype) == CV_32FC1) && (CV_MAT_TYPE(dtype) == CV_16SC3 || CV_MAT_TYPE(dtype) == CV_32SC3 || CV_MAT_TYPE(dtype) == CV_32FC3) ); cvConvert( matQ, &Q ); // NOTE: here we quietly assume that at least one pixel in the disparity map is not defined. // and we set the corresponding Z's to some fixed big value. if( handleMissingValues ) cvMinMaxLoc( disparityImage, &minDisparity, 0, 0, 0 ); for( y = 0; y < rows; y++ ) { const float* sptr = (const float*)(src->data.ptr + src->step*y); float* dptr0 = (float*)(dst->data.ptr + dst->step*y), *dptr = dptr0; double qx = q[0][1]*y + q[0][3], qy = q[1][1]*y + q[1][3]; double qz = q[2][1]*y + q[2][3], qw = q[3][1]*y + q[3][3]; if( stype == CV_8UC1 ) { const uchar* sptr0 = (const uchar*)sptr; for( x = 0; x < cols; x++ ) sbuf[x] = (float)sptr0[x]; sptr = sbuf; } else if( stype == CV_16SC1 ) { const short* sptr0 = (const short*)sptr; for( x = 0; x < cols; x++ ) sbuf[x] = (float)sptr0[x]; sptr = sbuf; } else if( stype == CV_32SC1 ) { const int* sptr0 = (const int*)sptr; for( x = 0; x < cols; x++ ) sbuf[x] = (float)sptr0[x]; sptr = sbuf; } if( dtype != CV_32FC3 ) dptr = dbuf; for( x = 0; x < cols; x++, qx += q[0][0], qy += q[1][0], qz += q[2][0], qw += q[3][0] ) { double d = sptr[x]; double iW = 1./(qw + q[3][2]*d); double X = (qx + q[0][2]*d)*iW; double Y = (qy + q[1][2]*d)*iW; double Z = (qz + q[2][2]*d)*iW; if( fabs(d-minDisparity) <= FLT_EPSILON ) Z = bigZ; dptr[x*3] = (float)X; dptr[x*3+1] = (float)Y; dptr[x*3+2] = (float)Z; } if( dtype == CV_16SC3 ) { for( x = 0; x < cols*3; x++ ) { int ival = cvRound(dptr[x]); ((short*)dptr0)[x] = CV_CAST_16S(ival); } } else if( dtype == CV_32SC3 ) { for( x = 0; x < cols*3; x++ ) { int ival = cvRound(dptr[x]); ((int*)dptr0)[x] = ival; } } } } CV_IMPL void cvRQDecomp3x3( const CvMat *matrixM, CvMat *matrixR, CvMat *matrixQ, CvMat *matrixQx, CvMat *matrixQy, CvMat *matrixQz, CvPoint3D64f *eulerAngles) { double matM[3][3], matR[3][3], matQ[3][3]; CvMat M = cvMat(3, 3, CV_64F, matM); CvMat R = cvMat(3, 3, CV_64F, matR); CvMat Q = cvMat(3, 3, CV_64F, matQ); double z, c, s; /* Validate parameters. */ CV_Assert( CV_IS_MAT(matrixM) && CV_IS_MAT(matrixR) && CV_IS_MAT(matrixQ) && matrixM->cols == 3 && matrixM->rows == 3 && CV_ARE_SIZES_EQ(matrixM, matrixR) && CV_ARE_SIZES_EQ(matrixM, matrixQ)); cvConvert(matrixM, &M); /* Find Givens rotation Q_x for x axis (left multiplication). */ /* ( 1 0 0 ) Qx = ( 0 c s ), c = m33/sqrt(m32^2 + m33^2), s = m32/sqrt(m32^2 + m33^2) ( 0 -s c ) */ s = matM[2][1]; c = matM[2][2]; z = 1./sqrt(c * c + s * s + DBL_EPSILON); c *= z; s *= z; double _Qx[3][3] = { {1, 0, 0}, {0, c, s}, {0, -s, c} }; CvMat Qx = cvMat(3, 3, CV_64F, _Qx); cvMatMul(&M, &Qx, &R); assert(fabs(matR[2][1]) < FLT_EPSILON); matR[2][1] = 0; /* Find Givens rotation for y axis. */ /* ( c 0 s ) Qy = ( 0 1 0 ), c = m33/sqrt(m31^2 + m33^2), s = m31/sqrt(m31^2 + m33^2) (-s 0 c ) */ s = matR[2][0]; c = matR[2][2]; z = 1./sqrt(c * c + s * s + DBL_EPSILON); c *= z; s *= z; double _Qy[3][3] = { {c, 0, s}, {0, 1, 0}, {-s, 0, c} }; CvMat Qy = cvMat(3, 