/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/imgproc/imgproc_c.h" #include "opencv2/imgproc/detail/distortion_model.hpp" #include "opencv2/calib3d/calib3d_c.h" #include #include /* This is straight-forward port v3 of Matlab calibration engine by Jean-Yves Bouguet that is (in a large extent) based on the paper: Z. Zhang. "A flexible new technique for camera calibration". IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334, 2000. The 1st initial port was done by Valery Mosyagin. */ using namespace cv; // reimplementation of dAB.m CV_IMPL void cvCalcMatMulDeriv( const CvMat* A, const CvMat* B, CvMat* dABdA, CvMat* dABdB ) { int i, j, M, N, L; int bstep; CV_Assert( CV_IS_MAT(A) && CV_IS_MAT(B) ); CV_Assert( CV_ARE_TYPES_EQ(A, B) && (CV_MAT_TYPE(A->type) == CV_32F || CV_MAT_TYPE(A->type) == CV_64F) ); CV_Assert( A->cols == B->rows ); M = A->rows; L = A->cols; N = B->cols; bstep = B->step/CV_ELEM_SIZE(B->type); if( dABdA ) { CV_Assert( CV_ARE_TYPES_EQ(A, dABdA) && dABdA->rows == A->rows*B->cols && dABdA->cols == A->rows*A->cols ); } if( dABdB ) { CV_Assert( CV_ARE_TYPES_EQ(A, dABdB) && dABdB->rows == A->rows*B->cols && dABdB->cols == B->rows*B->cols ); } if( CV_MAT_TYPE(A->type) == CV_32F ) { for( i = 0; i < M*N; i++ ) { int i1 = i / N, i2 = i % N; if( dABdA ) { float* dcda = (float*)(dABdA->data.ptr + dABdA->step*i); const float* b = (const float*)B->data.ptr + i2; for( j = 0; j < M*L; j++ ) dcda[j] = 0; for( j = 0; j < L; j++ ) dcda[i1*L + j] = b[j*bstep]; } if( dABdB ) { float* dcdb = (float*)(dABdB->data.ptr + dABdB->step*i); const float* a = (const float*)(A->data.ptr + A->step*i1); for( j = 0; j < L*N; j++ ) dcdb[j] = 0; for( j = 0; j < L; j++ ) dcdb[j*N + i2] = a[j]; } } } else { for( i = 0; i < M*N; i++ ) { int i1 = i / N, i2 = i % N; if( dABdA ) { double* dcda = (double*)(dABdA->data.ptr + dABdA->step*i); const double* b = (const double*)B->data.ptr + i2; for( j = 0; j < M*L; j++ ) dcda[j] = 0; for( j = 0; j < L; j++ ) dcda[i1*L + j] = b[j*bstep]; } if( dABdB ) { double* dcdb = (double*)(dABdB->data.ptr + dABdB->step*i); const double* a = (const double*)(A->data.ptr + A->step*i1); for( j = 0; j < L*N; j++ ) dcdb[j] = 0; for( j = 0; j < L; j++ ) dcdb[j*N + i2] = a[j]; } } } } // reimplementation of compose_motion.m CV_IMPL void cvComposeRT( const CvMat* _rvec1, const CvMat* _tvec1, const CvMat* _rvec2, const CvMat* _tvec2, CvMat* _rvec3, CvMat* _tvec3, CvMat* dr3dr1, CvMat* dr3dt1, CvMat* dr3dr2, CvMat* dr3dt2, CvMat* dt3dr1, CvMat* dt3dt1, CvMat* dt3dr2, CvMat* dt3dt2 ) { double _r1[3], _r2[3]; double _R1[9], _d1[9*3], _R2[9], _d2[9*3]; CvMat r1 = cvMat(3,1,CV_64F,_r1), r2 = cvMat(3,1,CV_64F,_r2); CvMat R1 = cvMat(3,3,CV_64F,_R1), R2 = cvMat(3,3,CV_64F,_R2); CvMat dR1dr1 = cvMat(9,3,CV_64F,_d1), dR2dr2 = cvMat(9,3,CV_64F,_d2); CV_Assert( CV_IS_MAT(_rvec1) && CV_IS_MAT(_rvec2) ); CV_Assert( CV_MAT_TYPE(_rvec1->type) == CV_32F || CV_MAT_TYPE(_rvec1->type) == CV_64F ); CV_Assert( _rvec1->rows == 3 && _rvec1->cols == 1 && CV_ARE_SIZES_EQ(_rvec1, _rvec2) ); cvConvert( _rvec1, &r1 ); cvConvert( _rvec2, &r2 ); cvRodrigues2( &r1, &R1, &dR1dr1 ); cvRodrigues2( &r2, &R2, &dR2dr2 ); if( _rvec3 || dr3dr1 || dr3dr2 ) { double _r3[3], _R3[9], _dR3dR1[9*9], _dR3dR2[9*9], _dr3dR3[9*3]; double _W1[9*3], _W2[3*3]; CvMat r3 = cvMat(3,1,CV_64F,_r3), R3 = cvMat(3,3,CV_64F,_R3); CvMat dR3dR1 = cvMat(9,9,CV_64F,_dR3dR1), dR3dR2 = cvMat(9,9,CV_64F,_dR3dR2); CvMat dr3dR3 = cvMat(3,9,CV_64F,_dr3dR3); CvMat W1 = cvMat(3,9,CV_64F,_W1), W2 = cvMat(3,3,CV_64F,_W2); cvMatMul( &R2, &R1, &R3 ); cvCalcMatMulDeriv( &R2, &R1, &dR3dR2, &dR3dR1 ); cvRodrigues2( &R3, &r3, &dr3dR3 ); if( _rvec3 ) cvConvert( &r3, _rvec3 ); if( dr3dr1 ) { cvMatMul( &dr3dR3, &dR3dR1, &W1 ); cvMatMul( &W1, &dR1dr1, &W2 ); cvConvert( &W2, dr3dr1 ); } if( dr3dr2 ) { cvMatMul( &dr3dR3, &dR3dR2, &W1 ); cvMatMul( &W1, &dR2dr2, &W2 ); cvConvert( &W2, dr3dr2 ); } } if( dr3dt1 ) cvZero( dr3dt1 ); if( dr3dt2 ) cvZero( dr3dt2 ); if( _tvec3 || dt3dr2 || dt3dt1 ) { double _t1[3], _t2[3], _t3[3], _dxdR2[3*9], _dxdt1[3*3], _W3[3*3]; CvMat t1 = cvMat(3,1,CV_64F,_t1), t2 = cvMat(3,1,CV_64F,_t2); CvMat t3 = cvMat(3,1,CV_64F,_t3); CvMat dxdR2 = cvMat(3, 9, CV_64F, _dxdR2); CvMat dxdt1 = cvMat(3, 3, CV_64F, _dxdt1); CvMat W3 = cvMat(3, 3, CV_64F, _W3); CV_Assert( CV_IS_MAT(_tvec1) && CV_IS_MAT(_tvec2) ); CV_Assert( CV_ARE_SIZES_EQ(_tvec1, _tvec2) && CV_ARE_SIZES_EQ(_tvec1, _rvec1) ); cvConvert( _tvec1, &t1 ); cvConvert( _tvec2, &t2 ); cvMatMulAdd( &R2, &t1, &t2, &t3 ); if( _tvec3 ) cvConvert( &t3, _tvec3 ); if( dt3dr2 || dt3dt1 ) { cvCalcMatMulDeriv( &R2, &t1, &dxdR2, &dxdt1 ); if( dt3dr2 ) { cvMatMul( &dxdR2, &dR2dr2, &W3 ); cvConvert( &W3, dt3dr2 ); } if( dt3dt1 ) cvConvert( &dxdt1, dt3dt1 ); } } if( dt3dt2 ) cvSetIdentity( dt3dt2 ); if( dt3dr1 ) cvZero( dt3dr1 ); } CV_IMPL int cvRodrigues2( const CvMat* src, CvMat* dst, CvMat* jacobian ) { double J[27] = {0}; CvMat matJ = cvMat( 3, 9, CV_64F, J ); if( !CV_IS_MAT(src) ) CV_Error( !src ? CV_StsNullPtr : CV_StsBadArg, "Input argument is not a valid matrix" ); if( !CV_IS_MAT(dst) ) CV_Error( !dst ? CV_StsNullPtr : CV_StsBadArg, "The first output argument is not a valid matrix" ); int depth = CV_MAT_DEPTH(src->type); int elem_size = CV_ELEM_SIZE(depth); if( depth != CV_32F && depth != CV_64F ) CV_Error( CV_StsUnsupportedFormat, "The matrices must have 32f or 64f data type" ); if( !CV_ARE_DEPTHS_EQ(src, dst) ) CV_Error( CV_StsUnmatchedFormats, "All the matrices must have the same data type" ); if( jacobian ) { if( !CV_IS_MAT(jacobian) ) CV_Error( CV_StsBadArg, "Jacobian is not a valid matrix" ); if( !CV_ARE_DEPTHS_EQ(src, jacobian) || CV_MAT_CN(jacobian->type) != 1 ) CV_Error( CV_StsUnmatchedFormats, "Jacobian must have 32fC1 or 64fC1 datatype" ); if( (jacobian->rows != 9 || jacobian->cols != 3) && (jacobian->rows != 3 || jacobian->cols != 9)) CV_Error( CV_StsBadSize, "Jacobian must be 3x9 or 9x3" ); } if( src->cols == 1 || src->rows == 1 ) { int step = src->rows > 1 ? src->step / elem_size : 1; if( src->rows + src->cols*CV_MAT_CN(src->type) - 1 != 3 ) CV_Error( CV_StsBadSize, "Input matrix must be 1x3, 3x1 or 3x3" ); if( dst->rows != 3 || dst->cols != 3 || CV_MAT_CN(dst->type) != 1 ) CV_Error( CV_StsBadSize, "Output matrix must be 3x3, single-channel floating point matrix" ); Point3d r; if( depth == CV_32F ) { r.x = src->data.fl[0]; r.y = src->data.fl[step]; r.z = src->data.fl[step*2]; } else { r.x = src->data.db[0]; r.y = src->data.db[step]; r.z = src->data.db[step*2]; } double theta = norm(r); if( theta < DBL_EPSILON ) { cvSetIdentity( dst ); if( jacobian ) { memset( J, 0, sizeof(J) ); J[5] = J[15] = J[19] = -1; J[7] = J[11] = J[21] = 1; } } else { double c = cos(theta); double s = sin(theta); double c1 = 1. - c; double itheta = theta ? 1./theta : 0.; r *= itheta; Matx33d rrt( r.x*r.x, r.x*r.y, r.x*r.z, r.x*r.y, r.y*r.y, r.y*r.z, r.x*r.z, r.y*r.z, r.z*r.z ); Matx33d r_x( 0, -r.z, r.y, r.z, 0, -r.x, -r.y, r.x, 0 ); // R = cos(theta)*I + (1 - cos(theta))*r*rT + sin(theta)*[r_x] Matx33d R = c*Matx33d::eye() + c1*rrt + s*r_x; Mat(R).convertTo(cvarrToMat(dst), dst->type); if( jacobian ) { const double I[] = { 1, 0, 0, 0, 1, 0, 0, 0, 1 }; double drrt[] = { r.x+r.x, r.y, r.z, r.y, 0, 0, r.z, 0, 0, 0, r.x, 0, r.x, r.y+r.y, r.z, 0, r.z, 0, 0, 0, r.x, 0, 0, r.y, r.x, r.y, r.z+r.z }; double d_r_x_[] = { 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0 }; for( int i = 0; i < 3; i++ ) { double ri = i == 0 ? r.x : i == 1 ? r.y : r.z; double a0 = -s*ri, a1 = (s - 2*c1*itheta)*ri, a2 = c1*itheta; double a3 = (c - s*itheta)*ri, a4 = s*itheta; for( int k = 0; k < 9; k++ ) J[i*9+k] = a0*I[k] + a1*rrt.val[k] + a2*drrt[i*9+k] + a3*r_x.val[k] + a4*d_r_x_[i*9+k]; } } } } else if( src->cols == 3 && src->rows == 3 ) { Matx33d U, Vt; Vec3d W; double theta, s, c; int step = dst->rows > 1 ? dst->step / elem_size : 1; if( (dst->rows != 1 || dst->cols*CV_MAT_CN(dst->type) != 3) && (dst->rows != 3 || dst->cols != 1 || CV_MAT_CN(dst->type) != 1)) CV_Error( CV_StsBadSize, "Output matrix must be 1x3 or 3x1" ); Matx33d R = cvarrToMat(src); if( !checkRange(R, true, NULL, -100, 100) ) { cvZero(dst); if( jacobian ) cvZero(jacobian); return 0; } SVD::compute(R, W, U, Vt); R = U*Vt; Point3d r(R(2, 1) - R(1, 2), R(0, 2) - R(2, 0), R(1, 0) - R(0, 1)); s = std::sqrt((r.x*r.x + r.y*r.y + r.z*r.z)*0.25); c = (R(0, 0) + R(1, 1) + R(2, 2) - 1)*0.5; c = c > 1. ? 1. : c < -1. ? -1. : c; theta = acos(c); if( s < 1e-5 ) { double t; if( c > 0 ) r = Point3d(0, 0, 0); else { t = (R(0, 0) + 1)*0.5; r.x = std::sqrt(MAX(t,0.)); t = (R(1, 1) + 1)*0.5; r.y = std::sqrt(MAX(t,0.))*(R(0, 1) < 0 ? -1. : 1.); t = (R(2, 2) + 1)*0.5; r.z = std::sqrt(MAX(t,0.))