/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other GpuMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or bpied warranties, including, but not limited to, the bpied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include #include using namespace cv; using namespace cv::gpu; using namespace std; struct Stage { int first; int ntrees; float threshold; Stage(int f = 0, int n = 0, float t = 0.f) : first(f), ntrees(n), threshold(t) {} }; struct DTreeNode { int featureIdx; int left; int right; DTreeNode(int f = 0, int l = 0, int r = 0) : featureIdx(f), left(l), right(r) {} }; #if !defined (HAVE_CUDA) // ============ old fashioned haar cascade ==============================================// cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU() { throw_nogpu(); } cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU(const string&) { throw_nogpu(); } cv::gpu::CascadeClassifier_GPU::~CascadeClassifier_GPU() { throw_nogpu(); } bool cv::gpu::CascadeClassifier_GPU::empty() const { throw_nogpu(); return true; } bool cv::gpu::CascadeClassifier_GPU::load(const string&) { throw_nogpu(); return true; } Size cv::gpu::CascadeClassifier_GPU::getClassifierSize() const { throw_nogpu(); return Size(); } int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat& , GpuMat& , double , int , Size) { throw_nogpu(); return 0; } // ============ LBP cascade ==============================================// cv::gpu::CascadeClassifier_GPU_LBP::CascadeClassifier_GPU_LBP() { throw_nogpu(); } cv::gpu::CascadeClassifier_GPU_LBP::~CascadeClassifier_GPU_LBP() { throw_nogpu(); } bool cv::gpu::CascadeClassifier_GPU_LBP::empty() const { throw_nogpu(); return true; } bool cv::gpu::CascadeClassifier_GPU_LBP::load(const string&) { throw_nogpu(); return true; } Size cv::gpu::CascadeClassifier_GPU_LBP::getClassifierSize() const { throw_nogpu(); return Size(); } void cv::gpu::CascadeClassifier_GPU_LBP::preallocateIntegralBuffer(cv::Size desired) { throw_nogpu();} int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const cv::gpu::GpuMat&, cv::gpu::GpuMat&, cv::gpu::GpuMat&, double, int) { throw_nogpu(); return 0; } #else cv::gpu::CascadeClassifier_GPU_LBP::CascadeClassifier_GPU_LBP() { } cv::gpu::CascadeClassifier_GPU_LBP::~CascadeClassifier_GPU_LBP() { } void cv::gpu::CascadeClassifier_GPU_LBP::preallocateIntegralBuffer(cv::Size desired) { integral.create(desired.width + 1, desired.height + 1, CV_32SC1); } bool cv::gpu::CascadeClassifier_GPU_LBP::empty() const { return stage_mat.empty(); } bool cv::gpu::CascadeClassifier_GPU_LBP::load(const string& classifierAsXml) { FileStorage fs(classifierAsXml, FileStorage::READ); if (!fs.isOpened()) return false; return read(fs.getFirstTopLevelNode()); } #define GPU_CC_STAGE_TYPE "stageType" #define GPU_CC_FEATURE_TYPE "featureType" #define GPU_CC_BOOST "BOOST" #define GPU_CC_LBP "LBP" #define GPU_CC_MAX_CAT_COUNT "maxCatCount" #define GPU_CC_HEIGHT "height" #define GPU_CC_WIDTH "width" #define GPU_CC_STAGE_PARAMS "stageParams" #define GPU_CC_MAX_DEPTH "maxDepth" #define GPU_CC_FEATURE_PARAMS "featureParams" #define GPU_CC_STAGES "stages" #define GPU_CC_STAGE_THRESHOLD "stageThreshold" #define GPU_THRESHOLD_EPS 1e-5f #define GPU_CC_WEAK_CLASSIFIERS "weakClassifiers" #define GPU_CC_INTERNAL_NODES "internalNodes" #define GPU_CC_LEAF_VALUES "leafValues" #define GPU_CC_FEATURES "features" #define GPU_CC_RECT "rect" bool CascadeClassifier_GPU_LBP::read(const FileNode &root) { std::string stageTypeStr = (string)root[GPU_CC_STAGE_TYPE]; CV_Assert(stageTypeStr == GPU_CC_BOOST); string featureTypeStr = (string)root[GPU_CC_FEATURE_TYPE]; CV_Assert(featureTypeStr == GPU_CC_LBP); NxM.width = (int)root[GPU_CC_WIDTH]; NxM.height = (int)root[GPU_CC_HEIGHT]; CV_Assert( NxM.height > 0 && NxM.width > 0 ); isStumps = ((int)(root[GPU_CC_STAGE_PARAMS][GPU_CC_MAX_DEPTH]) == 1) ? true : false; CV_Assert(isStumps); // features FileNode fn = root[GPU_CC_FEATURE_PARAMS]; if (fn.empty()) return false; ncategories = fn[GPU_CC_MAX_CAT_COUNT]; subsetSize = (ncategories + 31) / 32, nodeStep = 3 + ( ncategories > 0 ? subsetSize : 1 ); fn = root[GPU_CC_STAGES]; if (fn.empty()) return false; std::vector stages; stages.reserve(fn.size()); std::vector cl_trees; std::vector cl_nodes; std::vector cl_leaves; std::vector subsets; FileNodeIterator it = fn.begin(), it_end = fn.end(); for (size_t si = 0; it != it_end; si++, ++it ) { FileNode fns = *it; Stage st; st.threshold = (float)fns[GPU_CC_STAGE_THRESHOLD] - GPU_THRESHOLD_EPS; fns = fns[GPU_CC_WEAK_CLASSIFIERS]; if (fns.empty()) return false; st.ntrees = (int)fns.size(); st.first = (int)cl_trees.size(); stages.push_back(st); cl_trees.reserve(stages[si].first + stages[si].ntrees); // weak trees FileNodeIterator it1 = fns.begin(), it1_end = fns.end(); for ( ; it1 != it1_end; ++it1 ) { FileNode fnw = *it1; FileNode internalNodes = fnw[GPU_CC_INTERNAL_NODES]; FileNode leafValues = fnw[GPU_CC_LEAF_VALUES]; if ( internalNodes.empty() || leafValues.empty() ) return false; int nodeCount = (int)internalNodes.size()/nodeStep; cl_trees.push_back(nodeCount); cl_nodes.reserve(cl_nodes.size() + nodeCount); cl_leaves.reserve(cl_leaves.size() + leafValues.size()); if( subsetSize > 0 ) subsets.reserve(subsets.size() + nodeCount * subsetSize); // nodes FileNodeIterator iIt = internalNodes.begin(), iEnd = internalNodes.end(); for( ; iIt != iEnd; ) { DTreeNode node((int)*(iIt++), (int)*(iIt++), (int)*(iIt++)); cl_nodes.push_back(node); if( subsetSize > 0 ) for( int j = 0; j < subsetSize; j++, ++iIt ) subsets.push_back((int)*iIt); } // leaves iIt = leafValues.begin(), iEnd = leafValues.end(); for( ; iIt != iEnd; ++iIt ) cl_leaves.push_back((float)*iIt); } } fn = root[GPU_CC_FEATURES]; if( fn.empty() ) return false; std::vector features; features.reserve(fn.size() * 4); FileNodeIterator f_it = fn.begin(), f_end = fn.end(); for (; f_it != f_end; ++f_it) { FileNode rect = fn[GPU_CC_RECT]; FileNodeIterator r_it = rect.begin(); features.push_back(saturate_cast((int)*(r_it++))); features.push_back(saturate_cast((int)*(r_it++))); features.push_back(saturate_cast((int)*(r_it++))); features.push_back(saturate_cast((int)*(r_it++))); } // copy data structures on gpu stage_mat = cv::gpu::GpuMat(1, (int)stages.size() * sizeof(Stage), CV_8UC1); stage_mat.upload(cv::Mat(1, stages.size() * sizeof(Stage), CV_8UC1, &(stages[0]) )); trees_mat = cv::gpu::GpuMat(1, (int)cl_trees.size(), CV_32SC1); stage_mat.upload(cv::Mat(cl_trees)); nodes_mat = cv::gpu::GpuMat(1, (int)cl_nodes.size() * sizeof(DTreeNode), CV_8UC1); stage_mat.upload(cv::Mat(1, cl_nodes.size() * sizeof(DTreeNode), CV_8UC1, &(cl_nodes[0]) )); leaves_mat = cv::gpu::GpuMat(1, (int)cl_leaves.size(), CV_32FC1); stage_mat.upload(cv::Mat(cl_leaves)); subsets_mat = cv::gpu::GpuMat(1, (int)subsets.size(), CV_32SC1); stage_mat.upload(cv::Mat(subsets)); features_mat = cv::gpu::GpuMat(1, (int)features.size(), CV_8UC1); features_mat.upload(cv::Mat(features)); return true; } #undef GPU_CC_STAGE_TYPE #undef GPU_CC_BOOST #undef GPU_CC_FEATURE_TYPE #undef GPU_CC_LBP #undef GPU_CC_MAX_CAT_COUNT #undef GPU_CC_HEIGHT #undef GPU_CC_WIDTH #undef GPU_CC_STAGE_PARAMS #undef GPU_CC_MAX_DEPTH #undef GPU_CC_FEATURE_PARAMS #undef GPU_CC_STAGES #undef GPU_CC_STAGE_THRESHOLD #undef GPU_THRESHOLD_EPS #undef GPU_CC_WEAK_CLASSIFIERS #undef GPU_CC_INTERNAL_NODES #undef GPU_CC_LEAF_VALUES Size cv::gpu::CascadeClassifier_GPU_LBP::getClassifierSize() const { return NxM; } namespace cv { namespace gpu { namespace device { namespace lbp { void cascadeClassify(const DevMem2Db stages, const DevMem2Di trees, const DevMem2Db nodes, const DevMem2Df leaves, const DevMem2Di subsets, const DevMem2Db features, const DevMem2Di integral, int workWidth, int workHeight, int clWidth, int clHeight, float scale, int step, int subsetSize, DevMem2D_ objects, int minNeighbors = 4, cudaStream_t stream = 0); } }}} int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, GpuMat& scaledImageBuffer, GpuMat& objects, double scaleFactor, int minNeighbors /*, Size minSize=Size()*/) { CV_Assert( scaleFactor > 1 && image.depth() == CV_8U ); CV_Assert(!empty()); const int defaultObjSearchNum = 100; // if( !objects.empty() && objects.depth() == CV_32S) // objects.reshape(4, 1); // else // objects.create(1 , defaultObjSearchNum, CV_32SC4); // temp solution objects.create(image.rows, image.cols, CV_32SC4); scaledImageBuffer.create(image.size(), image.type()); // TODO: specify max objects size for( double factor = 1; ; factor *= scaleFactor ) { cv::Size windowSize(cvRound(NxM.width * factor), cvRound(NxM.height * factor)); cv::Size scaledImageSize(cvRound( image.cols / factor ), cvRound( image.rows / factor )); cv::Size processingRectSize( scaledImageSize.width - NxM.width + 1, scaledImageSize.height - NxM.height + 1 ); // nothing to do if (processingRectSize.width <= 0 || processingRectSize.height <= 0 ) break; // TODO: min max object sizes cheching cv::gpu::resize(image, scaledImageBuffer, scaledImageSize, 0, 0, INTER_NEAREST); //prepare image for evaluation integral.create(cv::Size(scaledImageSize.width + 1, scaledImageSize.height + 1), CV_32SC1); cv::gpu::integral(scaledImageBuffer, integral); int step = (factor <= 2.) + 1; cv::gpu::device::lbp::cascadeClassify(stage_mat, trees_mat, nodes_mat, leaves_mat, subsets_mat, features_mat, integral, processingRectSize.width, processingRectSize.height, windowSize.width, windowSize.height, scaleFactor, step, subsetSize, objects, minNeighbors); } // TODO: reject levels return 0; } // ============ old fashioned haar cascade ==============================================// struct cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl { CascadeClassifierImpl(const string& filename) : lastAllocatedFrameSize(-1, -1) { ncvSetDebugOutputHandler(NCVDebugOutputHandler); ncvSafeCall( load(filename) ); } NCVStatus