3, CV_64F, _Qy); cvMatMul(&R, &Qy, &M); assert(fabs(matM[2][0]) < FLT_EPSILON); matM[2][0] = 0; /* Find Givens rotation for z axis. */ /* ( c s 0 ) Qz = (-s c 0 ), c = m22/sqrt(m21^2 + m22^2), s = m21/sqrt(m21^2 + m22^2) ( 0 0 1 ) */ s = matM[1][0]; c = matM[1][1]; z = 1./sqrt(c * c + s * s + DBL_EPSILON); c *= z; s *= z; double _Qz[3][3] = { {c, s, 0}, {-s, c, 0}, {0, 0, 1} }; CvMat Qz = cvMat(3, 3, CV_64F, _Qz); cvMatMul(&M, &Qz, &R); assert(fabs(matR[1][0]) < FLT_EPSILON); matR[1][0] = 0; // Solve the decomposition ambiguity. // Diagonal entries of R, except the last one, shall be positive. // Further rotate R by 180 degree if necessary if( matR[0][0] < 0 ) { if( matR[1][1] < 0 ) { // rotate around z for 180 degree, i.e. a rotation matrix of // [-1, 0, 0], // [ 0, -1, 0], // [ 0, 0, 1] matR[0][0] *= -1; matR[0][1] *= -1; matR[1][1] *= -1; _Qz[0][0] *= -1; _Qz[0][1] *= -1; _Qz[1][0] *= -1; _Qz[1][1] *= -1; } else { // rotate around y for 180 degree, i.e. a rotation matrix of // [-1, 0, 0], // [ 0, 1, 0], // [ 0, 0, -1] matR[0][0] *= -1; matR[0][2] *= -1; matR[1][2] *= -1; matR[2][2] *= -1; cvTranspose( &Qz, &Qz ); _Qy[0][0] *= -1; _Qy[0][2] *= -1; _Qy[2][0] *= -1; _Qy[2][2] *= -1; } } else if( matR[1][1] < 0 ) { // ??? for some reason, we never get here ??? // rotate around x for 180 degree, i.e. a rotation matrix of // [ 1, 0, 0], // [ 0, -1, 0], // [ 0, 0, -1] matR[0][1] *= -1; matR[0][2] *= -1; matR[1][1] *= -1; matR[1][2] *= -1; matR[2][2] *= -1; cvTranspose( &Qz, &Qz ); cvTranspose( &Qy, &Qy ); _Qx[1][1] *= -1; _Qx[1][2] *= -1; _Qx[2][1] *= -1; _Qx[2][2] *= -1; } // calculate the euler angle if( eulerAngles ) { eulerAngles->x = acos(_Qx[1][1]) * (_Qx[1][2] >= 0 ? 1 : -1) * (180.0 / CV_PI); eulerAngles->y = acos(_Qy[0][0]) * (_Qy[0][2] >= 0 ? 1 : -1) * (180.0 / CV_PI); eulerAngles->z = acos(_Qz[0][0]) * (_Qz[0][1] >= 0 ? 1 : -1) * (180.0 / CV_PI); } /* Calulate orthogonal matrix. */ /* Q = QzT * QyT * QxT */ cvGEMM( &Qz, &Qy, 1, 0, 0, &M, CV_GEMM_A_T + CV_GEMM_B_T ); cvGEMM( &M, &Qx, 1, 0, 0, &Q, CV_GEMM_B_T ); /* Save R and Q matrices. */ cvConvert( &R, matrixR ); cvConvert( &Q, matrixQ ); if( matrixQx ) cvConvert(&Qx, matrixQx); if( matrixQy ) cvConvert(&Qy, matrixQy); if( matrixQz ) cvConvert(&Qz, matrixQz); } CV_IMPL void cvDecomposeProjectionMatrix( const CvMat *projMatr, CvMat *calibMatr, CvMat *rotMatr, CvMat *posVect, CvMat *rotMatrX, CvMat *rotMatrY, CvMat *rotMatrZ, CvPoint3D64f *eulerAngles) { double tmpProjMatrData[16], tmpMatrixDData[16], tmpMatrixVData[16]; CvMat tmpProjMatr = cvMat(4, 4, CV_64F, tmpProjMatrData); CvMat tmpMatrixD = cvMat(4, 4, CV_64F, tmpMatrixDData); CvMat tmpMatrixV = cvMat(4, 4, CV_64F, tmpMatrixVData); CvMat tmpMatrixM; /* Validate parameters. */ if(projMatr == 0 || calibMatr == 0 || rotMatr == 0 || posVect == 0) CV_Error(CV_StsNullPtr, "Some of parameters is a NULL pointer!"); if(!CV_IS_MAT(projMatr) || !CV_IS_MAT(calibMatr) || !CV_IS_MAT(rotMatr) || !CV_IS_MAT(posVect)) CV_Error(CV_StsUnsupportedFormat, "Input parameters must be a matrices!"); if(projMatr->cols != 4 || projMatr->rows != 3) CV_Error(CV_StsUnmatchedSizes, "Size of projection matrix must be 3x4!"); if(calibMatr->cols != 3 || calibMatr->rows != 3 || rotMatr->cols != 3 || rotMatr->rows != 3) CV_Error(CV_StsUnmatchedSizes, "Size of calibration and rotation matrices must be 3x3!"); if(posVect->cols != 1 || posVect->rows != 4) CV_Error(CV_StsUnmatchedSizes, "Size of position vector must be 4x1!"); /* Compute position vector. */ cvSetZero(&tmpProjMatr); // Add zero row to make matrix square. int i, k; for(i = 0; i < 3; i++) for(k = 0; k < 4; k++) cvmSet(&tmpProjMatr, i, k, cvmGet(projMatr, i, k)); cvSVD(&tmpProjMatr, &tmpMatrixD, NULL, &tmpMatrixV, CV_SVD_MODIFY_A + CV_SVD_V_T); /* Save position vector. */ for(i = 0; i < 4; i++) cvmSet(posVect, i, 0, cvmGet(&tmpMatrixV, 3, i)); // Solution is last row of V. /* Compute calibration and rotation matrices via RQ decomposition. */ cvGetCols(projMatr, &tmpMatrixM, 0, 3); // M is first square matrix of P. CV_Assert(cvDet(&tmpMatrixM) != 0.0); // So far only finite cameras could be decomposed, so M has to be nonsingular [det(M) != 0]. cvRQDecomp3x3(&tmpMatrixM, calibMatr, rotMatr, rotMatrX, rotMatrY, rotMatrZ, eulerAngles); } namespace cv { static void collectCalibrationData( const vector >& objectPoints, const vector >& imagePoints, const vector >& imagePoints2, Mat& objPtMat, Mat& imgPtMat, Mat* imgPtMat2, Mat& npoints ) { size_t i, j = 0, ni = 0, nimages = objectPoints.size(), total = 0; CV_Assert(nimages > 0 && nimages == imagePoints.size() && (!imgPtMat2 || nimages == imagePoints2.size())); for( i = 0; i < nimages; i++ ) { ni = objectPoints[i].size(); CV_Assert(ni == imagePoints[i].size() && (!imgPtMat2 || ni == imagePoints2[i].size())); total += ni; } npoints.create(1, (int)nimages, CV_32S); objPtMat.create(1, (int)total, DataType::type); imgPtMat.create(1, (int)total, DataType::type); Point2f* imgPtData2 = 0; if( imgPtMat2 ) { imgPtMat2->create(1, (int)total, DataType::type); imgPtData2 = imgPtMat2->ptr(); } Point3f* objPtData = objPtMat.ptr(); Point2f* imgPtData = imgPtMat.ptr(); for( i = 0; i < nimages; i++, j += ni ) { ni = objectPoints[i].size(); ((int*)npoints.data)[i] = (int)ni; std::copy(objectPoints[i].begin(), objectPoints[i].end(), objPtData + j); std::copy(imagePoints[i].begin(), imagePoints[i].end(), imgPtData + j); if( imgPtMat2 ) std::copy(imagePoints2[i].begin(), imagePoints2[i].end(), imgPtData2 + j); } } static Mat prepareCameraMatrix(Mat& cameraMatrix0, int rtype) { Mat cameraMatrix = Mat::eye(3, 3, rtype); if( cameraMatrix0.size() == cameraMatrix.size() ) cameraMatrix0.convertTo(cameraMatrix, rtype); return cameraMatrix; } static Mat prepareDistCoeffs(Mat& distCoeffs0, int rtype) { Mat distCoeffs = Mat::zeros(distCoeffs0.cols == 1 ? Size(1, 8) : Size(8, 1), rtype); if( distCoeffs0.size() == Size(1, 4) || distCoeffs0.size() == Size(1, 5) || distCoeffs0.size() == Size(1, 8) || distCoeffs0.size() == Size(4, 1) || distCoeffs0.size() == Size(5, 1) || distCoeffs0.size() == Size(8, 1) ) { Mat dstCoeffs(distCoeffs, Rect(0, 0, distCoeffs0.cols, distCoeffs0.rows)); distCoeffs0.convertTo(dstCoeffs, rtype); } return distCoeffs; } } void cv::Rodrigues(const Mat& src, Mat& dst) { bool v2m = src.cols == 1 || src.rows == 1; dst.create(3, v2m ? 