*(R(0, 2) < 0 ? -1. : 1.); if( fabs(r.x) < fabs(r.y) && fabs(r.x) < fabs(r.z) && (R(1, 2) > 0) != (r.y*r.z > 0) ) r.z = -r.z; theta /= norm(r); r *= theta; } if( jacobian ) { memset( J, 0, sizeof(J) ); if( c > 0 ) { J[5] = J[15] = J[19] = -0.5; J[7] = J[11] = J[21] = 0.5; } } } else { double vth = 1/(2*s); if( jacobian ) { double t, dtheta_dtr = -1./s; // var1 = [vth;theta] // var = [om1;var1] = [om1;vth;theta] double dvth_dtheta = -vth*c/s; double d1 = 0.5*dvth_dtheta*dtheta_dtr; double d2 = 0.5*dtheta_dtr; // dvar1/dR = dvar1/dtheta*dtheta/dR = [dvth/dtheta; 1] * dtheta/dtr * dtr/dR double dvardR[5*9] = { 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, d1, 0, 0, 0, d1, 0, 0, 0, d1, d2, 0, 0, 0, d2, 0, 0, 0, d2 }; // var2 = [om;theta] double dvar2dvar[] = { vth, 0, 0, r.x, 0, 0, vth, 0, r.y, 0, 0, 0, vth, r.z, 0, 0, 0, 0, 0, 1 }; double domegadvar2[] = { theta, 0, 0, r.x*vth, 0, theta, 0, r.y*vth, 0, 0, theta, r.z*vth }; CvMat _dvardR = cvMat( 5, 9, CV_64FC1, dvardR ); CvMat _dvar2dvar = cvMat( 4, 5, CV_64FC1, dvar2dvar ); CvMat _domegadvar2 = cvMat( 3, 4, CV_64FC1, domegadvar2 ); double t0[3*5]; CvMat _t0 = cvMat( 3, 5, CV_64FC1, t0 ); cvMatMul( &_domegadvar2, &_dvar2dvar, &_t0 ); cvMatMul( &_t0, &_dvardR, &matJ ); // transpose every row of matJ (treat the rows as 3x3 matrices) CV_SWAP(J[1], J[3], t); CV_SWAP(J[2], J[6], t); CV_SWAP(J[5], J[7], t); CV_SWAP(J[10], J[12], t); CV_SWAP(J[11], J[15], t); CV_SWAP(J[14], J[16], t); CV_SWAP(J[19], J[21], t); CV_SWAP(J[20], J[24], t); CV_SWAP(J[23], J[25], t); } vth *= theta; r *= vth; } if( depth == CV_32F ) { dst->data.fl[0] = (float)r.x; dst->data.fl[step] = (float)r.y; dst->data.fl[step*2] = (float)r.z; } else { dst->data.db[0] = r.x; dst->data.db[step] = r.y; dst->data.db[step*2] = r.z; } } else { CV_Error(CV_StsBadSize, "Input matrix must be 1x3 or 3x1 for a rotation vector, or 3x3 for a rotation matrix"); } if( jacobian ) { if( depth == CV_32F ) { if( jacobian->rows == matJ.rows ) cvConvert( &matJ, jacobian ); else { float Jf[3*9]; CvMat _Jf = cvMat( matJ.rows, matJ.cols, CV_32FC1, Jf ); cvConvert( &matJ, &_Jf ); cvTranspose( &_Jf, jacobian ); } } else if( jacobian->rows == matJ.rows ) cvCopy( &matJ, jacobian ); else cvTranspose( &matJ, jacobian ); } return 1; } static const char* cvDistCoeffErr = "Distortion coefficients must be 1x4, 4x1, 1x5, 5x1, 1x8, 8x1, 1x12, 12x1, 1x14 or 14x1 floating-point vector"; CV_IMPL void cvProjectPoints2( const CvMat* objectPoints, const CvMat* r_vec, const CvMat* t_vec, const CvMat* A, const CvMat* distCoeffs, CvMat* imagePoints, CvMat* dpdr, CvMat* dpdt, CvMat* dpdf, CvMat* dpdc, CvMat* dpdk, double aspectRatio ) { Ptr matM, _m; Ptr _dpdr, _dpdt, _dpdc, _dpdf, _dpdk; int i, j, count; int calc_derivatives; const CvPoint3D64f* M; CvPoint2D64f* m; double r[3], R[9], dRdr[27], t[3], a[9], k[14] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0}, fx, fy, cx, cy; Matx33d matTilt = Matx33d::eye(); Matx33d dMatTiltdTauX(0,0,0,0,0,0,0,-1,0); Matx33d dMatTiltdTauY(0,0,0,0,0,0,1,0,0); CvMat _r, _t, _a = cvMat( 3, 3, CV_64F, a ), _k; CvMat matR = cvMat( 3, 3, CV_64F, R ), _dRdr = cvMat( 3, 9, CV_64F, dRdr ); double *dpdr_p = 0, *dpdt_p = 0, *dpdk_p = 0, *dpdf_p = 0, *dpdc_p = 0; int dpdr_step = 0, dpdt_step = 0, dpdk_step = 0, dpdf_step = 0, dpdc_step = 0; bool fixedAspectRatio = aspectRatio > FLT_EPSILON; if( !CV_IS_MAT(objectPoints) || !CV_IS_MAT(r_vec) || !CV_IS_MAT(t_vec) || !CV_IS_MAT(A) || /*!CV_IS_MAT(distCoeffs) ||*/ !CV_IS_MAT(imagePoints) ) CV_Error( CV_StsBadArg, "One of required arguments is not a valid matrix" ); int total = objectPoints->rows * objectPoints->cols * CV_MAT_CN(objectPoints->type); if(total % 3 != 0) { //we have stopped support of homogeneous coordinates because it cause ambiguity in interpretation of the input data CV_Error( CV_StsBadArg, "Homogeneous coordinates are not supported" ); } count = total / 3; if( CV_IS_CONT_MAT(objectPoints->type) && (CV_MAT_DEPTH(objectPoints->type) == CV_32F || CV_MAT_DEPTH(objectPoints->type) == CV_64F)&& ((objectPoints->rows == 1 && CV_MAT_CN(objectPoints->type) == 3) || (objectPoints->rows == count && CV_MAT_CN(objectPoints->type)*objectPoints->cols == 3) || (objectPoints->rows == 3 && CV_MAT_CN(objectPoints->type) == 1 && objectPoints->cols == count))) { matM.reset(cvCreateMat( objectPoints->rows, objectPoints->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(objectPoints->type)) )); cvConvert(objectPoints, matM); } else { // matM = cvCreateMat( 1, count, CV_64FC3 ); // cvConvertPointsHomogeneous( objectPoints, matM ); CV_Error( CV_StsBadArg, "Homogeneous coordinates are not supported" ); } if( CV_IS_CONT_MAT(imagePoints->type) && (CV_MAT_DEPTH(imagePoints->type) == CV_32F || CV_MAT_DEPTH(imagePoints->type) == CV_64F) && ((imagePoints->rows == 1 && CV_MAT_CN(imagePoints->type) == 2) || (imagePoints->rows == count && CV_MAT_CN(imagePoints->type)*imagePoints->cols == 2) || (imagePoints->rows == 2 && CV_MAT_CN(imagePoints->type) == 1 && imagePoints->cols == count))) { _m.reset(cvCreateMat( imagePoints->rows, imagePoints->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(imagePoints->type)) )); cvConvert(imagePoints, _m); } else { // _m = cvCreateMat( 1, count, CV_64FC2 ); CV_Error( CV_StsBadArg, "Homogeneous coordinates are not supported" ); } M = (CvPoint3D64f*)matM->data.db; m = (CvPoint2D64f*)_m->data.db; if( (CV_MAT_DEPTH(r_vec->type) != CV_64F && CV_MAT_DEPTH(r_vec->type) != CV_32F) || (((r_vec->rows != 1 && r_vec->cols != 1) || r_vec->rows*r_vec->cols*CV_MAT_CN(r_vec->type) != 3) && ((r_vec->rows != 3 && r_vec->cols != 3) || CV_MAT_CN(r_vec->type) != 1))) CV_Error( CV_StsBadArg, "Rotation must be represented by 1x3 or 3x1 " "floating-point rotation vector, or 3x3 rotation matrix" ); if( r_vec->rows == 3 && r_vec->cols == 3 ) { _r = cvMat( 3, 1, CV_64FC1, r ); cvRodrigues2( r_vec, &_r ); cvRodrigues2( &_r, &matR, &_dRdr ); cvCopy( r_vec, &matR ); } else { _r = cvMat( r_vec->rows, r_vec->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(r_vec->type)), r ); cvConvert( r_vec, &_r ); cvRodrigues2( &_r, &matR, &_dRdr ); } if( (CV_MAT_DEPTH(t_vec->type) != CV_64F && CV_MAT_DEPTH(t_vec->type) != CV_32F) || (t_vec->rows != 1 && t_vec->cols != 1) || t_vec->rows*t_vec->cols*CV_MAT_CN(t_vec->type) != 3 ) CV_Error( CV_StsBadArg, "Translation vector must be 1x3 or 3x1 floating-point vector" ); _t = cvMat( t_vec->rows, t_vec->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(t_vec->type)), t ); cvConvert( t_vec, &_t ); if( (CV_MAT_TYPE(A->type) != CV_64FC1 && CV_MAT_TYPE(A->type) != CV_32FC1) || A->rows != 3 || A->cols != 3 ) CV_Error( CV_StsBadArg, "Intrinsic parameters must be 3x3 floating-point matrix" ); cvConvert( A, &_a ); fx = a[0]; fy = a[4]; cx = a[2]; cy = a[5]; if( fixedAspectRatio ) fx = fy*aspectRatio; if( distCoeffs ) { if( !CV_IS_MAT(distCoeffs) || (CV_MAT_DEPTH(distCoeffs->type) != CV_64F && CV_MAT_DEPTH(distCoeffs->type) != CV_32F) || (distCoeffs->rows != 1 && distCoeffs->cols != 1) || (distCoeffs->rows*distCoeffs->cols*CV_MAT_CN(distCoeffs->type) != 4 && distCoeffs->rows*distCoeffs->cols*CV_MAT_CN(distCoeffs->type) != 5 && distCoeffs->rows*distCoeffs->cols*CV_MAT_CN(distCoeffs->type) != 8 && distCoeffs->rows*distCoeffs->cols*CV_MAT_CN(distCoeffs->type) != 12 && distCoeffs->rows*distCoeffs->cols*CV_MAT_CN(distCoeffs->type) != 14) ) CV_Error( CV_StsBadArg, cvDistCoeffErr ); _k = cvMat( distCoeffs->rows, distCoeffs->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(distCoeffs->type)), k ); cvConvert( distCoeffs, &_k ); if(k[12] != 0 || k[13] != 0) { detail::computeTiltProjectionMatrix(k[12], k[13], &matTilt, &dMatTiltdTauX, &dMatTiltdTauY); } } if( dpdr ) { if( !CV_IS_MAT(dpdr) || (CV_MAT_TYPE(dpdr->type) != CV_32FC1 && CV_MAT_TYPE(dpdr->type) != CV_64FC1) || dpdr->rows != count*2 || dpdr->cols != 3 ) CV_Error( CV_StsBadArg, "dp/drot must be 2Nx3 floating-point matrix" ); if( CV_MAT_TYPE(dpdr->type) == CV_64FC1 ) { _dpdr.reset(cvCloneMat(dpdr)); } else _dpdr.reset(cvCreateMat( 2*count, 3, CV_64FC1 )); dpdr_p = _dpdr->data.db; dpdr_step = _dpdr->step/sizeof(dpdr_p[0]); } if( dpdt ) { if( !CV_IS_MAT(dpdt) || (CV_MAT_TYPE(dpdt->type) != CV_32FC1 && CV_MAT_TYPE(dpdt->type) != CV_64FC1) || dpdt->rows != count*2 || dpdt->cols != 3 ) CV_Error( CV_StsBadArg, "dp/dT must be 2Nx3 floating-point matrix" ); if( CV_MAT_TYPE(dpdt->type) == CV_64FC1 ) { _dpdt.reset(cvCloneMat(dpdt)); } else _dpdt.reset(cvCreateMat( 2*count, 3, CV_64FC1 )); dpdt_p = _dpdt->data.db; dpdt_step = _dpdt->step/sizeof(dpdt_p[0]); } if( dpdf ) { if( !CV_IS_MAT(dpdf) || (CV_MAT_TYPE(dpdf->type) != CV_32FC1 && CV_MAT_TYPE(dpdf->type) != CV_64FC1) || dpdf->rows != count*2 || dpdf->cols != 2 ) CV_Error( CV_StsBadArg, "dp/df must be 2Nx2 floating-point matrix" ); if( CV_MAT_TYPE(dpdf->type) == CV_64FC1 ) { _dpdf.reset(cvCloneMat(dpdf)); } else _dpdf.reset(cvCreateMat( 2*count, 2, CV_64FC1 )); dpdf_p = _dpdf->data.db; dpdf_step = _dpdf->step/sizeof(dpdf_p[0]); } if( dpdc ) { if( !CV_IS_MAT(dpdc) || (CV_MAT_TYPE(dpdc->type) != CV_32FC1 && CV_MAT_TYPE(dpdc->type) != CV_64FC1) || dpdc->rows != count*2 || dpdc->cols != 2 ) CV_Error( CV_StsBadArg, "dp/dc must be 2Nx2 floating-point matrix" ); if( CV_MAT_TYPE(dpdc->type) == CV_64FC1 ) { _dpdc.reset(cvCloneMat(dpdc)); } else _dpdc.reset(cvCreateMat( 2*count, 2, CV_64FC1 )); dpdc_p = _dpdc->data.db; dpdc_step = _dpdc->step/sizeof(dpdc_p[0]); } if( dpdk ) { if( !CV_IS_MAT(dpdk) || (CV_MAT_TYPE(dpdk->type) != CV_32FC1 && CV_MAT_TYPE(dpdk->type) != CV_64FC1) || dpdk->rows != count*2 || (dpdk->cols != 14 && dpdk->cols != 12 && dpdk->cols != 8 && dpdk->cols != 5 && dpdk->cols != 4 && dpdk->cols != 2) ) CV_Error( CV_StsBadArg, "dp/df must be 2Nx14, 2Nx12, 2Nx8, 2Nx5, 2Nx4 or 2Nx2 floating-point matrix" ); if( !distCoeffs ) CV_Error( CV_StsNullPtr, "distCoeffs is NULL while dpdk is not" ); if( CV_MAT_TYPE(dpdk->type) == CV_64FC1 ) { _dpdk.reset(cvCloneMat(dpdk)); } else _dpdk.reset(cvCreateMat( dpdk->rows, dpdk->cols, CV_64FC1 )); dpdk_p = _dpdk->data.db; dpdk_step = _dpdk->step/sizeof(dpdk_p[0]); } calc_derivatives = dpdr || dpdt || dpdf || dpdc || dpdk; for( i = 0; i < count; i++ ) { double X = M[i].x, Y = M[i].y, Z = M[i].z; double x = R[0]*X + R[1]*Y + R[2]*Z + t[0]; double y = R[3]*X + R[4]*Y + R[5]*Z + t[1]; double z = R[6]*X + R[7]*Y + R[8]*Z + t[2]; double r2, r4, r6, a1, a2, a3, cdist, icdist2; double xd, yd, xd0, yd0, invProj; Vec3d vecTilt; Vec3d dVecTilt; Matx22d dMatTilt; Vec2d dXdYd; z = z ? 