process(const GpuMat& src, GpuMat& objects, float scaleStep, int minNeighbors, bool findLargestObject, bool visualizeInPlace, NcvSize32u ncvMinSize, /*out*/unsigned int& numDetections) { calculateMemReqsAndAllocate(src.size()); NCVMemPtr src_beg; src_beg.ptr = (void*)src.ptr(); src_beg.memtype = NCVMemoryTypeDevice; NCVMemSegment src_seg; src_seg.begin = src_beg; src_seg.size = src.step * src.rows; NCVMatrixReuse d_src(src_seg, static_cast(devProp.textureAlignment), src.cols, src.rows, static_cast(src.step), true); ncvAssertReturn(d_src.isMemReused(), NCV_ALLOCATOR_BAD_REUSE); CV_Assert(objects.rows == 1); NCVMemPtr objects_beg; objects_beg.ptr = (void*)objects.ptr(); objects_beg.memtype = NCVMemoryTypeDevice; NCVMemSegment objects_seg; objects_seg.begin = objects_beg; objects_seg.size = objects.step * objects.rows; NCVVectorReuse d_rects(objects_seg, objects.cols); ncvAssertReturn(d_rects.isMemReused(), NCV_ALLOCATOR_BAD_REUSE); NcvSize32u roi; roi.width = d_src.width(); roi.height = d_src.height(); Ncv32u flags = 0; flags |= findLargestObject? NCVPipeObjDet_FindLargestObject : 0; flags |= visualizeInPlace ? NCVPipeObjDet_VisualizeInPlace : 0; ncvStat = ncvDetectObjectsMultiScale_device( d_src, roi, d_rects, numDetections, haar, *h_haarStages, *d_haarStages, *d_haarNodes, *d_haarFeatures, ncvMinSize, minNeighbors, scaleStep, 1, flags, *gpuAllocator, *cpuAllocator, devProp, 0); ncvAssertReturnNcvStat(ncvStat); ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR); return NCV_SUCCESS; } NcvSize32u getClassifierSize() const { return haar.ClassifierSize; } cv::Size getClassifierCvSize() const { return cv::Size(haar.ClassifierSize.width, haar.ClassifierSize.height); } private: static void NCVDebugOutputHandler(const std::string &msg) { CV_Error(CV_GpuApiCallError, msg.c_str()); } NCVStatus load(const string& classifierFile) { int devId = cv::gpu::getDevice(); ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), NCV_CUDA_ERROR); // Load the classifier from file (assuming its size is about 1 mb) using a simple allocator gpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeDevice, static_cast(devProp.textureAlignment)); cpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeHostPinned, static_cast(devProp.textureAlignment)); ncvAssertPrintReturn(gpuCascadeAllocator->isInitialized(), "Error creating cascade GPU allocator", NCV_CUDA_ERROR); ncvAssertPrintReturn(cpuCascadeAllocator->isInitialized(), "Error creating cascade CPU allocator", NCV_CUDA_ERROR); Ncv32u haarNumStages, haarNumNodes, haarNumFeatures; ncvStat = ncvHaarGetClassifierSize(classifierFile, haarNumStages, haarNumNodes, haarNumFeatures); ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error reading classifier size (check the file)", NCV_FILE_ERROR); h_haarStages = new NCVVectorAlloc(*cpuCascadeAllocator, haarNumStages); h_haarNodes = new NCVVectorAlloc(*cpuCascadeAllocator, haarNumNodes); h_haarFeatures = new NCVVectorAlloc(*cpuCascadeAllocator, haarNumFeatures); ncvAssertPrintReturn(h_haarStages->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR); ncvAssertPrintReturn(h_haarNodes->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR); ncvAssertPrintReturn(h_haarFeatures->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR); ncvStat = ncvHaarLoadFromFile_host(classifierFile, haar, *h_haarStages, *h_haarNodes, *h_haarFeatures); ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error loading classifier", NCV_FILE_ERROR); d_haarStages = new NCVVectorAlloc(*gpuCascadeAllocator, haarNumStages); d_haarNodes = new NCVVectorAlloc(*gpuCascadeAllocator, haarNumNodes); d_haarFeatures = new NCVVectorAlloc(*gpuCascadeAllocator, haarNumFeatures); ncvAssertPrintReturn(d_haarStages->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR); ncvAssertPrintReturn(d_haarNodes->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR); ncvAssertPrintReturn(d_haarFeatures->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR); ncvStat = h_haarStages->copySolid(*d_haarStages, 0); ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR); ncvStat = h_haarNodes->copySolid(*d_haarNodes, 0); ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR); ncvStat = h_haarFeatures->copySolid(*d_haarFeatures, 0); ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR); return NCV_SUCCESS; } NCVStatus calculateMemReqsAndAllocate(const Size& frameSize) { if (lastAllocatedFrameSize == frameSize) { return NCV_SUCCESS; } // Calculate memory requirements and create real allocators NCVMemStackAllocator gpuCounter(static_cast(devProp.textureAlignment)); NCVMemStackAllocator cpuCounter(static_cast(devProp.textureAlignment)); ncvAssertPrintReturn(gpuCounter.isInitialized(), "Error creating GPU memory counter", NCV_CUDA_ERROR); ncvAssertPrintReturn(cpuCounter.isInitialized(), "Error creating CPU memory counter", NCV_CUDA_ERROR); NCVMatrixAlloc d_src(gpuCounter, frameSize.width, frameSize.height); NCVMatrixAlloc h_src(cpuCounter, frameSize.width, frameSize.height); ncvAssertReturn(d_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); ncvAssertReturn(h_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NCVVectorAlloc d_rects(gpuCounter, 100); ncvAssertReturn(d_rects.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC); NcvSize32u roi; roi.width = d_src.width(); roi.height = d_src.height(); Ncv32u numDetections; ncvStat = ncvDetectObjectsMultiScale_device(d_src, roi, d_rects, numDetections, haar, *h_haarStages, *d_haarStages, *d_haarNodes, *d_haarFeatures, haar.ClassifierSize, 4, 1.2f, 1, 0, gpuCounter, cpuCounter, devProp, 0); ncvAssertReturnNcvStat(ncvStat); ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR); gpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeDevice, gpuCounter.maxSize(), static_cast(devProp.textureAlignment)); cpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeHostPinned, cpuCounter.maxSize(), static_cast(devProp.textureAlignment)); ncvAssertPrintReturn(gpuAllocator->isInitialized(), "Error creating GPU memory allocator", NCV_CUDA_ERROR); ncvAssertPrintReturn(cpuAllocator->isInitialized(), "Error creating CPU memory allocator", NCV_CUDA_ERROR); return NCV_SUCCESS; } cudaDeviceProp devProp; NCVStatus ncvStat; Ptr gpuCascadeAllocator; Ptr cpuCascadeAllocator; Ptr > h_haarStages; Ptr > h_haarNodes; Ptr > h_haarFeatures; HaarClassifierCascadeDescriptor haar; Ptr > d_haarStages; Ptr > d_haarNodes; Ptr > d_haarFeatures; Size lastAllocatedFrameSize; Ptr gpuAllocator; Ptr