#include "perf_precomp.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/opencv_modules.hpp" #include "opencv2/flann.hpp" using namespace std; using namespace cv; using namespace perf; using std::tr1::make_tuple; using std::tr1::get; typedef TestBaseWithParam FeaturesFinderVec; typedef TestBaseWithParam match; typedef std::tr1::tuple matchVector_t; typedef TestBaseWithParam matchVector; #define NUMBER_IMAGES testing::Values(1, 5, 20) #define SURF_MATCH_CONFIDENCE 0.65f #define ORB_MATCH_CONFIDENCE 0.3f #define WORK_MEGAPIX 0.6 #ifdef HAVE_OPENCV_XFEATURES2D #define TEST_DETECTORS testing::Values("surf", "orb") #else #define TEST_DETECTORS testing::Values("orb") #endif PERF_TEST_P(FeaturesFinderVec, ParallelFeaturesFinder, NUMBER_IMAGES) { Mat img = imread( getDataPath("stitching/a1.png") ); vector imgs(GetParam(), img); vector features(imgs.size()); Ptr featuresFinder = makePtr(); TEST_CYCLE() { (*featuresFinder)(imgs, features); } SANITY_CHECK_NOTHING(); } PERF_TEST_P(FeaturesFinderVec, SerialFeaturesFinder, NUMBER_IMAGES) { Mat img = imread( getDataPath("stitching/a1.png") ); vector imgs(GetParam(), img); vector features(imgs.size()); Ptr featuresFinder = makePtr(); TEST_CYCLE() { for (size_t i = 0; i < imgs.size(); ++i) (*featuresFinder)(imgs[i], features[i]); } SANITY_CHECK_NOTHING(); } PERF_TEST_P( match, bestOf2Nearest, TEST_DETECTORS) { Mat img1, img1_full = imread( getDataPath("stitching/boat1.jpg") ); Mat img2, img2_full = imread( getDataPath("stitching/boat2.jpg") ); float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total())); float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total())); resize(img1_full, img1, Size(), scale1, scale1, INTER_LINEAR_EXACT); resize(img2_full, img2, Size(), scale2, scale2, INTER_LINEAR_EXACT); Ptr finder; Ptr matcher; if (GetParam() == "surf") { finder = makePtr(); matcher = makePtr(false, SURF_MATCH_CONFIDENCE); } else if (GetParam() == "orb") { finder = makePtr(); matcher = makePtr(false, ORB_MATCH_CONFIDENCE); } else { FAIL() << "Unknown 2D features type: " << GetParam(); } detail::ImageFeatures features1, features2; (*finder)(img1, features1); (*finder)(img2, features2); detail::MatchesInfo pairwise_matches; declare.in(features1.descriptors, features2.descriptors); while(next()) { cvflann::seed_random(42);//for predictive FlannBasedMatcher startTimer(); (*matcher)(features1, features2, pairwise_matches); stopTimer(); matcher->collectGarbage(); } Mat dist (pairwise_matches.H, Range::all(), Range(2, 3)); Mat R (pairwise_matches.H, Range::all(), Range(0, 2)); // separate transform matrix, use lower error on rotations SANITY_CHECK(dist, 1., ERROR_ABSOLUTE); SANITY_CHECK(R, .015, ERROR_ABSOLUTE); } PERF_TEST_P( matchVector, bestOf2NearestVectorFeatures, testing::Combine( TEST_DETECTORS, testing::Values(2, 4, 8)) ) { Mat img1, img1_full = imread( getDataPath("stitching/boat1.jpg") ); Mat img2, img2_full = imread( getDataPath("stitching/boat2.jpg") ); float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total())); float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total())); resize(img1_full, img1, Size(), scale1, scale1, INTER_LINEAR_EXACT); resize(img2_full, img2, Size(), scale2, scale2, INTER_LINEAR_EXACT); Ptr finder; Ptr matcher; string detectorName = get<0>(GetParam()); int featuresVectorSize = get<1>(GetParam()); if (detectorName == "surf") { finder = makePtr(); matcher = makePtr(false, SURF_MATCH_CONFIDENCE); } else if (detectorName == "orb") { finder = makePtr(); matcher = makePtr(false, ORB_MATCH_CONFIDENCE); } else { FAIL() << "Unknown 2D features type: " << get<0>(GetParam()); } detail::ImageFeatures features1, features2; (*finder)(img1, features1); (*finder)(img2, features2); vector features; vector pairwise_matches; for(int i = 0; i < featuresVectorSize/2; i++) { features.push_back(features1); features.push_back(features2); } declare.time(200); while(next()) { cvflann::seed_random(42);//for