3 : 1, src.depth()); CvMat _src = src, _dst = dst; bool ok = cvRodrigues2(&_src, &_dst, 0) > 0; if( !ok ) dst = Scalar(0); } void cv::Rodrigues(const Mat& src, Mat& dst, Mat& jacobian) { bool v2m = src.cols == 1 || src.rows == 1; dst.create(3, v2m ? 3 : 1, src.depth()); jacobian.create(v2m ? Size(9, 3) : Size(3, 9), src.depth()); CvMat _src = src, _dst = dst, _jacobian = jacobian; bool ok = cvRodrigues2(&_src, &_dst, &_jacobian) > 0; if( !ok ) dst = Scalar(0); } void cv::matMulDeriv( const Mat& A, const Mat& B, Mat& dABdA, Mat& dABdB ) { dABdA.create(A.rows*B.cols, A.rows*A.cols, A.type()); dABdB.create(A.rows*B.cols, B.rows*B.cols, A.type()); CvMat matA = A, matB = B, _dABdA = dABdA, _dABdB = dABdB; cvCalcMatMulDeriv(&matA, &matB, &_dABdA, &_dABdB); } void cv::composeRT( const Mat& rvec1, const Mat& tvec1, const Mat& rvec2, const Mat& tvec2, Mat& rvec3, Mat& tvec3 ) { rvec3.create(rvec1.size(), rvec1.type()); tvec3.create(tvec1.size(), tvec1.type()); CvMat _rvec1 = rvec1, _tvec1 = tvec1, _rvec2 = rvec2, _tvec2 = tvec2, _rvec3 = rvec3, _tvec3 = tvec3; cvComposeRT(&_rvec1, &_tvec1, &_rvec2, &_tvec2, &_rvec3, &_tvec3, 0, 0, 0, 0, 0, 0, 0, 0); } void cv::composeRT( const Mat& rvec1, const Mat& tvec1, const Mat& rvec2, const Mat& tvec2, Mat& rvec3, Mat& tvec3, Mat& dr3dr1, Mat& dr3dt1, Mat& dr3dr2, Mat& dr3dt2, Mat& dt3dr1, Mat& dt3dt1, Mat& dt3dr2, Mat& dt3dt2 ) { int rtype = rvec1.type(); rvec3.create(rvec1.size(), rtype); tvec3.create(tvec1.size(), rtype); dr3dr1.create(3, 3, rtype); dr3dt1.create(3, 3, rtype); dr3dr2.create(3, 3, rtype); dr3dt2.create(3, 3, rtype); dt3dr1.create(3, 3, rtype); dt3dt1.create(3, 3, rtype); dt3dr2.create(3, 3, rtype); dt3dt2.create(3, 3, rtype); CvMat _rvec1 = rvec1, _tvec1 = tvec1, _rvec2 = rvec2, _tvec2 = tvec2, _rvec3 = rvec3, _tvec3 = tvec3; CvMat _dr3dr1 = dr3dr1, _dr3dt1 = dr3dt1, _dr3dr2 = dr3dr2, _dr3dt2 = dr3dt2; CvMat _dt3dr1 = dt3dr1, _dt3dt1 = dt3dt1, _dt3dr2 = dt3dr2, _dt3dt2 = dt3dt2; cvComposeRT(&_rvec1, &_tvec1, &_rvec2, &_tvec2, &_rvec3, &_tvec3, &_dr3dr1, &_dr3dt1, &_dr3dr2, &_dr3dt2, &_dt3dr1, &_dt3dt1, &_dt3dr2, &_dt3dt2); } void cv::projectPoints( const Mat& opoints, const Mat& rvec, const Mat& tvec, const Mat& cameraMatrix, const Mat& distCoeffs, vector& ipoints ) { CV_Assert(opoints.isContinuous() && opoints.depth() == CV_32F && ((opoints.rows == 1 && opoints.channels() == 3) || opoints.cols*opoints.channels() == 3)); ipoints.resize(opoints.cols*opoints.rows*opoints.channels()/3); CvMat _objectPoints = opoints, _imagePoints = Mat(ipoints); CvMat _rvec = rvec, _tvec = tvec, _cameraMatrix = cameraMatrix, _distCoeffs = distCoeffs; cvProjectPoints2( &_objectPoints, &_rvec, &_tvec, &_cameraMatrix, distCoeffs.data ? &_distCoeffs : 0, &_imagePoints, 0, 0, 0, 0, 0, 0 ); } void cv::projectPoints( const Mat& opoints, const Mat& rvec, const Mat& tvec, const Mat& cameraMatrix, const