cpuAllocator; }; cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU() : findLargestObject(false), visualizeInPlace(false), impl(0) {} cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU(const string& filename) : findLargestObject(false), visualizeInPlace(false), impl(0) { load(filename); } cv::gpu::CascadeClassifier_GPU::~CascadeClassifier_GPU() { release(); } bool cv::gpu::CascadeClassifier_GPU::empty() const { return impl == 0; } void cv::gpu::CascadeClassifier_GPU::release() { if (impl) { delete impl; impl = 0; } } bool cv::gpu::CascadeClassifier_GPU::load(const string& filename) { release(); impl = new CascadeClassifierImpl(filename); return !this->empty(); } Size cv::gpu::CascadeClassifier_GPU::getClassifierSize() const { return this->empty() ? Size() : impl->getClassifierCvSize(); } int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat& image, GpuMat& objectsBuf, double scaleFactor, int minNeighbors, Size minSize) { CV_Assert( scaleFactor > 1 && image.depth() == CV_8U); CV_Assert( !this->empty()); const int defaultObjSearchNum = 100; if (objectsBuf.empty()) { objectsBuf.create(1, defaultObjSearchNum, DataType::type); } NcvSize32u ncvMinSize = impl->getClassifierSize(); if (ncvMinSize.width < (unsigned)minSize.width && ncvMinSize.height < (unsigned)minSize.height) { ncvMinSize.width = minSize.width; ncvMinSize.height = minSize.height; } unsigned int numDetections; ncvSafeCall( impl->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, ncvMinSize, numDetections) ); return numDetections; } struct RectConvert { Rect operator()(const NcvRect32u& nr) const { return Rect(nr.x, nr.y, nr.width, nr.height); } NcvRect32u operator()(const Rect& nr) const { NcvRect32u rect; rect.x = nr.x; rect.y = nr.y; rect.width = nr.width; rect.height = nr.height; return rect; } }; void groupRectangles(std::vector &hypotheses, int groupThreshold, double eps, std::vector *weights) { vector rects(hypotheses.size()); std::transform(hypotheses.begin(), hypotheses.end(), rects.begin(), RectConvert()); if (weights) { vector weights_int; weights_int.assign(weights->begin(), weights->end()); cv::groupRectangles(rects, weights_int, groupThreshold, eps); } else { cv::groupRectangles(rects, groupThreshold, eps); } std::transform(rects.begin(), rects.end(), hypotheses.begin(), RectConvert()); hypotheses.resize(rects.size()); } NCVStatus loadFromXML(const std::string &filename, HaarClassifierCascadeDescriptor &haar, std::vector &haarStages, std::vector &haarClassifierNodes, std::vector &haarFeatures) { NCVStatus ncvStat; haar.NumStages = 0; haar.NumClassifierRootNodes = 0; haar.NumClassifierTotalNodes = 0; haar.NumFeatures = 0; haar.ClassifierSize.width = 0; haar.ClassifierSize.height = 0; haar.bHasStumpsOnly = true; haar.bNeedsTiltedII = false; Ncv32u curMaxTreeDepth; std::vector xmlFileCont; std::vector h_TmpClassifierNotRootNodes; haarStages.resize(0); haarClassifierNodes.resize(0); haarFeatures.resize(0); Ptr oldCascade = (CvHaarClassifierCascade*)cvLoad(filename.c_str(), 0, 0, 0); if (oldCascade.empty()) { return NCV_HAAR_XML_LOADING_EXCEPTION; } haar.ClassifierSize.width = oldCascade->orig_window_size.width; haar.ClassifierSize.height = oldCascade->orig_window_size.height; int stagesCound = oldCascade->count; for(int s = 0; s < stagesCound; ++s) // by stages { HaarStage64 