predictive FlannBasedMatcher startTimer(); (*matcher)(features, pairwise_matches); stopTimer(); matcher->collectGarbage(); } size_t matches_count = 0; for (size_t i = 0; i < pairwise_matches.size(); ++i) { if (pairwise_matches[i].src_img_idx < 0) continue; EXPECT_GT(pairwise_matches[i].matches.size(), 95u); EXPECT_FALSE(pairwise_matches[i].H.empty()); ++matches_count; } EXPECT_GT(matches_count, 0u); SANITY_CHECK_NOTHING(); } PERF_TEST_P( match, affineBestOf2Nearest, TEST_DETECTORS) { Mat img1, img1_full = imread( getDataPath("stitching/s1.jpg") ); Mat img2, img2_full = imread( getDataPath("stitching/s2.jpg") ); float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total())); float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total())); resize(img1_full, img1, Size(), scale1, scale1, INTER_LINEAR_EXACT); resize(img2_full, img2, Size(), scale2, scale2, INTER_LINEAR_EXACT); Ptr finder; Ptr matcher; if (GetParam() == "surf") { finder = makePtr(); matcher = makePtr(false, false, SURF_MATCH_CONFIDENCE); } else if (GetParam() == "orb") { finder = makePtr(); matcher = makePtr(false, false, ORB_MATCH_CONFIDENCE); } else { FAIL() << "Unknown 2D features type: " << GetParam(); } detail::ImageFeatures features1, features2; (*finder)(img1, features1); (*finder)(img2, features2); detail::MatchesInfo pairwise_matches; declare.in(features1.descriptors, features2.descriptors); while(next()) { cvflann::seed_random(42);//for predictive FlannBasedMatcher startTimer(); (*matcher)(features1, features2, pairwise_matches); stopTimer(); matcher->collectGarbage(); } // separate rotation and translation in transform matrix Mat T (pairwise_matches.H, Range(0, 2), Range(2, 3)); Mat R (pairwise_matches.H, Range(0, 2), Range(0, 2)); Mat h (pairwise_matches.H, Range(2, 3), Range::all()); SANITY_CHECK(T, 5, ERROR_ABSOLUTE); // allow 5 pixels diff in translations SANITY_CHECK(R, .01, ERROR_ABSOLUTE); // rotations must be more precise // last row should be precisely (0, 0, 1) as it is just added for representation in homogeneous // coordinates EXPECT_DOUBLE_EQ(h.at(0), 0.); EXPECT_DOUBLE_EQ(h.at(1), 0.); EXPECT_DOUBLE_EQ(h.at(2), 1.); } PERF_TEST_P( matchVector, affineBestOf2NearestVectorFeatures, testing::Combine( TEST_DETECTORS, testing::Values(2, 4, 8)) ) { Mat img1, img1_full = imread( getDataPath("stitching/s1.jpg") ); Mat img2, img2_full = imread( getDataPath("stitching/s2.jpg") ); float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total())); float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total())); resize(img1_full, img1, Size(), scale1, scale1, INTER_LINEAR_EXACT); resize(img2_full, img2, Size(), scale2, scale2, INTER_LINEAR_EXACT); Ptr finder; Ptr matcher; string detectorName = get<0>(GetParam()); int featuresVectorSize = get<1>(GetParam()); if (detectorName == "surf") { finder = makePtr(); matcher = makePtr(false, false, SURF_MATCH_CONFIDENCE); } else if (detectorName == "orb") { finder = makePtr(); matcher = makePtr(false, false, ORB_MATCH_CONFIDENCE); } else { FAIL() << "Unknown 2D features type: " << get<0>(GetParam()); } detail::ImageFeatures features1, features2; (*finder)(img1, features1); (*finder)(img2, features2); vector features; vector pairwise_matches; for(int i = 0; i < featuresVectorSize/2; i++) { features.push_back(features1); features.push_back(features2); } declare.time(200); while(next()) { cvflann::seed_random(42);//for predictive FlannBasedMatcher startTimer(); (*matcher)(features, pairwise_matches); stopTimer(); matcher->collectGarbage(); } size_t matches_count = 0; for (size_t i = 0; i < pairwise_matches.size(); ++i) { if (pairwise_matches[i].src_img_idx < 0) continue; EXPECT_TRUE(pairwise_matches[i].matches.size() > 400); EXPECT_FALSE(pairwise_matches[i].H.empty()); ++matches_count; } EXPECT_TRUE(matches_count > 0); SANITY_CHECK_NOTHING(); }