1./z : 1; x *= z; y *= z; r2 = x*x + y*y; r4 = r2*r2; r6 = r4*r2; a1 = 2*x*y; a2 = r2 + 2*x*x; a3 = r2 + 2*y*y; cdist = 1 + k[0]*r2 + k[1]*r4 + k[4]*r6; icdist2 = 1./(1 + k[5]*r2 + k[6]*r4 + k[7]*r6); xd0 = x*cdist*icdist2 + k[2]*a1 + k[3]*a2 + k[8]*r2+k[9]*r4; yd0 = y*cdist*icdist2 + k[2]*a3 + k[3]*a1 + k[10]*r2+k[11]*r4; // additional distortion by projecting onto a tilt plane vecTilt = matTilt*Vec3d(xd0, yd0, 1); invProj = vecTilt(2) ? 1./vecTilt(2) : 1; xd = invProj * vecTilt(0); yd = invProj * vecTilt(1); m[i].x = xd*fx + cx; m[i].y = yd*fy + cy; if( calc_derivatives ) { if( dpdc_p ) { dpdc_p[0] = 1; dpdc_p[1] = 0; // dp_xdc_x; dp_xdc_y dpdc_p[dpdc_step] = 0; dpdc_p[dpdc_step+1] = 1; dpdc_p += dpdc_step*2; } if( dpdf_p ) { if( fixedAspectRatio ) { dpdf_p[0] = 0; dpdf_p[1] = xd*aspectRatio; // dp_xdf_x; dp_xdf_y dpdf_p[dpdf_step] = 0; dpdf_p[dpdf_step+1] = yd; } else { dpdf_p[0] = xd; dpdf_p[1] = 0; dpdf_p[dpdf_step] = 0; dpdf_p[dpdf_step+1] = yd; } dpdf_p += dpdf_step*2; } for (int row = 0; row < 2; ++row) for (int col = 0; col < 2; ++col) dMatTilt(row,col) = matTilt(row,col)*vecTilt(2) - matTilt(2,col)*vecTilt(row); double invProjSquare = (invProj*invProj); dMatTilt *= invProjSquare; if( dpdk_p ) { dXdYd = dMatTilt*Vec2d(x*icdist2*r2, y*icdist2*r2); dpdk_p[0] = fx*dXdYd(0); dpdk_p[dpdk_step] = fy*dXdYd(1); dXdYd = dMatTilt*Vec2d(x*icdist2*r4, y*icdist2*r4); dpdk_p[1] = fx*dXdYd(0); dpdk_p[dpdk_step+1] = fy*dXdYd(1); if( _dpdk->cols > 2 ) { dXdYd = dMatTilt*Vec2d(a1, a3); dpdk_p[2] = fx*dXdYd(0); dpdk_p[dpdk_step+2] = fy*dXdYd(1); dXdYd = dMatTilt*Vec2d(a2, a1); dpdk_p[3] = fx*dXdYd(0); dpdk_p[dpdk_step+3] = fy*dXdYd(1); if( _dpdk->cols > 4 ) { dXdYd = dMatTilt*Vec2d(x*icdist2*r6, y*icdist2*r6); dpdk_p[4] = fx*dXdYd(0); dpdk_p[dpdk_step+4] = fy*dXdYd(1); if( _dpdk->cols > 5 ) { dXdYd = dMatTilt*Vec2d( x*cdist*(-icdist2)*icdist2*r2, y*cdist*(-icdist2)*icdist2*r2); dpdk_p[5] = fx*dXdYd(0); dpdk_p[dpdk_step+5] = fy*dXdYd(1); dXdYd = dMatTilt*Vec2d( x*cdist*(-icdist2)*icdist2*r4, y*cdist*(-icdist2)*icdist2*r4); dpdk_p[6] = fx*dXdYd(0); dpdk_p[dpdk_step+6] = fy*dXdYd(1); dXdYd = dMatTilt*Vec2d( x*cdist*(-icdist2)*icdist2*r6, y*cdist*(-icdist2)*icdist2*r6); dpdk_p[7] = fx*dXdYd(0); dpdk_p[dpdk_step+7] = fy*dXdYd(1); if( _dpdk->cols > 8 ) { dXdYd = dMatTilt*Vec2d(r2, 0); dpdk_p[8] = fx*dXdYd(0); //s1 dpdk_p[dpdk_step+8] = fy*dXdYd(1); //s1 dXdYd = dMatTilt*Vec2d(r4, 0); dpdk_p[9] = fx*dXdYd(0); //s2 dpdk_p[dpdk_step+9] = fy*dXdYd(1); //s2 dXdYd = dMatTilt*Vec2d(0, r2); dpdk_p[10] = fx*dXdYd(0);//s3 dpdk_p[dpdk_step+10] = fy*dXdYd(1); //s3 dXdYd = dMatTilt*Vec2d(0, r4); dpdk_p[11] = fx*dXdYd(0);//s4 dpdk_p[dpdk_step+11] = fy*dXdYd(1); //s4 if( _dpdk->cols > 12 ) { dVecTilt = dMatTiltdTauX * Vec3d(xd0, yd0, 1); dpdk_p[12] = fx * invProjSquare * ( dVecTilt(0) * vecTilt(2) - dVecTilt(2) * vecTilt(0)); dpdk_p[dpdk_step+12] = fy*invProjSquare * ( dVecTilt(1) * vecTilt(2) - dVecTilt(2) * vecTilt(1)); dVecTilt = dMatTiltdTauY * Vec3d(xd0, yd0, 1); dpdk_p[13] = fx * invProjSquare * ( dVecTilt(0) * vecTilt(2) - dVecTilt(2) * vecTilt(0)); dpdk_p[dpdk_step+13] = fy * invProjSquare * ( dVecTilt(1) * vecTilt(2) - dVecTilt(2) * vecTilt(1)); } } } } } dpdk_p += dpdk_step*2; } if( dpdt_p ) { double dxdt[] = { z, 0, -x*z }, dydt[] = { 0, z, -y*z }; for( j = 0; j < 3; j++ ) { double dr2dt = 2*x*dxdt[j] + 2*y*dydt[j]; double dcdist_dt = k[0]*dr2dt + 2*k[1]*r2*dr2dt + 3*k[4]*r4*dr2dt; double dicdist2_dt = -icdist2*icdist2*(k[5]*dr2dt + 2*k[6]*r2*dr2dt + 3*k[7]*r4*dr2dt); double da1dt = 2*(x*dydt[j] + y*dxdt[j]); double dmxdt = (dxdt[j]*cdist*icdist2 + x*dcdist_dt*icdist2 + x*cdist*dicdist2_dt + k[2]*da1dt + k[3]*(dr2dt + 4*x*dxdt[j]) + k[8]*dr2dt + 2*r2*k[9]*dr2dt); double dmydt = (dydt[j]*cdist*icdist2 + y*dcdist_dt*icdist2 + y*cdist*dicdist2_dt + k[2]*(dr2dt + 4*y*dydt[j]) + k[3]*da1dt + k[10]*dr2dt + 2*r2*k[11]*dr2dt); dXdYd = dMatTilt*Vec2d(dmxdt, dmydt); dpdt_p[j] = fx*dXdYd(0); dpdt_p[dpdt_step+j] = fy*dXdYd(1); } dpdt_p += dpdt_step*2; } if( dpdr_p ) { double dx0dr[] = { X*dRdr[0] + Y*dRdr[1] + Z*dRdr[2], X*dRdr[9] + Y*dRdr[10] + Z*dRdr[11], X*dRdr[18] + Y*dRdr[19] + Z*dRdr[20] }; double dy0dr[] = { X*dRdr[3] + Y*dRdr[4] + Z*dRdr[5], X*dRdr[12] + Y*dRdr[13] + Z*dRdr[14], X*dRdr[21] + Y*dRdr[22] + Z*dRdr[23] }; double dz0dr[] = { X*dRdr[6] + Y*dRdr[7] + Z*dRdr[8], X*dRdr[15] + Y*dRdr[16] + Z*dRdr[17], X*dRdr[24] + Y*dRdr[25] + Z*dRdr[26] }; for( j = 0; j < 3; j++ ) { double dxdr = z*(dx0dr[j] - x*dz0dr[j]); double dydr = z*(dy0dr[j] - y*dz0dr[j]); double dr2dr = 2*x*dxdr + 2*y*dydr; double dcdist_dr = (k[0] + 2*k[1]*r2 + 3*k[4]*r4)*dr2dr; double dicdist2_dr = -icdist2*icdist2*(k[5] + 2*k[6]*r2 + 3*k[7]*r4)*dr2dr; double da1dr = 2*(x*dydr + y*dxdr); double dmxdr = (dxdr*cdist*icdist2 + x*dcdist_dr*icdist2 + x*cdist*dicdist2_dr + k[2]*da1dr + k[3]*(dr2dr + 4*x*dxdr) + (k[8] + 2*r2*k[9])*dr2dr); double dmydr = (dydr*cdist*icdist2 + y*dcdist_dr*icdist2 + y*cdist*dicdist2_dr + k[2]*(dr2dr + 4*y*dydr) + k[3]*da1dr + (k[10] + 2*r2*k[11])*dr2dr); dXdYd = dMatTilt*Vec2d(dmxdr, dmydr); dpdr_p[j] = fx*dXdYd(0); dpdr_p[dpdr_step+j] = fy*dXdYd(1); } dpdr_p += dpdr_step*2; } } } if( _m != imagePoints ) cvConvert( _m, imagePoints ); if( _dpdr != dpdr ) cvConvert( _dpdr, dpdr ); if( _dpdt != dpdt ) cvConvert( _dpdt, dpdt ); if( _dpdf != dpdf ) cvConvert( _dpdf, dpdf ); if( _dpdc != dpdc ) cvConvert( _dpdc, dpdc ); if( _dpdk != dpdk ) cvConvert( _dpdk, dpdk ); } CV_IMPL void cvFindExtrinsicCameraParams2( const CvMat* objectPoints, const CvMat* imagePoints, const CvMat* A, const CvMat* distCoeffs, CvMat* rvec, CvMat* tvec, int useExtrinsicGuess ) { const int max_iter = 20; Ptr matM, _Mxy, _m, _mn, matL; int i, count; double a[9], ar[9]={1,0,0,0,1,0,0,0,1}, R[9]; double MM[9], U[9], V[9], W[3]; cv::Scalar Mc; double param[6]; CvMat matA = cvMat( 3, 3, CV_64F, a ); CvMat _Ar = cvMat( 3, 3, CV_64F, ar ); CvMat matR = cvMat( 3, 3, CV_64F, R ); CvMat _r = cvMat( 3, 1, CV_64F, param ); CvMat _t = cvMat( 3, 1, CV_64F, param + 3 ); CvMat _Mc = cvMat( 1, 3, CV_64F, Mc.val ); CvMat _MM = cvMat( 3, 3, CV_64F, MM ); CvMat matU = cvMat( 3, 3, CV_64F, U ); CvMat matV = cvMat( 3, 3, CV_64F, V ); CvMat matW = cvMat( 3, 1, CV_64F, W ); CvMat _param = cvMat( 6, 1, CV_64F, param ); CvMat _dpdr, _dpdt; CV_Assert( CV_IS_MAT(objectPoints) && CV_IS_MAT(imagePoints) && CV_IS_MAT(A) && CV_IS_MAT(rvec) && CV_IS_MAT(tvec) ); count = MAX(objectPoints->cols, objectPoints->rows); matM.reset(cvCreateMat( 1, count, CV_64FC3 )); _m.reset(cvCreateMat( 1, count, CV_64FC2 )); cvConvertPointsHomogeneous( objectPoints, matM ); cvConvertPointsHomogeneous( imagePoints, _m ); cvConvert( A, &matA ); CV_Assert( (CV_MAT_DEPTH(rvec->type) == CV_64F || CV_MAT_DEPTH(rvec->type) == CV_32F) && (rvec->rows == 1 || rvec->cols == 1) && rvec->rows*rvec->cols*CV_MAT_CN(rvec->type) == 3 ); CV_Assert( (CV_MAT_DEPTH(tvec->type) == CV_64F || CV_MAT_DEPTH(tvec->type) == CV_32F) && (tvec->rows == 1 || tvec->cols == 1) && tvec->rows*tvec->cols*CV_MAT_CN(tvec->type) == 3 ); CV_Assert((count >= 4) || (count == 3 && useExtrinsicGuess)); // it is unsafe to call LM optimisation without an extrinsic guess in the case of 3 points. This is because there is no guarantee that it will converge on the correct solution. _mn.reset(cvCreateMat( 1, count, CV_64FC2 )); _Mxy.reset(cvCreateMat( 1, count, CV_64FC2 )); // normalize image points // (unapply the intrinsic matrix transformation and distortion) cvUndistortPoints( _m, _mn, &matA, distCoeffs, 0, &_Ar ); if( useExtrinsicGuess ) { CvMat _r_temp = cvMat(rvec->rows, rvec->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(rvec->type)), param ); CvMat _t_temp = cvMat(tvec->rows, tvec->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(tvec->type)), param + 3); cvConvert( rvec, &_r_temp ); cvConvert( tvec, &_t_temp ); } else { Mc = cvAvg(matM); cvReshape( matM, matM, 1, count ); cvMulTransposed( matM, &_MM, 1, &_Mc ); cvSVD( &_MM, &matW, 0, &matV, CV_SVD_MODIFY_A + CV_SVD_V_T ); // initialize extrinsic parameters if( W[2]/W[1] < 1e-3) { // a planar structure case (all M's lie in the same plane) double tt[3], h[9], h1_norm, h2_norm; CvMat* R_transform = &matV; CvMat T_transform = cvMat( 3, 1, CV_64F, tt ); CvMat matH = cvMat( 3, 3, CV_64F, h ); CvMat _h1, _h2, _h3; if( V[2]*V[2] + V[5]*V[5] < 1e-10 ) cvSetIdentity( R_transform ); if( cvDet(R_transform) < 0 ) cvScale( R_transform, R_transform, -1 ); cvGEMM( R_transform, &_Mc, -1, 0, 0, &T_transform, CV_GEMM_B_T ); for( i = 0; i < count; i++ ) { const double* Rp = R_transform->data.db; const double* Tp = T_transform.data.db; const double* src = matM->data.db + i*3; double* dst = _Mxy->data.db + i*2; dst[0] = Rp[0]*src[0] + Rp[1]*src[1] + Rp[2]*src[2] + Tp[0]; dst[1] = Rp[3]*src[0] + Rp[4]*src[1] + Rp[5]*src[2] + Tp[1]; } cvFindHomography( _Mxy, _mn, &matH ); if( cvCheckArr(&matH, CV_CHECK_QUIET) ) { cvGetCol( &matH, &_h1, 0 ); _h2 = _h1; _h2.data.db++; _h3 = _h2; _h3.data.db++; h1_norm = std::sqrt(h[0]*h[0] + h[3]*h[3] + h[6]*h[6]); h2_norm = std::sqrt(h[1]*h[1] + h[4]*h[4] + h[7]*h[7]); cvScale( &_h1, &_h1, 1./MAX(h1_norm, DBL_EPSILON) ); cvScale( &_h2, &_h2, 1./MAX(h2_norm, DBL_EPSILON) ); cvScale( &_h3, &_t, 2./MAX(h1_norm + h2_norm, DBL_EPSILON)); cvCrossProduct( &_h1, &_h2, &_h3 ); cvRodrigues2( &matH, &_r ); cvRodrigues2( &_r, &matH ); cvMatMulAdd( &matH, &T_transform, &_t, &_t ); cvMatMul( &matH, R_transform, &matR ); } else { cvSetIdentity( &matR ); cvZero( &_t ); } cvRodrigues2( &matR, &_r ); } else { // non-planar structure. Use DLT method CV_CheckGE(count, 6, "DLT algorithm needs at least 6 points for pose estimation