curStage; curStage.setStartClassifierRootNodeOffset(static_cast(haarClassifierNodes.size())); curStage.setStageThreshold(oldCascade->stage_classifier[s].threshold); int treesCount = oldCascade->stage_classifier[s].count; for(int t = 0; t < treesCount; ++t) // by trees { Ncv32u nodeId = 0; CvHaarClassifier* tree = &oldCascade->stage_classifier[s].classifier[t]; int nodesCount = tree->count; for(int n = 0; n < nodesCount; ++n) //by features { CvHaarFeature* feature = &tree->haar_feature[n]; HaarClassifierNode128 curNode; curNode.setThreshold(tree->threshold[n]); NcvBool bIsLeftNodeLeaf = false; NcvBool bIsRightNodeLeaf = false; HaarClassifierNodeDescriptor32 nodeLeft; if ( tree->left[n] <= 0 ) { Ncv32f leftVal = tree->alpha[-tree->left[n]]; ncvStat = nodeLeft.create(leftVal); ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat); bIsLeftNodeLeaf = true; } else { Ncv32u leftNodeOffset = tree->left[n]; nodeLeft.create((Ncv32u)(h_TmpClassifierNotRootNodes.size() + leftNodeOffset - 1)); haar.bHasStumpsOnly = false; } curNode.setLeftNodeDesc(nodeLeft); HaarClassifierNodeDescriptor32 nodeRight; if ( tree->right[n] <= 0 ) { Ncv32f rightVal = tree->alpha[-tree->right[n]]; ncvStat = nodeRight.create(rightVal); ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat); bIsRightNodeLeaf = true; } else { Ncv32u rightNodeOffset = tree->right[n]; nodeRight.create((Ncv32u)(h_TmpClassifierNotRootNodes.size() + rightNodeOffset - 1)); haar.bHasStumpsOnly = false; } curNode.setRightNodeDesc(nodeRight); Ncv32u tiltedVal = feature->tilted; haar.bNeedsTiltedII = (tiltedVal != 0); Ncv32u featureId = 0; for(int l = 0; l < CV_HAAR_FEATURE_MAX; ++l) //by rects { Ncv32u rectX = feature->rect[l].r.x; Ncv32u rectY = feature->rect[l].r.y; Ncv32u rectWidth = feature->rect[l].r.width; Ncv32u rectHeight = feature->rect[l].r.height; Ncv32f rectWeight = feature->rect[l].weight; if (rectWeight == 0/* && rectX == 0 &&rectY == 0 && rectWidth == 0 && rectHeight == 0*/) break; HaarFeature64 curFeature; ncvStat = curFeature.setRect(rectX, rectY, rectWidth, rectHeight, haar.ClassifierSize.width, haar.ClassifierSize.height); curFeature.setWeight(rectWeight); ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat); haarFeatures.push_back(curFeature); featureId++; } HaarFeatureDescriptor32 tmpFeatureDesc; ncvStat = tmpFeatureDesc.create(haar.bNeedsTiltedII, bIsLeftNodeLeaf, bIsRightNodeLeaf, featureId, static_cast(haarFeatures.size()) - featureId); ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat); curNode.setFeatureDesc(tmpFeatureDesc); if (!nodeId) { //root node haarClassifierNodes.push_back(curNode); curMaxTreeDepth = 1; } else { //other node h_TmpClassifierNotRootNodes.push_back(curNode); curMaxTreeDepth++; } nodeId++; } } curStage.setNumClassifierRootNodes(treesCount); haarStages.push_back(curStage); } //fill in cascade stats haar.NumStages = static_cast(haarStages.size()); haar.NumClassifierRootNodes = static_cast(haarClassifierNodes.size()); haar.NumClassifierTotalNodes = static_cast(haar.NumClassifierRootNodes + h_TmpClassifierNotRootNodes.size()); haar.NumFeatures = static_cast(haarFeatures.size()); //merge root and leaf nodes in one classifiers array Ncv32u offsetRoot = static_cast(haarClassifierNodes.size()); for (Ncv32u i=0; i