Mat& distCoeffs, vector& ipoints, Mat& dpdrot, Mat& dpdt, Mat& dpdf, Mat& dpdc, Mat& dpddist, double aspectRatio ) { CV_Assert(opoints.isContinuous() && opoints.depth() == CV_32F && ((opoints.rows == 1 && opoints.channels() == 3) || opoints.cols*opoints.channels() == 3)); int npoints = opoints.cols*opoints.rows*opoints.channels()/3; ipoints.resize(npoints); dpdrot.create(npoints*2, 3, CV_64F); dpdt.create(npoints*2, 3, CV_64F); dpdf.create(npoints*2, 2, CV_64F); dpdc.create(npoints*2, 2, CV_64F); dpddist.create(npoints*2, distCoeffs.rows + distCoeffs.cols - 1, CV_64F); CvMat _objectPoints = opoints, _imagePoints = Mat(ipoints); CvMat _rvec = rvec, _tvec = tvec, _cameraMatrix = cameraMatrix, _distCoeffs = distCoeffs; CvMat _dpdrot = dpdrot, _dpdt = dpdt, _dpdf = dpdf, _dpdc = dpdc, _dpddist = dpddist; cvProjectPoints2( &_objectPoints, &_rvec, &_tvec, &_cameraMatrix, &_distCoeffs, &_imagePoints, &_dpdrot, &_dpdt, &_dpdf, &_dpdc, &_dpddist, aspectRatio ); } void cv::solvePnP( const Mat& opoints, const Mat& ipoints, const Mat& cameraMatrix, const Mat& distCoeffs, Mat& rvec, Mat& tvec, bool useExtrinsicGuess ) { CV_Assert(opoints.isContinuous() && opoints.depth() == CV_32F && ((opoints.rows == 1 && opoints.channels() == 3) || opoints.cols*opoints.channels() == 3) && ipoints.isContinuous() && ipoints.depth() == CV_32F && ((ipoints.rows == 1 && ipoints.channels() == 2) || ipoints.cols*ipoints.channels() == 2)); rvec.create(3, 1, CV_64F); tvec.create(3, 1, CV_64F); CvMat _objectPoints = opoints, _imagePoints = ipoints; CvMat _cameraMatrix = cameraMatrix, _distCoeffs = distCoeffs; CvMat _rvec = rvec, _tvec = tvec; cvFindExtrinsicCameraParams2(&_objectPoints, &_imagePoints, &_cameraMatrix, distCoeffs.data ? &_distCoeffs : 0, &_rvec, &_tvec, useExtrinsicGuess ); } cv::Mat cv::initCameraMatrix2D( const vector >& objectPoints, const vector >& imagePoints, Size imageSize, double aspectRatio ) { Mat objPt, imgPt, npoints, cameraMatrix(3, 3, CV_64F); collectCalibrationData( objectPoints, imagePoints, vector >(), objPt, imgPt, 0, npoints ); CvMat _objPt = objPt, _imgPt = imgPt, _npoints = npoints, _cameraMatrix = cameraMatrix; cvInitIntrinsicParams2D( &_objPt, &_imgPt, &_npoints, imageSize, &_cameraMatrix, aspectRatio ); return cameraMatrix; } double cv::calibrateCamera( const vector >& objectPoints, const vector >& imagePoints, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs, vector& rvecs, vector& tvecs, int flags ) { int rtype = CV_64F; cameraMatrix = prepareCameraMatrix(cameraMatrix, rtype); distCoeffs = prepareDistCoeffs(distCoeffs, rtype); size_t i, nimages = objectPoints.size(); CV_Assert( nimages > 0 ); Mat objPt, imgPt, npoints, rvecM((int)nimages, 3, CV_64FC1), tvecM((int)nimages, 3, CV_64FC1); collectCalibrationData( objectPoints, imagePoints, vector >(), objPt, imgPt, 0, npoints ); CvMat _objPt = objPt, _imgPt = imgPt, _npoints = npoints; CvMat _cameraMatrix = cameraMatrix, _distCoeffs = distCoeffs; CvMat _rvecM = rvecM, _tvecM = tvecM; double reprojErr = cvCalibrateCamera2( &_objPt, &_imgPt, &_npoints, imageSize, &_cameraMatrix, &_distCoeffs, &_rvecM, &_tvecM, flags ); rvecs.resize(nimages); tvecs.resize(nimages); for( i = 0; i < nimages; i++ ) { rvecM.row((int)i).copyTo(rvecs[i]); tvecM.row((int)i).copyTo(tvecs[i]); } return reprojErr; } void cv::calibrationMatrixValues( const Mat& cameraMatrix, Size imageSize, double apertureWidth, double apertureHeight, double& fovx, double& fovy, double& focalLength, Point2d& principalPoint, double& aspectRatio ) { CvMat _cameraMatrix = cameraMatrix; cvCalibrationMatrixValues( &_cameraMatrix, imageSize, apertureWidth, apertureHeight, &fovx, &fovy, &focalLength, (CvPoint2D64f*)&principalPoint, &aspectRatio ); } double cv::stereoCalibrate( const vector >& objectPoints, const vector >& imagePoints1, const vector >& imagePoints2, Mat& cameraMatrix1, Mat& distCoeffs1, Mat& cameraMatrix2, Mat& distCoeffs2, Size imageSize, Mat& R, Mat& T, Mat& E, Mat& F, TermCriteria criteria, int flags ) { int rtype = CV_64F; cameraMatrix1 = prepareCameraMatrix(cameraMatrix1, rtype); cameraMatrix2 = prepareCameraMatrix(cameraMatrix2, rtype); distCoeffs1 = prepareDistCoeffs(distCoeffs1, rtype); distCoeffs2 = prepareDistCoeffs(distCoeffs2, rtype); R.create(3, 3, rtype); T.create(3, 1, rtype); E.create(3, 3, rtype); F.create(3, 3, rtype); Mat objPt, imgPt, imgPt2, npoints; collectCalibrationData( objectPoints, imagePoints1, imagePoints2, objPt, imgPt, &imgPt2, npoints ); CvMat _objPt = objPt, _imgPt = imgPt, _imgPt2 = imgPt2, _npoints = npoints; CvMat _cameraMatrix1 = cameraMatrix1, _distCoeffs1 = distCoeffs1; CvMat _cameraMatrix2 = cameraMatrix2, _distCoeffs2 = distCoeffs2; CvMat matR = R, matT = T, matE = E, matF = F; return cvStereoCalibrate(&_objPt, &_imgPt, &_imgPt2, &_npoints, &_cameraMatrix1, &_distCoeffs1, &_cameraMatrix2, &_distCoeffs2, imageSize, &matR, &matT, &matE, &matF, criteria, flags ); } void cv::stereoRectify( const Mat& cameraMatrix1, const Mat& distCoeffs1, const Mat& cameraMatrix2, const Mat& distCoeffs2, Size imageSize, const Mat& R, const Mat& T, Mat& R1, Mat& R2, Mat& P1, Mat& P2, Mat& Q, int flags ) { int rtype = CV_64F; R1.create(3, 3, rtype); R2.create(3, 3, rtype); P1.create(3, 4, rtype); P2.create(3, 4, rtype); Q.create(4, 4, rtype); CvMat _cameraMatrix1 = cameraMatrix1, _distCoeffs1 = distCoeffs1; CvMat _cameraMatrix2 = cameraMatrix2, _distCoeffs2 = distCoeffs2; CvMat matR = R, matT = T, _R1 = R1, _R2 = R2, _P1 = P1, _P2 = P2, matQ = Q; cvStereoRectify( &_cameraMatrix1, &_cameraMatrix2, &_distCoeffs1, &_distCoeffs2, imageSize, &matR, &matT, &_R1, &_R2, &_P1, &_P2, &matQ, flags ); } void cv::stereoRectify( const Mat& cameraMatrix1, const Mat& distCoeffs1, const Mat& cameraMatrix2, const Mat& distCoeffs2, Size imageSize, const Mat& R, const Mat& T, Mat& R1, Mat& R2, Mat& P1, Mat& P2, Mat& Q, double alpha, Size newImageSize, Rect* validPixROI1, Rect* validPixROI2, int flags ) { int rtype = CV_64F; R1.create(3, 3, rtype); R2.create(3, 3, rtype); P1.create(3, 4, rtype); P2.create(3, 4, rtype); Q.create(4, 4, rtype); CvMat _cameraMatrix1 = cameraMatrix1, _distCoeffs1 = distCoeffs1; CvMat _cameraMatrix2 = cameraMatrix2, _distCoeffs2 = distCoeffs2; CvMat matR = R, matT = T, _R1 = R1, _R2 = R2, _P1 = P1, _P2 = P2, matQ = Q; cvStereoRectify( &_cameraMatrix1, &_cameraMatrix2, &_distCoeffs1, &_distCoeffs2, imageSize, &matR, &matT, &_R1, &_R2, &_P1, &_P2, &matQ, flags, alpha, newImageSize, (CvRect*)validPixROI1, (CvRect*)validPixROI2); } bool cv::stereoRectifyUncalibrated( const Mat& points1, const Mat& points2, const Mat& F, Size imgSize, Mat& H1, Mat& H2, double threshold ) { int rtype = CV_64F; H1.create(3, 3, rtype); H2.create(3, 3, rtype); CvMat _pt1 = points1, _pt2 = points2, matF, *pF=0, _H1 = H1, _H2 = H2; if( F.size() == Size(3, 3) ) pF = &(matF = F); return cvStereoRectifyUncalibrated(&_pt1, &_pt2, pF, imgSize, &_H1, &_H2, threshold) > 0; } void cv::reprojectImageTo3D( const Mat& disparity, Mat& _3dImage, const Mat& Q, bool handleMissingValues ) { _3dImage.create(disparity.size(), CV_32FC3); CvMat _disparity = disparity, __3dImage = _3dImage, matQ = Q; cvReprojectImageTo3D( &_disparity, &__3dImage, &matQ, handleMissingValues ); } cv::Mat cv::getOptimalNewCameraMatrix( const Mat& cameraMatrix, const Mat& distCoeffs, Size imgSize, double alpha, Size newImgSize, Rect* validPixROI ) { Mat newCameraMatrix(3, 3, cameraMatrix.type()); CvMat _cameraMatrix = cameraMatrix, _distCoeffs = distCoeffs, _newCameraMatrix = newCameraMatrix; cvGetOptimalNewCameraMatrix(&_cameraMatrix, &_distCoeffs, imgSize, alpha, &_newCameraMatrix, newImgSize, (CvRect*)validPixROI); return newCameraMatrix; } void cv::RQDecomp3x3( const Mat& M, Mat& R, Mat& Q ) { R.create(3, 3, M.type()); Q.create(3, 3, M.type()); CvMat matM = M, matR = R, matQ = Q; cvRQDecomp3x3(&matM, &matR, &matQ, 0, 0, 0, 0); } cv::Vec3d cv::RQDecomp3x3( const Mat& M, Mat& R, Mat& Q, Mat& Qx, Mat& Qy, Mat& Qz ) { R.create(3, 3, M.type()); Q.create(3, 3, M.type()); Vec3d eulerAngles; CvMat matM = M, matR = R, matQ = Q, _Qx = Qx, _Qy = Qy, _Qz = Qz; cvRQDecomp3x3(&matM, &matR, &matQ, &_Qx, &_Qy, &_Qz, (CvPoint3D64f*)&eulerAngles[0]); return eulerAngles; } void cv::decomposeProjectionMatrix( const Mat& projMatrix, Mat& cameraMatrix, Mat& rotMatrix, Mat& transVect ) { int type = projMatrix.type(); cameraMatrix.create(3, 3, type); rotMatrix.create(3, 3, type); transVect.create(4, 1, type); CvMat _projMatrix = projMatrix, _cameraMatrix = cameraMatrix; CvMat _rotMatrix = rotMatrix, _transVect = transVect; cvDecomposeProjectionMatrix(&_projMatrix, &_cameraMatrix, &_rotMatrix, &_transVect, 0, 0, 0, 0); } void cv::decomposeProjectionMatrix( const Mat& projMatrix, Mat& cameraMatrix, Mat& rotMatrix, Mat& transVect, Mat& rotMatrixX, Mat& rotMatrixY, Mat& rotMatrixZ, Vec3d& eulerAngles ) { int type = projMatrix.type(); cameraMatrix.create(3, 3, type); rotMatrix.create(3, 3, type); transVect.create(4, 1, type); rotMatrixX.create(3, 3, type); rotMatrixY.create(3, 3, type); rotMatrixZ.create(3, 3, type); CvMat _projMatrix = projMatrix, _cameraMatrix = cameraMatrix; CvMat _rotMatrix = rotMatrix, _transVect = transVect; CvMat _rotMatrixX = rotMatrixX, _rotMatrixY = rotMatrixY; CvMat _rotMatrixZ = rotMatrixZ; cvDecomposeProjectionMatrix(&_projMatrix, &_cameraMatrix, &_rotMatrix, &_transVect, &_rotMatrixX, &_rotMatrixY, &_rotMatrixZ, (CvPoint3D64f*)&eulerAngles[0]); } namespace cv { static void adjust3rdMatrix(const vector >& imgpt1_0, const vector >& imgpt3_0, const Mat& cameraMatrix1, const Mat& distCoeffs1, const Mat& cameraMatrix3, const Mat& distCoeffs3, const Mat& R1, const Mat& R3, const Mat& P1, Mat& P3 ) { vector imgpt1, imgpt3; for( int i = 0; i < (int)std::min(imgpt1_0.size(), imgpt3_0.size()); i++ ) { if( !imgpt1_0[i].empty() && !imgpt3_0[i].empty() ) { std::copy(imgpt1_0[i].begin(), imgpt1_0[i].end(), std::back_inserter(imgpt1)); std::copy(imgpt3_0[i].begin(), imgpt3_0[i].end(), std::back_inserter(imgpt3)); } } undistortPoints(Mat(imgpt1), imgpt1, cameraMatrix1, distCoeffs1, R1, P1); undistortPoints(Mat(imgpt3), imgpt3, cameraMatrix3, distCoeffs3, R3, P3); double y1_ = 0, y2_ = 0, y1y1_ = 0, y1y2_ = 0; size_t n = imgpt1.size(); for( size_t i = 0; i < n; i++ ) { double y1 = imgpt3[i].y, y2 = imgpt1[i].y; y1_ += y1; y2_ += y2; y1y1_ += y1*y1; y1y2_ += y1*y2; } y1_ /= n; y2_ /= n; y1y1_ /= n; y1y2_ /= n; double a = (y1y2_ - y1_*y2_)/(y1y1_ - y1_*y1_); double b = y2_ - a*y1_; P3.at(0,0) *= a; P3.at(1,1) *= a; P3.at(0,2) = P3.at(0,2)*a; P3.at(1,2) = P3.at(1,2)*a + b; P3.at(0,3) *= a; P3.at(1,3) *= a; } } float cv::rectify3( const Mat& cameraMatrix1, const Mat& distCoeffs1, const Mat& cameraMatrix2, const Mat& distCoeffs2, const Mat& cameraMatrix3, const Mat& distCoeffs3, const vector >& imgpt1, const vector >& imgpt3, Size imageSize, const Mat& R12, const Mat& T12, const Mat& R13, const Mat& T13, Mat& R1, Mat& R2, Mat& R3, Mat& P1, Mat& P2, Mat& P3, Mat& Q, double alpha, Size /*newImgSize*/, Rect* roi1, Rect* roi2, int flags ) { // first, rectify the 1-2 stereo pair stereoRectify( cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R12, T12, R1, R2, P1, P2, Q, alpha, imageSize, roi1, roi2, flags ); // recompute rectification transforms for cameras 1 & 2. Mat om, r_r, r_r13; if( R13.size() != Size(3,3) ) Rodrigues(R13, r_r13); else R13.copyTo(r_r13); if( R12.size() == Size(3,3) ) Rodrigues(R12, om); else R12.copyTo(om); om *= -0.5; Rodrigues(om, r_r); // rotate cameras to same orientation by averaging Mat_ t12 = r_r * T12; int idx = fabs(t12(0,0)) > fabs(t12(1,0)) ? 0 : 1; double c = t12(idx,0), nt = norm(t12, CV_L2); Mat_ uu = Mat_::zeros(3,1); uu(idx, 0) = c > 0 ? 1 : -1; // calculate global Z rotation Mat_ ww = t12.cross(uu), wR; double nw = norm(ww, CV_L2); ww *= acos(fabs(c)/nt)/nw; Rodrigues(ww, wR); // now rotate camera 3 to make its optical axis parallel to cameras 1 and 2. R3 = wR*r_r.t()*r_r13.t(); Mat_ t13 = R3 * T13; P2.copyTo(P3); Mat t = P3.col(3); t13.copyTo(t); P3.at(0,3) *= P3.at(0,0); P3.at(1,3) *= P3.at(1,1); if( !imgpt1.empty() && imgpt3.empty() ) adjust3rdMatrix(imgpt1, imgpt3, cameraMatrix1, distCoeffs1, cameraMatrix3, distCoeffs3, R1, R3, P1, P3); return (float)((P3.at(idx,3)/P3.at(idx,idx))/ (P2.at(idx,3)/P2.at(idx,idx))); } /* End of file. */