from 3D-2D point correspondences."); double* L; double LL[12*12], LW[12], LV[12*12], sc; CvMat _LL = cvMat( 12, 12, CV_64F, LL ); CvMat _LW = cvMat( 12, 1, CV_64F, LW ); CvMat _LV = cvMat( 12, 12, CV_64F, LV ); CvMat _RRt, _RR, _tt; CvPoint3D64f* M = (CvPoint3D64f*)matM->data.db; CvPoint2D64f* mn = (CvPoint2D64f*)_mn->data.db; matL.reset(cvCreateMat( 2*count, 12, CV_64F )); L = matL->data.db; for( i = 0; i < count; i++, L += 24 ) { double x = -mn[i].x, y = -mn[i].y; L[0] = L[16] = M[i].x; L[1] = L[17] = M[i].y; L[2] = L[18] = M[i].z; L[3] = L[19] = 1.; L[4] = L[5] = L[6] = L[7] = 0.; L[12] = L[13] = L[14] = L[15] = 0.; L[8] = x*M[i].x; L[9] = x*M[i].y; L[10] = x*M[i].z; L[11] = x; L[20] = y*M[i].x; L[21] = y*M[i].y; L[22] = y*M[i].z; L[23] = y; } cvMulTransposed( matL, &_LL, 1 ); cvSVD( &_LL, &_LW, 0, &_LV, CV_SVD_MODIFY_A + CV_SVD_V_T ); _RRt = cvMat( 3, 4, CV_64F, LV + 11*12 ); cvGetCols( &_RRt, &_RR, 0, 3 ); cvGetCol( &_RRt, &_tt, 3 ); if( cvDet(&_RR) < 0 ) cvScale( &_RRt, &_RRt, -1 ); sc = cvNorm(&_RR); cvSVD( &_RR, &matW, &matU, &matV, CV_SVD_MODIFY_A + CV_SVD_U_T + CV_SVD_V_T ); cvGEMM( &matU, &matV, 1, 0, 0, &matR, CV_GEMM_A_T ); cvScale( &_tt, &_t, cvNorm(&matR)/sc ); cvRodrigues2( &matR, &_r ); } } cvReshape( matM, matM, 3, 1 ); cvReshape( _mn, _mn, 2, 1 ); // refine extrinsic parameters using iterative algorithm CvLevMarq solver( 6, count*2, cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,max_iter,FLT_EPSILON), true); cvCopy( &_param, solver.param ); for(;;) { CvMat *matJ = 0, *_err = 0; const CvMat *__param = 0; bool proceed = solver.update( __param, matJ, _err ); cvCopy( __param, &_param ); if( !proceed || !_err ) break; cvReshape( _err, _err, 2, 1 ); if( matJ ) { cvGetCols( matJ, &_dpdr, 0, 3 ); cvGetCols( matJ, &_dpdt, 3, 6 ); cvProjectPoints2( matM, &_r, &_t, &matA, distCoeffs, _err, &_dpdr, &_dpdt, 0, 0, 0 ); } else { cvProjectPoints2( matM, &_r, &_t, &matA, distCoeffs, _err, 0, 0, 0, 0, 0 ); } cvSub(_err, _m, _err); cvReshape( _err, _err, 1, 2*count ); } cvCopy( solver.param, &_param ); _r = cvMat( rvec->rows, rvec->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(rvec->type)), param ); _t = cvMat( tvec->rows, tvec->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(tvec->type)), param + 3 ); cvConvert( &_r, rvec ); cvConvert( &_t, tvec ); } CV_IMPL void cvInitIntrinsicParams2D( const CvMat* objectPoints, const CvMat* imagePoints, const CvMat* npoints, CvSize imageSize, CvMat* cameraMatrix, double aspectRatio ) { Ptr matA, _b, _allH; int i, j, pos, nimages, ni = 0; double a[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 1 }; double H[9] = {0}, f[2] = {0}; CvMat _a = cvMat( 3, 3, CV_64F, a ); CvMat matH = cvMat( 3, 3, CV_64F, H ); CvMat _f = cvMat( 2, 1, CV_64F, f ); assert( CV_MAT_TYPE(npoints->type) == CV_32SC1 && CV_IS_MAT_CONT(npoints->type) ); nimages = npoints->rows + npoints->cols - 1; if( (CV_MAT_TYPE(objectPoints->type) != CV_32FC3 && CV_MAT_TYPE(objectPoints->type) != CV_64FC3) || (CV_MAT_TYPE(imagePoints->type) != CV_32FC2 && CV_MAT_TYPE(imagePoints->type) != CV_64FC2) ) CV_Error( CV_StsUnsupportedFormat, "Both object points and image points must be 2D" ); if( objectPoints->rows != 1 || imagePoints->rows != 1 ) CV_Error( CV_StsBadSize, "object points and image points must be a single-row matrices" ); matA.reset(cvCreateMat( 2*nimages, 2, CV_64F )); _b.reset(cvCreateMat( 2*nimages, 1, CV_64F )); a[2] = (!imageSize.width) ? 0.5 : (imageSize.width - 1)*0.5; a[5] = (!imageSize.height) ? 0.5 : (imageSize.height - 1)*0.5; _allH.reset(cvCreateMat( nimages, 9, CV_64F )); // extract vanishing points in order to obtain initial value for the focal length for( i = 0, pos = 0; i < nimages; i++, pos += ni ) { double* Ap = matA->data.db + i*4; double* bp = _b->data.db + i*2; ni = npoints->data.i[i]; double h[3], v[3], d1[3], d2[3]; double n[4] = {0,0,0,0}; CvMat _m, matM; cvGetCols( objectPoints, &matM, pos, pos + ni ); cvGetCols( imagePoints, &_m, pos, pos + ni ); cvFindHomography( &matM, &_m, &matH ); memcpy( _allH->data.db + i*9, H, sizeof(H) ); H[0] -= H[6]*a[2]; H[1] -= H[7]*a[2]; H[2] -= H[8]*a[2]; H[3] -= H[6]*a[5]; H[4] -= H[7]*a[5]; H[5] -= H[8]*a[5]; for( j = 0; j < 3; j++ ) { double t0 = H[j*3], t1 = H[j*3+1]; h[j] = t0; v[j] = t1; d1[j] = (t0 + t1)*0.5; d2[j] = (t0 - t1)*0.5; n[0] += t0*t0; n[1] += t1*t1; n[2] += d1[j]*d1[j]; n[3] += d2[j]*d2[j]; } for( j = 0; j < 4; j++ ) n[j] = 1./std::sqrt(n[j]); for( j = 0; j < 3; j++ ) { h[j] *= n[0]; v[j] *= n[1]; d1[j] *= n[2]; d2[j] *= n[3]; } Ap[0] = h[0]*v[0]; Ap[1] = h[1]*v[1]; Ap[2] = d1[0]*d2[0]; Ap[3] = d1[1]*d2[1]; bp[0] = -h[2]*v[2]; bp[1] = -d1[2]*d2[2]; } cvSolve( matA, _b, &_f, CV_NORMAL + CV_SVD ); a[0] = std::sqrt(fabs(1./f[0])); a[4] = std::sqrt(fabs(1./f[1])); if( aspectRatio != 0 ) { double tf = (a[0] + a[4])/(aspectRatio + 1.); a[0] = aspectRatio*tf; a[4] = tf; } cvConvert( &_a, cameraMatrix ); } static void subMatrix(const cv::Mat& src, cv::Mat& dst, const std::vector& cols, const std::vector& rows) { int nonzeros_cols = cv::countNonZero(cols); cv::Mat tmp(src.rows, nonzeros_cols, CV_64FC1); for (int i = 0, j = 0; i < (int)cols.size(); i++) { if (cols[i]) { src.col(i).copyTo(tmp.col(j++)); } } int nonzeros_rows = cv::countNonZero(rows); dst.create(nonzeros_rows, nonzeros_cols, CV_64FC1); for (int i = 0, j = 0; i < (int)rows.size(); i++) { if (rows[i]) { tmp.row(i).copyTo(dst.row(j++)); } } } static double cvCalibrateCamera2Internal( const CvMat* objectPoints, const CvMat* imagePoints, const CvMat* npoints, CvSize imageSize, CvMat* cameraMatrix, CvMat* distCoeffs, CvMat* rvecs, CvMat* tvecs, CvMat* stdDevs, CvMat* perViewErrors, int flags, CvTermCriteria termCrit ) { const int NINTRINSIC = CV_CALIB_NINTRINSIC; double reprojErr = 0; Matx33d A; double k[14] = {0}; CvMat matA = cvMat(3, 3, CV_64F, A.val), _k; int i, nimages, maxPoints = 0, ni = 0, pos, total = 0, nparams, npstep, cn; double aspectRatio = 0.; // 0. check the parameters & allocate buffers if( !CV_IS_MAT(objectPoints) || !CV_IS_MAT(imagePoints) || !CV_IS_MAT(npoints) || !CV_IS_MAT(cameraMatrix) || !CV_IS_MAT(distCoeffs) ) CV_Error( CV_StsBadArg, "One of required vector arguments is not a valid matrix" ); if( imageSize.width <= 0 || imageSize.height <= 0 ) CV_Error( CV_StsOutOfRange, "image width and height must be positive" ); if( CV_MAT_TYPE(npoints->type) != CV_32SC1 || (npoints->rows != 1 && npoints->cols != 1) ) CV_Error( CV_StsUnsupportedFormat, "the array of point counters must be 1-dimensional integer vector" ); if(flags & CALIB_TILTED_MODEL) { //when the tilted sensor model is used the distortion coefficients matrix must have 14 parameters if (distCoeffs->cols*distCoeffs->rows != 14) CV_Error( CV_StsBadArg, "The tilted sensor model must have 14 parameters in the distortion matrix" ); } else { //when the thin prism model is used the distortion coefficients matrix must have 12 parameters if(flags & CALIB_THIN_PRISM_MODEL) if (distCoeffs->cols*distCoeffs->rows != 12) CV_Error( CV_StsBadArg, "Thin prism model must have 12 parameters in the distortion matrix" ); } nimages = npoints->rows*npoints->cols; npstep = npoints->rows == 1 ? 1 : npoints->step/CV_ELEM_SIZE(npoints->type); if( rvecs ) { cn = CV_MAT_CN(rvecs->type); if( !CV_IS_MAT(rvecs) || (CV_MAT_DEPTH(rvecs->type) != CV_32F && CV_MAT_DEPTH(rvecs->type) != CV_64F) || ((rvecs->rows != nimages || (rvecs->cols*cn != 3 && rvecs->cols*cn != 9)) && (rvecs->rows != 1 || rvecs->cols != nimages || cn != 3)) ) CV_Error( CV_StsBadArg, "the output array of rotation vectors must be 3-channel " "1xn or nx1 array or 1-channel nx3 or nx9 array, where n is the number of views" ); } if( tvecs ) { cn = CV_MAT_CN(tvecs->type); if( !CV_IS_MAT(tvecs) || (CV_MAT_DEPTH(tvecs->type) != CV_32F && CV_MAT_DEPTH(tvecs->type) != CV_64F) || ((tvecs->rows != nimages || tvecs->cols*cn != 3) && (tvecs->rows != 1 || tvecs->cols != nimages || cn != 3)) ) CV_Error( CV_StsBadArg, "the output array of translation vectors must be 3-channel " "1xn or nx1 array or 1-channel nx3 array, where n is the number of views" ); } if( stdDevs ) { cn = CV_MAT_CN(stdDevs->type); if( !CV_IS_MAT(stdDevs) || (CV_MAT_DEPTH(stdDevs->type) != CV_32F && CV_MAT_DEPTH(stdDevs->type) != CV_64F) || ((stdDevs->rows != (nimages*6 + NINTRINSIC) || stdDevs->cols*cn != 1) && (stdDevs->rows != 1 || stdDevs->cols != (nimages*6 + NINTRINSIC) || cn != 1)) ) #define STR__(x) #x #define STR_(x) STR__(x) CV_Error( CV_StsBadArg, "the output array of standard deviations vectors must be 1-channel " "1x(n*6 + NINTRINSIC) or (n*6 + NINTRINSIC)x1 array, where n is the number of views," " NINTRINSIC = " STR_(CV_CALIB_NINTRINSIC)); } if( (CV_MAT_TYPE(cameraMatrix->type) != CV_32FC1 && CV_MAT_TYPE(cameraMatrix->type) != CV_64FC1) || cameraMatrix->rows != 3 || cameraMatrix->cols != 3 ) CV_Error( CV_StsBadArg, "Intrinsic parameters must be 3x3 floating-point matrix" ); if( (CV_MAT_TYPE(distCoeffs->type) != CV_32FC1 && CV_MAT_TYPE(distCoeffs->type) != CV_64FC1) || (distCoeffs->cols != 1 && distCoeffs->rows != 1) || (distCoeffs->cols*distCoeffs->rows != 4 && distCoeffs->cols*distCoeffs->rows != 5 && distCoeffs->cols*distCoeffs->rows != 8 && distCoeffs->cols*distCoeffs->rows != 12 && distCoeffs->cols*distCoeffs->rows != 14) ) CV_Error( CV_StsBadArg, cvDistCoeffErr ); for( i = 0; i < nimages; i++ ) { ni = npoints->data.i[i*npstep]; if( ni < 4 ) { CV_Error_( CV_StsOutOfRange, ("The number of points in the view #%d is < 4", i)); } maxPoints = MAX( maxPoints, ni ); total += ni; } Mat matM( 1, total, CV_64FC3 ); Mat _m( 1, total, CV_64FC2 ); Mat allErrors(1, total, CV_64FC2); if(CV_MAT_CN(objectPoints->type) == 3) { cvarrToMat(objectPoints).convertTo(matM, CV_64F); } else { convertPointsHomogeneous(cvarrToMat(objectPoints), matM); } if(CV_MAT_CN(imagePoints->type) == 2) { cvarrToMat(imagePoints).convertTo(_m, CV_64F); } else { convertPointsHomogeneous(cvarrToMat(imagePoints), _m); } nparams = NINTRINSIC + nimages*6; Mat _Ji( maxPoints*2, NINTRINSIC, CV_64FC1, Scalar(0)); Mat _Je( maxPoints*2, 6, CV_64FC1 ); Mat _err( maxPoints*2, 1, CV_64FC1 ); _k = cvMat( distCoeffs->rows, distCoeffs->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(distCoeffs->type)), k); if( distCoeffs->rows*distCoeffs->cols*CV_MAT_CN(distCoeffs->type) < 8 ) { if( distCoeffs->rows*distCoeffs->cols*CV_MAT_CN(distCoeffs->type) < 5 ) flags |= CALIB_FIX_K3; flags |= CALIB_FIX_K4 | CALIB_FIX_K5 | CALIB_FIX_K6; } const double minValidAspectRatio = 0.01; const double maxValidAspectRatio = 100.0; // 1. initialize intrinsic parameters & LM solver if( flags & CALIB_USE_INTRINSIC_GUESS ) { cvConvert( cameraMatrix, &matA ); if( A(0, 0) <= 0 || A(1, 1) <= 0 ) CV_Error( CV_StsOutOfRange, "Focal length (fx and fy) must be positive" ); if( A(0, 2) < 0 || A(0, 2) >= imageSize.width || A(1, 2) < 0 || A(1, 2) >= imageSize.height ) CV_Error( CV_StsOutOfRange, "Principal point must be within the image" ); if( fabs(A(0, 1)) > 1e-5 ) CV_Error( CV_StsOutOfRange, "Non-zero skew is not supported by the function" ); if( fabs(A(1, 0)) > 1e-5 || fabs(A(2, 0)) > 1e-5 || fabs(A(2, 1)) > 1e-5 || fabs(A(2,2)-1) > 1e-5 ) CV_Error( CV_StsOutOfRange, "The intrinsic matrix must have [fx 0 cx; 0 fy cy; 0 0 1] shape" ); A(0, 1) = A(1, 0) = A(2, 0) = A(2, 1) = 0.; A(2, 2) = 1.; if( flags & CALIB_FIX_ASPECT_RATIO ) { aspectRatio = A(0, 0)/A(1, 1); if( aspectRatio < minValidAspectRatio || aspectRatio > maxValidAspectRatio ) CV_Error( CV_StsOutOfRange, "The specified aspect ratio (= cameraMatrix[0][0] / cameraMatrix[1][1]) is incorrect" ); } cvConvert( distCoeffs, &_k ); } else { Scalar mean, sdv; meanStdDev(matM, mean, sdv); if( fabs(mean[2]) > 1e-5 || fabs(sdv[2]) > 1e-5 ) CV_Error( CV_StsBadArg, "For non-planar calibration rigs the initial intrinsic matrix must be specified" ); for( i = 0; i < total; i++ ) matM.at(i).z = 0.; if( flags & CALIB_FIX_ASPECT_RATIO ) { aspectRatio = cvmGet(cameraMatrix,0,0); aspectRatio /= cvmGet(cameraMatrix,1,1); if( aspectRatio < minValidAspectRatio || aspectRatio > maxValidAspectRatio ) CV_Error( CV_StsOutOfRange, "The specified aspect ratio (= cameraMatrix[0][0] / cameraMatrix[1][1]) is incorrect" ); } CvMat _matM = cvMat(matM), m = cvMat(_m); cvInitIntrinsicParams2D( &_matM, &m, npoints, imageSize, &matA, aspectRatio ); } CvLevMarq solver( nparams, 0, termCrit ); if(flags & CALIB_USE_LU) { solver.solveMethod = DECOMP_LU; } else if(flags & CALIB_USE_QR) { solver.solveMethod = DECOMP_QR; } { double* param = solver.param->data.db; uchar* mask = solver.mask->data.ptr; param[0] = A(0, 0); param[1] = A(1, 1); param[2] = A(0, 2); param[3] = A(1, 2); std::copy(k, k + 14, param + 4); if(flags & CALIB_FIX_ASPECT_RATIO) mask[0] = 0; if( flags & CALIB_FIX_FOCAL_LENGTH ) mask[0] = mask[1] = 0; if( flags & CALIB_FIX_PRINCIPAL_POINT ) mask[2] = mask[3] = 0; if( flags & CALIB_ZERO_TANGENT_DIST ) { param[6] = param[7] = 0; mask[6] = mask[7] = 0; } if( !(flags & CALIB_RATIONAL_MODEL) ) flags |= CALIB_FIX_K4 + CALIB_FIX_K5 + CALIB_FIX_K6; if( !(flags & CALIB_THIN_PRISM_MODEL)) flags |= CALIB_FIX_S1_S2_S3_S4; if( !(flags & CALIB_TILTED_MODEL)) flags |= CALIB_FIX_TAUX_TAUY; mask[ 4] = !(flags & CALIB_FIX_K1); mask[ 5] = !(flags & CALIB_FIX_K2); if( flags & CALIB_FIX_TANGENT_DIST ) { mask[6] = mask[7] = 0; } mask[ 8] = !(flags & CALIB_FIX_K3); mask[ 9] = !(flags & CALIB_FIX_K4); mask[10] = !(flags & CALIB_FIX_K5); mask[11] = !(flags & CALIB_FIX_K6); if(flags & CALIB_FIX_S1_S2_S3_S4) { mask[12] = 0; mask[13] = 0; mask[14] = 0; mask[15] = 0; } if(flags & CALIB_FIX_TAUX_TAUY) { mask[16] = 0; mask[17] = 0; } } // 2. initialize extrinsic parameters for( i = 0, pos = 0; i < nimages; i++, pos += ni ) { CvMat _ri, _ti; ni = npoints->data.i[i*npstep]; cvGetRows( solver.param, &_ri, NINTRINSIC + i*6, NINTRINSIC + i*6 + 3 ); cvGetRows( solver.param, &_ti, NINTRINSIC + i*6 + 3, NINTRINSIC + i*6 + 6 ); CvMat _Mi = cvMat(matM.colRange(pos, pos + ni)); CvMat _mi = cvMat(_m.colRange(pos, pos + ni)); cvFindExtrinsicCameraParams2( &_Mi, &_mi, &matA, &_k, &_ri, &_ti ); } // 3. run the optimization for(;;) { const CvMat* _param = 0; CvMat *_JtJ = 0, *_JtErr = 0; double* _errNorm = 0; bool proceed = solver.updateAlt( _param, _JtJ, _JtErr, _errNorm ); double *param = solver.param->data.db, *pparam = solver.prevParam->data.db; bool calcJ = solver.state == CvLevMarq::CALC_J || (!proceed && stdDevs); if( flags & CALIB_FIX_ASPECT_RATIO ) { param[0] = param[1]*aspectRatio; pparam[0] = pparam[1]*aspectRatio; } A(0, 0) = param[0]; A(1, 1) = param[1]; A(0, 2) = param[2]; A(1, 2) = param[3]; std::copy(param + 4, param + 4 + 14, k); if ( !proceed && !stdDevs && !perViewErrors ) break; else if ( !proceed && stdDevs ) cvZero(_JtJ); reprojErr = 0; for( i = 0, pos = 0; i < nimages; i++, pos += ni ) { CvMat _ri, _ti; ni = npoints->data.i[i*npstep]; cvGetRows( solver.param, &_ri, NINTRINSIC + i*6, NINTRINSIC + i*6 + 3 ); cvGetRows( solver.param, &_ti, NINTRINSIC + i*6 + 3, NINTRINSIC + i*6 + 6 ); CvMat _Mi = cvMat(matM.colRange(pos, pos + ni)); CvMat _mi = cvMat(_m.colRange(pos, pos + ni)); CvMat _me = cvMat(allErrors.colRange(pos, pos + ni)); _Je.resize(ni*2); _Ji.resize(ni*2); _err.resize(ni*2); CvMat _dpdr = cvMat(_Je.colRange(0, 3)); CvMat _dpdt = cvMat(_Je.colRange(3, 6)); CvMat _dpdf = cvMat(_Ji.colRange(0, 2)); CvMat _dpdc = cvMat(_Ji.colRange(2, 4)); CvMat _dpdk = cvMat(_Ji.colRange(4, NINTRINSIC)); CvMat _mp = cvMat(_err.reshape(2, 1)); if( calcJ ) { cvProjectPoints2( &_Mi, &_ri, &_ti, &matA, &_k, &_mp, &_dpdr, &_dpdt, (flags & CALIB_FIX_FOCAL_LENGTH) ? 0 : &_dpdf, (flags & CALIB_FIX_PRINCIPAL_POINT) ? 0 : &_dpdc, &_dpdk, (flags & CALIB_FIX_ASPECT_RATIO) ? aspectRatio : 0); } else cvProjectPoints2( &_Mi, &_ri, &_ti, &matA, &_k, &_mp ); cvSub( &_mp, &_mi, &_mp ); if (perViewErrors || stdDevs) cvCopy(&_mp, &_me); if( calcJ ) { Mat JtJ(cvarrToMat(_JtJ)), JtErr(cvarrToMat(_JtErr)); // see HZ: (A6.14) for details on the structure of the Jacobian JtJ(Rect(0, 0, NINTRINSIC, NINTRINSIC)) += _Ji.t() * _Ji; JtJ(Rect(NINTRINSIC + i * 6, NINTRINSIC + i * 6, 6, 6)) = _Je.t() * _Je; JtJ(Rect(NINTRINSIC + i * 6, 0, 6, NINTRINSIC)) = _Ji.t() * _Je; JtErr.rowRange(0, NINTRINSIC) += _Ji.t() * _err; JtErr.rowRange(NINTRINSIC + i * 6, NINTRINSIC + (i + 1) * 6) = _Je.t() * _err; } double viewErr = norm(_err, NORM_L2SQR); if( perViewErrors ) perViewErrors->data.db[i] = std::sqrt(viewErr / ni); reprojErr += viewErr; } if( _errNorm ) *_errNorm = reprojErr; if( !proceed ) { if( stdDevs ) { Mat mask = cvarrToMat(solver.mask); int nparams_nz = countNonZero(mask); Mat JtJinv, JtJN; JtJN.create(nparams_nz, nparams_nz, CV_64F); subMatrix(cvarrToMat(_JtJ), JtJN, mask, mask); completeSymm(JtJN, false); cv::invert(JtJN, JtJinv, DECOMP_SVD); //sigma2 is deviation of the noise //see any papers about variance of the least squares estimator for //detailed description of the variance estimation methods double sigma2 = norm(allErrors, NORM_L2SQR) / (total - nparams_nz); Mat stdDevsM = cvarrToMat(stdDevs); int j = 0; for ( int s = 0; s < nparams; s++ ) if( mask.data[s] ) { stdDevsM.at(s) = std::sqrt(JtJinv.at(j,j) * sigma2); j++; } else stdDevsM.at(s) = 0.; } break; } } // 4. store the results cvConvert( &matA, cameraMatrix ); cvConvert( &_k, distCoeffs ); for( i = 0, pos = 0; i < nimages; i++ ) { CvMat src, dst; if( rvecs ) { src = cvMat( 3, 1, CV_64F, solver.param->data.db + NINTRINSIC + i*6 ); if( rvecs->rows == nimages && rvecs->cols*CV_MAT_CN(rvecs->type) == 9 ) { dst = cvMat( 3, 3, CV_MAT_DEPTH(rvecs->type), rvecs->data.ptr + rvecs->step*i ); cvRodrigues2( &src, &matA ); cvConvert( &matA, &dst ); } else { dst = cvMat( 3, 1, CV_MAT_DEPTH(rvecs->type), rvecs->rows == 1 ? rvecs->data.ptr + i*CV_ELEM_SIZE(rvecs->type) : rvecs->data.ptr + rvecs->step*i ); cvConvert( &src, &dst ); } } if( tvecs ) { src = cvMat( 3, 1, CV_64F, solver.param->data.db + NINTRINSIC + i*6 + 3 ); dst = cvMat( 3, 1, CV_MAT_DEPTH(tvecs->type), tvecs->rows == 1 ? tvecs->data.ptr + i*CV_ELEM_SIZE(tvecs->type) : tvecs->data.ptr + tvecs->step*i ); cvConvert( &src, &dst ); } } return std::sqrt(reprojErr/total); } /* finds intrinsic and extrinsic camera parameters from a few views of known calibration pattern */ CV_IMPL double cvCalibrateCamera2( const CvMat* objectPoints, const CvMat* imagePoints, const CvMat* npoints, CvSize imageSize, CvMat* cameraMatrix, CvMat* distCoeffs, CvMat* rvecs, CvMat* tvecs, int flags, CvTermCriteria termCrit ) { return cvCalibrateCamera2Internal(objectPoints, imagePoints, npoints, imageSize, cameraMatrix, distCoeffs, rvecs, tvecs, NULL, NULL, flags, termCrit); } void cvCalibrationMatrixValues( const CvMat *calibMatr, CvSize imgSize, double apertureWidth, double apertureHeight, double *fovx, double *fovy, double *focalLength, CvPoint2D64f *principalPoint, double *pasp ) { /* Validate parameters. */ if(calibMatr == 0) CV_Error(CV_StsNullPtr, "Some of parameters is a NULL pointer!"); if(!CV_IS_MAT(calibMatr)) CV_Error(CV_StsUnsupportedFormat, "Input parameters must be a matrices!"); double dummy = .0; Point2d pp; cv::calibrationMatrixValues(cvarrToMat(calibMatr), imgSize, apertureWidth, apertureHeight, fovx ? *fovx : dummy, fovy ? *fovy : dummy, focalLength ? *focalLength : dummy, pp, pasp ? *pasp : dummy); if(principalPoint) *principalPoint = cvPoint2D64f(pp.x, pp.y); } //////////////////////////////// Stereo Calibration /////////////////////////////////// static int dbCmp( const void* _a, const void* _b ) { double a = *(const double*)_a; double b = *(const double*)_b; return (a > b) - (a < b); } static double cvStereoCalibrateImpl( const CvMat* _objectPoints, const CvMat* _imagePoints1, const CvMat* _imagePoints2, const CvMat* _npoints, CvMat* _cameraMatrix1, CvMat* _distCoeffs1, CvMat* _cameraMatrix2, CvMat* _distCoeffs2, CvSize imageSize, CvMat* matR, CvMat* matT, CvMat* matE, CvMat* matF, CvMat* perViewErr, int flags, CvTermCriteria termCrit ) { const int NINTRINSIC = 18; Ptr npoints, imagePoints[2], objectPoints, RT0; double reprojErr = 0; double A[2][9], dk[2][14]={{0}}, rlr[9]; CvMat K[2], Dist[2], om_LR, T_LR; CvMat R_LR = cvMat(3, 3, CV_64F, rlr); int i, k, p, ni = 0, ofs, nimages, pointsTotal, maxPoints = 0; int nparams; bool recomputeIntrinsics = false; double aspectRatio[2] = {0}; CV_Assert( CV_IS_MAT(_imagePoints1) && CV_IS_MAT(_imagePoints2) && CV_IS_MAT(_objectPoints) && CV_IS_MAT(_npoints) && CV_IS_MAT(matR) && CV_IS_MAT(matT) ); CV_Assert( CV_ARE_TYPES_EQ(_imagePoints1, _imagePoints2) && CV_ARE_DEPTHS_EQ(_imagePoints1, _objectPoints) ); CV_Assert( (_npoints->cols == 1 || _npoints->rows == 1) && CV_MAT_TYPE(_npoints->type) == CV_32SC1 ); nimages = _npoints->cols + _npoints->rows - 1; npoints.reset(cvCreateMat( _npoints->rows, _npoints->cols, _npoints->type )); cvCopy( _npoints, npoints ); for( i = 0, pointsTotal = 0; i < nimages; i++ ) { maxPoints = MAX(maxPoints, npoints->data.i[i]); pointsTotal += npoints->data.i[i]; } objectPoints.reset(cvCreateMat( _objectPoints->rows, _objectPoints->cols, CV_64FC(CV_MAT_CN(_objectPoints->type)))); cvConvert( _objectPoints, objectPoints ); cvReshape( objectPoints, objectPoints, 3, 1 ); for( k = 0; k < 2; k++ ) { const CvMat* points = k == 0 ? _imagePoints1 : _imagePoints2; const CvMat* cameraMatrix = k == 0 ? _cameraMatrix1 : _cameraMatrix2; const CvMat* distCoeffs = k == 0 ? _distCoeffs1 : _distCoeffs2; int cn = CV_MAT_CN(_imagePoints1->type); CV_Assert( (CV_MAT_DEPTH(_imagePoints1->type) == CV_32F || CV_MAT_DEPTH(_imagePoints1->type) == CV_64F) && ((_imagePoints1->rows == pointsTotal && _imagePoints1->cols*cn == 2) || (_imagePoints1->rows == 1 && _imagePoints1->cols == pointsTotal && cn == 2)) ); K[k] = cvMat(3,3,CV_64F,A[k]); Dist[k] = cvMat(1,14,CV_64F,dk[k]); imagePoints[k].reset(cvCreateMat( points->rows, points->cols, CV_64FC(CV_MAT_CN(points->type)))); cvConvert( points, imagePoints[k] ); cvReshape( imagePoints[k], imagePoints[k], 2, 1 ); if( flags & (CALIB_FIX_INTRINSIC|CALIB_USE_INTRINSIC_GUESS| CALIB_FIX_ASPECT_RATIO|CALIB_FIX_FOCAL_LENGTH) ) cvConvert( cameraMatrix, &K[k] ); if( flags & (CALIB_FIX_INTRINSIC|CALIB_USE_INTRINSIC_GUESS| CALIB_FIX_K1|CALIB_FIX_K2|CALIB_FIX_K3|CALIB_FIX_K4|CALIB_FIX_K5|CALIB_FIX_K6|CALIB_FIX_TANGENT_DIST) ) { CvMat tdist = cvMat( distCoeffs->rows, distCoeffs->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(distCoeffs->type)), Dist[k].data.db ); cvConvert( distCoeffs, &tdist ); } if( !(flags & (CALIB_FIX_INTRINSIC|CALIB_USE_INTRINSIC_GUESS))) { cvCalibrateCamera2( objectPoints, imagePoints[k], npoints, imageSize, &K[k], &Dist[k], NULL, NULL, flags ); } } if( flags & CALIB_SAME_FOCAL_LENGTH ) { static const int avg_idx[] = { 0, 4, 2, 5, -1 }; for( k = 0; avg_idx[k] >= 0; k++ ) A[0][avg_idx[k]] = A[1][avg_idx[k]] = (A[0][avg_idx[k]] + A[1][avg_idx[k]])*0.5; } if( flags & CALIB_FIX_ASPECT_RATIO ) { for( k = 0; k < 2; k++ ) aspectRatio[k] = A[k][0]/A[k][4]; } recomputeIntrinsics = (flags & CALIB_FIX_INTRINSIC) == 0; Mat err( maxPoints*2, 1, CV_64F ); Mat Je( maxPoints*2, 6, CV_64F ); Mat J_LR( maxPoints*2, 6, CV_64F ); Mat Ji( maxPoints*2, NINTRINSIC, CV_64F, Scalar(0) ); // we optimize for the inter-camera R(3),t(3), then, optionally, // for intrinisic parameters of each camera ((fx,fy,cx,cy,k1,k2,p1,p2) ~ 8 parameters). nparams = 6*(nimages+1) + (recomputeIntrinsics ? NINTRINSIC*2 : 0); CvLevMarq solver( nparams, 0, termCrit ); if(flags & CALIB_USE_LU) { solver.solveMethod = DECOMP_LU; } if( recomputeIntrinsics ) { uchar* imask = solver.mask->data.ptr + nparams - NINTRINSIC*2; if( !(flags & CALIB_RATIONAL_MODEL) ) flags |= CALIB_FIX_K4 | CALIB_FIX_K5 | CALIB_FIX_K6; if( !(flags & CALIB_THIN_PRISM_MODEL) ) flags |= CALIB_FIX_S1_S2_S3_S4; if( !(flags & CALIB_TILTED_MODEL) ) flags |= CALIB_FIX_TAUX_TAUY; if( flags & CALIB_FIX_ASPECT_RATIO ) imask[0] = imask[NINTRINSIC] = 0; if( flags & CALIB_FIX_FOCAL_LENGTH ) imask[0] = imask[1] = imask[NINTRINSIC] = imask[NINTRINSIC+1] = 0; if( flags & CALIB_FIX_PRINCIPAL_POINT ) imask[2] = imask[3] = imask[NINTRINSIC+2] = imask[NINTRINSIC+3] = 0; if( flags & (CALIB_ZERO_TANGENT_DIST|CALIB_FIX_TANGENT_DIST) ) imask[6] = imask[7] = imask[NINTRINSIC+6] = imask[NINTRINSIC+7] = 0; if( flags & CALIB_FIX_K1 ) imask[4] = imask[NINTRINSIC+4] = 0; if( flags & CALIB_FIX_K2 ) imask[5] = imask[NINTRINSIC+5] = 0; if( flags & CALIB_FIX_K3 ) imask[8] = imask[NINTRINSIC+8] = 0; if( flags & CALIB_FIX_K4 ) imask[9] = imask[NINTRINSIC+9] = 0; if( flags & CALIB_FIX_K5 ) imask[10] = imask[NINTRINSIC+10] = 0; if( flags & CALIB_FIX_K6 ) imask[11] = imask[NINTRINSIC+11] = 0; if( flags & CALIB_FIX_S1_S2_S3_S4 ) { imask[12] = imask[NINTRINSIC+12] = 0; imask[13] = imask[NINTRINSIC+13] = 0; imask[14] = imask[NINTRINSIC+14] = 0; imask[15] = imask[NINTRINSIC+15] = 0; } if( flags & CALIB_FIX_TAUX_TAUY ) { imask[16] = imask[NINTRINSIC+16] = 0; imask[17] = imask[NINTRINSIC+17] = 0; } } // storage for initial [om(R){i}|t{i}] (in order to compute the median for each component) RT0.reset(cvCreateMat( 6, nimages, CV_64F )); /* Compute initial estimate of pose For each image, compute: R(om) is the rotation matrix of om om(R) is the rotation vector of R R_ref = R(om_right) * R(om_left)' T_ref_list = [T_ref_list; T_right - R_ref * T_left] om_ref_list = {om_ref_list; om(R_ref)] om = median(om_ref_list) T = median(T_ref_list) */ for( i = ofs = 0; i < nimages; ofs += ni, i++ ) { ni = npoints->data.i[i]; CvMat objpt_i; double _om[2][3], r[2][9], t[2][3]; CvMat om[2], R[2], T[2], imgpt_i[2]; objpt_i = cvMat(1, ni, CV_64FC3, objectPoints->data.db + ofs*3); for( k = 0; k < 2; k++ ) { imgpt_i[k] = cvMat(1, ni, CV_64FC2, imagePoints[k]->data.db + ofs*2); om[k] = cvMat(3, 1, CV_64F, _om[k]); R[k] = cvMat(3, 3, CV_64F, r[k]); T[k] = cvMat(3, 1, CV_64F, t[k]); cvFindExtrinsicCameraParams2( &objpt_i, &imgpt_i[k], &K[k], &Dist[k], &om[k], &T[k] ); cvRodrigues2( &om[k], &R[k] ); if( k == 0 ) { // save initial om_left and T_left solver.param->data.db[(i+1)*6] = _om[0][0]; solver.param->data.db[(i+1)*6 + 1] = _om[0][1]; solver.param->data.db[(i+1)*6 + 2] = _om[0][2]; solver.param->data.db[(i+1)*6 + 3] = t[0][0]; solver.param->data.db[(i+1)*6 + 4] = t[0][1]; solver.param->data.db[(i+1)*6 + 5] = t[0][2]; } } cvGEMM( &R[1], &R[0], 1, 0, 0, &R[0], CV_GEMM_B_T ); cvGEMM( &R[0], &T[0], -1, &T[1], 1, &T[1] ); cvRodrigues2( &R[0], &T[0] ); RT0->data.db[i] = t[0][0]; RT0->data.db[i + nimages] = t[0][1]; RT0->data.db[i + nimages*2] = t[0][2]; RT0->data.db[i + nimages*3] = t[1][0]; RT0->data.db[i + nimages*4] = t[1][1]; RT0->data.db[i + nimages*5] = t[1][2]; } if(flags & CALIB_USE_EXTRINSIC_GUESS) { Vec3d R, T; cvarrToMat(matT).convertTo(T, CV_64F); if( matR->rows == 3 && matR->cols == 3 ) Rodrigues(cvarrToMat(matR), R); else cvarrToMat(matR).convertTo(R, CV_64F); solver.param->data.db[0] = R[0]; solver.param->data.db[1] = R[1]; solver.param->data.db[2] = R[2]; solver.param->data.db[3] = T[0]; solver.param->data.db[4] = T[1]; solver.param->data.db[5] = T[2]; } else { // find the medians and save the first 6 parameters for( i = 0; i < 6; i++ ) { qsort( RT0->data.db + i*nimages, nimages, CV_ELEM_SIZE(RT0->type), dbCmp ); solver.param->data.db[i] = nimages % 2 != 0 ? RT0->data.db[i*nimages + nimages/2] : (RT0->data.db[i*nimages + nimages/2 - 1] + RT0->data.db[i*nimages + nimages/2])*0.5; } } if( recomputeIntrinsics ) for( k = 0; k < 2; k++ ) { double* iparam = solver.param->data.db + (nimages+1)*6 + k*NINTRINSIC; if( flags & CALIB_ZERO_TANGENT_DIST ) dk[k][2] = dk[k][3] = 0; iparam[0] = A[k][0]; iparam[1] = A[k][4]; iparam[2] = A[k][2]; iparam[3] = A[k][5]; iparam[4] = dk[k][0]; iparam[5] = dk[k][1]; iparam[6] = dk[k][2]; iparam[7] = dk[k][3]; iparam[8] = dk[k][4]; iparam[9] = dk[k][5]; iparam[10] = dk[k][6]; iparam[11] = dk[k][7]; iparam[12] = dk[k][8]; iparam[13] = dk[k][9]; iparam[14] = dk[k][10]; iparam[15] = dk[k][11]; iparam[16] = dk[k][12]; iparam[17] = dk[k][13]; } om_LR = cvMat(3, 1, CV_64F, solver.param->data.db); T_LR = cvMat(3, 1, CV_64F, solver.param->data.db + 3); for(;;) { const CvMat* param = 0; CvMat *JtJ = 0, *JtErr = 0; double *_errNorm = 0; double _omR[3], _tR[3]; double _dr3dr1[9], _dr3dr2[9], /*_dt3dr1[9],*/ _dt3dr2[9], _dt3dt1[9], _dt3dt2[9]; CvMat dr3dr1 = cvMat(3, 3, CV_64F, _dr3dr1); CvMat dr3dr2 = cvMat(3, 3, CV_64F, _dr3dr2); //CvMat dt3dr1 = cvMat(3, 3, CV_64F, _dt3dr1); CvMat dt3dr2 = cvMat(3, 3, CV_64F, _dt3dr2); CvMat dt3dt1 = cvMat(3, 3, CV_64F, _dt3dt1); CvMat dt3dt2 = cvMat(3, 3, CV_64F, _dt3dt2); CvMat om[2], T[2], imgpt_i[2]; if( !solver.updateAlt( param, JtJ, JtErr, _errNorm )) break; reprojErr = 0; cvRodrigues2( &om_LR, &R_LR ); om[1] = cvMat(3,1,CV_64F,_omR); T[1] = cvMat(3,1,CV_64F,_tR); if( recomputeIntrinsics ) { double* iparam = solver.param->data.db + (nimages+1)*6; double* ipparam = solver.prevParam->data.db + (nimages+1)*6; if( flags & CALIB_SAME_FOCAL_LENGTH ) { iparam[NINTRINSIC] = iparam[0]; iparam[NINTRINSIC+1] = iparam[1]; ipparam[NINTRINSIC] = ipparam[0]; ipparam[NINTRINSIC+1] = ipparam[1]; } if( flags & CALIB_FIX_ASPECT_RATIO ) { iparam[0] = iparam[1]*aspectRatio[0]; iparam[NINTRINSIC] = iparam[NINTRINSIC+1]*aspectRatio[1]; ipparam[0] = ipparam[1]*aspectRatio[0]; ipparam[NINTRINSIC] = ipparam[NINTRINSIC+1]*aspectRatio[1]; } for( k = 0; k < 2; k++ ) { A[k][0] = iparam[k*NINTRINSIC+0]; A[k][4] = iparam[k*NINTRINSIC+1]; A[k][2] = iparam[k*NINTRINSIC+2]; A[k][5] = iparam[k*NINTRINSIC+3]; dk[k][0] = iparam[k*NINTRINSIC+4]; dk[k][1] = iparam[k*NINTRINSIC+5]; dk[k][2] = iparam[k*NINTRINSIC+6]; dk[k][3] = iparam[k*NINTRINSIC+7]; dk[k][4] = iparam[k*NINTRINSIC+8]; dk[k][5] = iparam[k*NINTRINSIC+9]; dk[k][6] = iparam[k*NINTRINSIC+10]; dk[k][7] = iparam[k*NINTRINSIC+11]; dk[k][8] = iparam[k*NINTRINSIC+12]; dk[k][9] = iparam[k*NINTRINSIC+13]; dk[k][10] = iparam[k*NINTRINSIC+14]; dk[k][11] = iparam[k*NINTRINSIC+15]; dk[k][12] = iparam[k*NINTRINSIC+16]; dk[k][13] = iparam[k*NINTRINSIC+17]; } } for( i = ofs = 0; i < nimages; ofs += ni, i++ ) { ni = npoints->data.i[i]; CvMat objpt_i; om[0] = cvMat(3,1,CV_64F,solver.param->data.db+(i+1)*6); T[0] = cvMat(3,1,CV_64F,solver.param->data.db+(i+1)*6+3); if( JtJ || JtErr ) cvComposeRT( &om[0], &T[0], &om_LR, &T_LR, &om[1], &T[1], &dr3dr1, 0, &dr3dr2, 0, 0, &dt3dt1, &dt3dr2, &dt3dt2 ); else cvComposeRT( &om[0], &T[0], &om_LR, &T_LR, &om[1], &T[1] ); objpt_i = cvMat(1, ni, CV_64FC3, objectPoints->data.db + ofs*3); err.resize(ni*2); Je.resize(ni*2); J_LR.resize(ni*2); Ji.resize(ni*2); CvMat tmpimagePoints = cvMat(err.reshape(2, 1)); CvMat dpdf = cvMat(Ji.colRange(0, 2)); CvMat dpdc = cvMat(Ji.colRange(2, 4)); CvMat dpdk = cvMat(Ji.colRange(4, NINTRINSIC)); CvMat dpdrot = cvMat(Je.colRange(0, 3)); CvMat dpdt = cvMat(Je.colRange(3, 6)); for( k = 0; k < 2; k++ ) { imgpt_i[k] = cvMat(1, ni, CV_64FC2, imagePoints[k]->data.db + ofs*2); if( JtJ || JtErr ) cvProjectPoints2( &objpt_i, &om[k], &T[k], &K[k], &Dist[k], &tmpimagePoints, &dpdrot, &dpdt, &dpdf, &dpdc, &dpdk, (flags & CALIB_FIX_ASPECT_RATIO) ? aspectRatio[k] : 0); else cvProjectPoints2( &objpt_i, &om[k], &T[k], &K[k], &Dist[k], &tmpimagePoints ); cvSub( &tmpimagePoints, &imgpt_i[k], &tmpimagePoints ); if( solver.state == CvLevMarq::CALC_J ) { int iofs = (nimages+1)*6 + k*NINTRINSIC, eofs = (i+1)*6; assert( JtJ && JtErr ); Mat _JtJ(cvarrToMat(JtJ)), _JtErr(cvarrToMat(JtErr)); if( k == 1 ) { // d(err_{x|y}R) ~ de3 // convert de3/{dr3,dt3} => de3{dr1,dt1} & de3{dr2,dt2} for( p = 0; p < ni*2; p++ ) { CvMat de3dr3 = cvMat( 1, 3, CV_64F, Je.ptr(p)); CvMat de3dt3 = cvMat( 1, 3, CV_64F, de3dr3.data.db + 3 ); CvMat de3dr2 = cvMat( 1, 3, CV_64F, J_LR.ptr(p) ); CvMat de3dt2 = cvMat( 1, 3, CV_64F, de3dr2.data.db + 3 ); double _de3dr1[3], _de3dt1[3]; CvMat de3dr1 = cvMat( 1, 3, CV_64F, _de3dr1 ); CvMat de3dt1 = cvMat( 1, 3, CV_64F, _de3dt1 ); cvMatMul( &de3dr3, &dr3dr1, &de3dr1 ); cvMatMul( &de3dt3, &dt3dt1, &de3dt1 ); cvMatMul( &de3dr3, &dr3dr2, &de3dr2 ); cvMatMulAdd( &de3dt3, &dt3dr2, &de3dr2, &de3dr2 ); cvMatMul( &de3dt3, &dt3dt2, &de3dt2 ); cvCopy( &de3dr1, &de3dr3 ); cvCopy( &de3dt1, &de3dt3 ); } _JtJ(Rect(0, 0, 6, 6)) += J_LR.t()*J_LR; _JtJ(Rect(eofs, 0, 6, 6)) = J_LR.t()*Je; _JtErr.rowRange(0, 6) += J_LR.t()*err; } _JtJ(Rect(eofs, eofs, 6, 6)) += Je.t()*Je; _JtErr.rowRange(eofs, eofs + 6) += Je.t()*err; if( recomputeIntrinsics ) { _JtJ(Rect(iofs, iofs, NINTRINSIC, NINTRINSIC)) += Ji.t()*Ji; _JtJ(Rect(iofs, eofs, NINTRINSIC, 6)) += Je.t()*Ji; if( k == 1 ) { _JtJ(Rect(iofs, 0, NINTRINSIC, 6)) += J_LR.t()*Ji; } _JtErr.rowRange(iofs, iofs + NINTRINSIC) += Ji.t()*err; } } double viewErr = norm(err, NORM_L2SQR); if(perViewErr) perViewErr->data.db[i*2 + k] = std::sqrt(viewErr/ni); reprojErr += viewErr; } } if(_errNorm) *_errNorm = reprojErr; } cvRodrigues2( &om_LR, &R_LR ); if( matR->rows == 1 || matR->cols == 1 ) cvConvert( &om_LR, matR ); else cvConvert( &R_LR, matR ); cvConvert( &T_LR, matT ); if( recomputeIntrinsics ) { cvConvert( &K[0], _cameraMatrix1 ); cvConvert( &K[1], _cameraMatrix2 ); for( k = 0; k < 2; k++ ) { CvMat* distCoeffs = k == 0 ? _distCoeffs1 : _distCoeffs2; CvMat tdist = cvMat( distCoeffs->rows, distCoeffs->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(distCoeffs->type)), Dist[k].data.db ); cvConvert( &tdist, distCoeffs ); } } if( matE || matF ) { double* t = T_LR.data.db; double tx[] = { 0, -t[2], t[1], t[2], 0, -t[0], -t[1], t[0], 0 }; CvMat Tx = cvMat(3, 3, CV_64F, tx); double e[9], f[9]; CvMat E = cvMat(3, 3, CV_64F, e); CvMat F = cvMat(3, 3, CV_64F, f); cvMatMul( &Tx, &R_LR, &E ); if( matE ) cvConvert( &E, matE ); if( matF ) { double ik[9]; CvMat iK = cvMat(3, 3, CV_64F, ik); cvInvert(&K[1], &iK); cvGEMM( &iK, &E, 1, 0, 0, &E, CV_GEMM_A_T ); cvInvert(&K[0], &iK); cvMatMul(&E, &iK, &F); cvConvertScale( &F, matF, fabs(f[8]) > 0 ? 1./f[8] : 1 ); } } return std::sqrt(reprojErr/(pointsTotal*2)); } double cvStereoCalibrate( const CvMat* _objectPoints, const CvMat* _imagePoints1, const CvMat* _imagePoints2, const CvMat* _npoints, CvMat* _cameraMatrix1, CvMat* _distCoeffs1, CvMat* _cameraMatrix2, CvMat* _distCoeffs2, CvSize imageSize, CvMat* matR, CvMat* matT, CvMat* matE, CvMat* matF, int flags, CvTermCriteria termCrit ) { return cvStereoCalibrateImpl(_objectPoints, _imagePoints1, _imagePoints2, _npoints, _cameraMatrix1, _distCoeffs1, _cameraMatrix2, _distCoeffs2, imageSize, matR, matT, matE, matF, NULL, flags, termCrit); } static void icvGetRectangles( const CvMat* cameraMatrix, const CvMat* distCoeffs, const CvMat* R, const CvMat* newCameraMatrix, CvSize imgSize, cv::Rect_& inner, cv::Rect_& outer ) { const int N = 9; int x, y, k; cv::Ptr _pts(cvCreateMat(1, N*N, CV_32FC2)); CvPoint2D32f* pts = (CvPoint2D32f*)(_pts->data.ptr); for( y = k = 0; y < N; y++ ) for( x = 0; x < N; x++ ) pts[k++] = cvPoint2D32f((float)x*imgSize.width/(N-1), (float)y*imgSize.height/(N-1)); cvUndistortPoints(_pts, _pts, cameraMatrix, distCoeffs, R, newCameraMatrix); float iX0=-FLT_MAX, iX1=FLT_MAX, iY0=-FLT_MAX, iY1=FLT_MAX; float oX0=FLT_MAX, oX1=-FLT_MAX, oY0=FLT_MAX, oY1=-FLT_MAX; // find the inscribed rectangle. // the code will likely not work with extreme rotation matrices (R) (>45%) for( y = k = 0; y < N; y++ ) for( x = 0; x < N; x++ ) { CvPoint2D32f p = pts[k++]; oX0 = MIN(oX0, p.x); oX1 = MAX(oX1, p.x); oY0 = MIN(oY0, p.y); oY1 = MAX(oY1, p.y); if( x == 0 ) iX0 = MAX(iX0, p.x); if( x == N-1 ) iX1 = MIN(iX1, p.x); if( y == 0 ) iY0 = MAX(iY0, p.y); if( y == N-1 ) iY1 = MIN(iY1, p.y); } inner = cv::Rect_(iX0, iY0, iX1-iX0, iY1-iY0); outer = cv::Rect_(oX0, oY0, oX1-oX0, oY1-oY0); } void cvStereoRectify( const CvMat* _cameraMatrix1, const CvMat* _cameraMatrix2, const CvMat* _distCoeffs1, const CvMat* _distCoeffs2, CvSize imageSize, const CvMat* matR, const CvMat* matT, CvMat* _R1, CvMat* _R2, CvMat* _P1, CvMat* _P2, CvMat* matQ, int flags, double alpha, CvSize newImgSize, CvRect* roi1, CvRect* roi2 ) { double _om[3], _t[3] = {0}, _uu[3]={0,0,0}, _r_r[3][3], _pp[3][4]; double _ww[3], _wr[3][3], _z[3] = {0,0,0}, _ri[3][3]; cv::Rect_ inner1, inner2, outer1, outer2; CvMat om = cvMat(3, 1, CV_64F, _om); CvMat t = cvMat(3, 1, CV_64F, _t); CvMat uu = cvMat(3, 1, CV_64F, _uu); CvMat r_r = cvMat(3, 3, CV_64F, _r_r); CvMat pp = cvMat(3, 4, CV_64F, _pp); CvMat ww = cvMat(3, 1, CV_64F, _ww); // temps CvMat wR = cvMat(3, 3, CV_64F, _wr); CvMat Z = cvMat(3, 1, CV_64F, _z); CvMat Ri = cvMat(3, 3, CV_64F, _ri); double nx = imageSize.width, ny = imageSize.height; int i, k; if( matR->rows == 3 && matR->cols == 3 ) cvRodrigues2(matR, &om); // get vector rotation else cvConvert(matR, &om); // it's already a rotation vector cvConvertScale(&om, &om, -0.5); // get average rotation cvRodrigues2(&om, &r_r); // rotate cameras to same orientation by averaging cvMatMul(&r_r, matT, &t); int idx = fabs(_t[0]) > fabs(_t[1]) ? 0 : 1; double c = _t[idx], nt = cvNorm(&t, 0, CV_L2); _uu[idx] = c > 0 ? 1 : -1; CV_Assert(nt > 0.0); // calculate global Z rotation cvCrossProduct(&t,&uu,&ww); double nw = cvNorm(&ww, 0, CV_L2); if (nw > 0.0) cvConvertScale(&ww, &ww, acos(fabs(c)/nt)/nw); cvRodrigues2(&ww, &wR); // apply to both views cvGEMM(&wR, &r_r, 1, 0, 0, &Ri, CV_GEMM_B_T); cvConvert( &Ri, _R1 ); cvGEMM(&wR, &r_r, 1, 0, 0, &Ri, 0); cvConvert( &Ri, _R2 ); cvMatMul(&Ri, matT, &t); // calculate projection/camera matrices // these contain the relevant rectified image internal params (fx, fy=fx, cx, cy) double fc_new = DBL_MAX; CvPoint2D64f cc_new[2] = {}; newImgSize = newImgSize.width * newImgSize.height != 0 ? newImgSize : imageSize; const double ratio_x = (double)newImgSize.width / imageSize.width / 2; const double ratio_y = (double)newImgSize.height / imageSize.height / 2; const double ratio = idx == 1 ? ratio_x : ratio_y; fc_new = (cvmGet(_cameraMatrix1, idx ^ 1, idx ^ 1) + cvmGet(_cameraMatrix2, idx ^ 1, idx ^ 1)) * ratio; for( k = 0; k < 2; k++ ) { const CvMat* A = k == 0 ? _cameraMatrix1 : _cameraMatrix2; const CvMat* Dk = k == 0 ? _distCoeffs1 : _distCoeffs2; CvPoint2D32f _pts[4] = {}; CvPoint3D32f _pts_3[4] = {}; CvMat pts = cvMat(1, 4, CV_32FC2, _pts); CvMat pts_3 = cvMat(1, 4, CV_32FC3, _pts_3); for( i = 0; i < 4; i++ ) { int j = (i<2) ? 0 : 1; _pts[i].x = (float)((i % 2)*(nx-1)); _pts[i].y = (float)(j*(ny-1)); } cvUndistortPoints( &pts, &pts, A, Dk, 0, 0 ); cvConvertPointsHomogeneous( &pts, &pts_3 ); //Change camera matrix to have cc=[0,0] and fc = fc_new double _a_tmp[3][3]; CvMat A_tmp = cvMat(3, 3, CV_64F, _a_tmp); _a_tmp[0][0]=fc_new; _a_tmp[1][1]=fc_new; _a_tmp[0][2]=0.0; _a_tmp[1][2]=0.0; cvProjectPoints2( &pts_3, k == 0 ? _R1 : _R2, &Z, &A_tmp, 0, &pts ); CvScalar avg = cvAvg(&pts); cc_new[k].x = (nx-1)/2 - avg.val[0]; cc_new[k].y = (ny-1)/2 - avg.val[1]; } // vertical focal length must be the same for both images to keep the epipolar constraint // (for horizontal epipolar lines -- TBD: check for vertical epipolar lines) // use fy for fx also, for simplicity // For simplicity, set the principal points for both cameras to be the average // of the two principal points (either one of or both x- and y- coordinates) if( flags & CALIB_ZERO_DISPARITY ) { cc_new[0].x = cc_new[1].x = (cc_new[0].x + cc_new[1].x)*0.5; cc_new[0].y = cc_new[1].y = (cc_new[0].y + cc_new[1].y)*0.5; } else if( idx == 0 ) // horizontal stereo cc_new[0].y = cc_new[1].y = (cc_new[0].y + cc_new[1].y)*0.5; else // vertical stereo cc_new[0].x = cc_new[1].x = (cc_new[0].x + cc_new[1].x)*0.5; cvZero( &pp ); _pp[0][0] = _pp[1][1] = fc_new; _pp[0][2] = cc_new[0].x; _pp[1][2] = cc_new[0].y; _pp[2][2] = 1; cvConvert(&pp, _P1); _pp[0][2] = cc_new[1].x; _pp[1][2] = cc_new[1].y; _pp[idx][3] = _t[idx]*fc_new; // baseline * focal length cvConvert(&pp, _P2); alpha = MIN(alpha, 1.); icvGetRectangles( _cameraMatrix1, _distCoeffs1, _R1, _P1, imageSize, inner1, outer1 ); icvGetRectangles( _cameraMatrix2, _distCoeffs2, _R2, _P2, imageSize, inner2, outer2 ); { newImgSize = newImgSize.width*newImgSize.height != 0 ? newImgSize : imageSize; double cx1_0 = cc_new[0].x; double cy1_0 = cc_new[0].y; double cx2_0 = cc_new[1].x; double cy2_0 = cc_new[1].y; double cx1 = newImgSize.width*cx1_0/imageSize.width; double cy1 = newImgSize.height*cy1_0/imageSize.height; double cx2 = newImgSize.width*cx2_0/imageSize.width; double cy2 = newImgSize.height*cy2_0/imageSize.height; double s = 1.; if( alpha >= 0 ) { double s0 = std::max(std::max(std::max((double)cx1/(cx1_0 - inner1.x), (double)cy1/(cy1_0 - inner1.y)), (double)(newImgSize.width - cx1)/(inner1.x + inner1.width - cx1_0)), (double)(newImgSize.height - cy1)/(inner1.y + inner1.height - cy1_0)); s0 = std::max(std::max(std::max(std::max((double)cx2/(cx2_0 - inner2.x), (double)cy2/(cy2_0 - inner2.y)), (double)(newImgSize.width - cx2)/(inner2.x + inner2.width - cx2_0)), (double)(newImgSize.height - cy2)/(inner2.y + inner2.height - cy2_0)), s0); double s1 = std::min(std::min(std::min((double)cx1/(cx1_0 - outer1.x), (double)cy1/(cy1_0 - outer1.y)), (double)(newImgSize.width - cx1)/(outer1.x + outer1.width - cx1_0)), (double)(newImgSize.height - cy1)/(outer1.y + outer1.height - cy1_0)); s1 = std::min(std::min(std::min(std::min((double)cx2/(cx2_0 - outer2.x), (double)cy2/(cy2_0 - outer2.y)), (double)(newImgSize.width - cx2)/(outer2.x + outer2.width - cx2_0)), (double)(newImgSize.height - cy2)/(outer2.y + outer2.height - cy2_0)), s1); s = s0*(1 - alpha) + s1*alpha; } fc_new *= s; cc_new[0] = cvPoint2D64f(cx1, cy1); cc_new[1] = cvPoint2D64f(cx2, cy2); cvmSet(_P1, 0, 0, fc_new); cvmSet(_P1, 1, 1, fc_new); cvmSet(_P1, 0, 2, cx1); cvmSet(_P1, 1, 2, cy1); cvmSet(_P2, 0, 0, fc_new); cvmSet(_P2, 1, 1, fc_new); cvmSet(_P2, 0, 2, cx2); cvmSet(_P2, 1, 2, cy2); cvmSet(_P2, idx, 3, s*cvmGet(_P2, idx, 3)); if(roi1) { *roi1 = cvRect( cv::Rect(cvCeil((inner1.x - cx1_0)*s + cx1), cvCeil((inner1.y - cy1_0)*s + cy1), cvFloor(inner1.width*s), cvFloor(inner1.height*s)) & cv::Rect(0, 0, newImgSize.width, newImgSize.height) ); } if(roi2) { *roi2 = cvRect( cv::Rect(cvCeil((inner2.x - cx2_0)*s + cx2), cvCeil((inner2.y - cy2_0)*s + cy2), cvFloor(inner2.width*s), cvFloor(inner2.height*s)) & cv::Rect(0, 0, newImgSize.width, newImgSize.height) ); } } if( matQ ) { double q[] = { 1, 0, 0, -cc_new[0].x, 0, 1, 0, -cc_new[0].y, 0, 0, 0, fc_new, 0, 0, -1./_t[idx], (idx == 0 ? cc_new[0].x - cc_new[1].x : cc_new[0].y - cc_new[1].y)/_t[idx] }; CvMat Q = cvMat(4, 4, CV_64F, q); cvConvert( &Q, matQ ); } } void cvGetOptimalNewCameraMatrix( const CvMat* cameraMatrix, const CvMat* distCoeffs, CvSize imgSize, double alpha, CvMat* newCameraMatrix, CvSize newImgSize, CvRect* validPixROI, int centerPrincipalPoint ) { cv::Rect_ inner, outer; newImgSize = newImgSize.width*newImgSize.height != 0 ? newImgSize : imgSize; double M[3][3]; CvMat matM = cvMat(3, 3, CV_64F, M); cvConvert(cameraMatrix, &matM); if( centerPrincipalPoint ) { double cx0 = M[0][2]; double cy0 = M[1][2]; double cx = (newImgSize.width-1)*0.5; double cy = (newImgSize.height-1)*0.5; icvGetRectangles( cameraMatrix, distCoeffs, 0, cameraMatrix, imgSize, inner, outer ); double s0 = std::max(std::max(std::max((double)cx/(cx0 - inner.x), (double)cy/(cy0 - inner.y)), (double)cx/(inner.x + inner.width - cx0)), (double)cy/(inner.y + inner.height - cy0)); double s1 = std::min(std::min(std::min((double)cx/(cx0 - outer.x), (double)cy/(cy0 - outer.y)), (double)cx/(outer.x + outer.width - cx0)), (double)cy/(outer.y + outer.height - cy0)); double s = s0*(1 - alpha) + s1*alpha; M[0][0] *= s; M[1][1] *= s; M[0][2] = cx; M[1][2] = cy; if( validPixROI ) { inner = cv::Rect_((float)((inner.x - cx0)*s + cx), (float)((inner.y - cy0)*s + cy), (float)(inner.width*s), (float)(inner.height*s)); cv::Rect r(cvCeil(inner.x), cvCeil(inner.y), cvFloor(inner.width), cvFloor(inner.height)); r &= cv::Rect(0, 0, newImgSize.width, newImgSize.height); *validPixROI = cvRect(r); } } else { // Get inscribed and circumscribed rectangles in normalized // (independent of camera matrix) coordinates icvGetRectangles( cameraMatrix, distCoeffs, 0, 0, imgSize, inner, outer ); // Projection mapping inner rectangle to viewport double fx0 = (newImgSize.width - 1) / inner.width; double fy0 = (newImgSize.height - 1) / inner.height; double cx0 = -fx0 * inner.x; double cy0 = -fy0 * inner.y; // Projection mapping outer rectangle to viewport double fx1 = (newImgSize.width - 1) / outer.width; double fy1 = (newImgSize.height - 1) / outer.height; double cx1 = -fx1 * outer.x; double cy1 = -fy1 * outer.y; // Interpolate between the two optimal projections M[0][0] = fx0*(1 - alpha) + fx1*alpha; M[1][1] = fy0*(1 - alpha) + fy1*alpha; M[0][2] = cx0*(1 - alpha) + cx1*alpha; M[1][2] = cy0*(1 - alpha) + cy1*alpha; if( validPixROI ) { icvGetRectangles( cameraMatrix, distCoeffs, 0, &matM, imgSize, inner, outer ); cv::Rect r = inner; r &= cv::Rect(0, 0, newImgSize.width, newImgSize.height); *validPixROI = cvRect(r); } } cvConvert(&matM, newCameraMatrix); } CV_IMPL int cvStereoRectifyUncalibrated( const CvMat* _points1, const CvMat* _points2, const CvMat* F0, CvSize imgSize, CvMat* _H1, CvMat* _H2, double threshold ) { Ptr _m1, _m2, _lines1, _lines2; int i, j, npoints; double cx, cy; double u[9], v[9], w[9], f[9], h1[9], h2[9], h0[9], e2[3] = {0}; CvMat E2 = cvMat( 3, 1, CV_64F, e2 ); CvMat U = cvMat( 3, 3, CV_64F, u ); CvMat V = cvMat( 3, 3, CV_64F, v ); CvMat W = cvMat( 3, 3, CV_64F, w ); CvMat F = cvMat( 3, 3, CV_64F, f ); CvMat H1 = cvMat( 3, 3, CV_64F, h1 ); CvMat H2 = cvMat( 3, 3, CV_64F, h2 ); CvMat H0 = cvMat( 3, 3, CV_64F, h0 ); CvPoint2D64f* m1; CvPoint2D64f* m2; CvPoint3D64f* lines1; CvPoint3D64f* lines2; CV_Assert( CV_IS_MAT(_points1) && CV_IS_MAT(_points2) && CV_ARE_SIZES_EQ(_points1, _points2) ); npoints = _points1->rows * _points1->cols * CV_MAT_CN(_points1->type) / 2; _m1.reset(cvCreateMat( _points1->rows, _points1->cols, CV_64FC(CV_MAT_CN(_points1->type)) )); _m2.reset(cvCreateMat( _points2->rows, _points2->cols, CV_64FC(CV_MAT_CN(_points2->type)) )); _lines1.reset(cvCreateMat( 1, npoints, CV_64FC3 )); _lines2.reset(cvCreateMat( 1, npoints, CV_64FC3 )); cvConvert( F0, &F ); cvSVD( (CvMat*)&F, &W, &U, &V, CV_SVD_U_T + CV_SVD_V_T ); W.data.db[8] = 0.; cvGEMM( &U, &W, 1, 0, 0, &W, CV_GEMM_A_T ); cvMatMul( &W, &V, &F ); cx = cvRound( (imgSize.width-1)*0.5 ); cy = cvRound( (imgSize.height-1)*0.5 ); cvZero( _H1 ); cvZero( _H2 ); cvConvert( _points1, _m1 ); cvConvert( _points2, _m2 ); cvReshape( _m1, _m1, 2, 1 ); cvReshape( _m2, _m2, 2, 1 ); m1 = (CvPoint2D64f*)_m1->data.ptr; m2 = (CvPoint2D64f*)_m2->data.ptr; lines1 = (CvPoint3D64f*)_lines1->data.ptr; lines2 = (CvPoint3D64f*)_lines2->data.ptr; if( threshold > 0 ) { cvComputeCorrespondEpilines( _m1, 1, &F, _lines1 ); cvComputeCorrespondEpilines( _m2, 2, &F, _lines2 ); // measure distance from points to the corresponding epilines, mark outliers for( i = j = 0; i < npoints; i++ ) { if( fabs(m1[i].x*lines2[i].x + m1[i].y*lines2[i].y + lines2[i].z) <= threshold && fabs(m2[i].x*lines1[i].x + m2[i].y*lines1[i].y + lines1[i].z) <= threshold ) { if( j < i ) { m1[j] = m1[i]; m2[j] = m2[i]; } j++; } } npoints = j; if( npoints == 0 ) return 0; } _m1->cols = _m2->cols = npoints; memcpy( E2.data.db, U.data.db + 6, sizeof(e2)); cvScale( &E2, &E2, e2[2] > 0 ? 1 : -1 ); double t[] = { 1, 0, -cx, 0, 1, -cy, 0, 0, 1 }; CvMat T = cvMat(3, 3, CV_64F, t); cvMatMul( &T, &E2, &E2 ); int mirror = e2[0] < 0; double d = MAX(std::sqrt(e2[0]*e2[0] + e2[1]*e2[1]),DBL_EPSILON); double alpha = e2[0]/d; double beta = e2[1]/d; double r[] = { alpha, beta, 0, -beta, alpha, 0, 0, 0, 1 }; CvMat R = cvMat(3, 3, CV_64F, r); cvMatMul( &R, &T, &T ); cvMatMul( &R, &E2, &E2 ); double invf = fabs(e2[2]) < 1e-6*fabs(e2[0]) ? 0 : -e2[2]/e2[0]; double k[] = { 1, 0, 0, 0, 1, 0, invf, 0, 1 }; CvMat K = cvMat(3, 3, CV_64F, k); cvMatMul( &K, &T, &H2 ); cvMatMul( &K, &E2, &E2 ); double it[] = { 1, 0, cx, 0, 1, cy, 0, 0, 1 }; CvMat iT = cvMat( 3, 3, CV_64F, it ); cvMatMul( &iT, &H2, &H2 ); memcpy( E2.data.db, U.data.db + 6, sizeof(e2)); cvScale( &E2, &E2, e2[2] > 0 ? 1 : -1 ); double e2_x[] = { 0, -e2[2], e2[1], e2[2], 0, -e2[0], -e2[1], e2[0], 0 }; double e2_111[] = { e2[0], e2[0], e2[0], e2[1], e2[1], e2[1], e2[2], e2[2], e2[2], }; CvMat E2_x = cvMat(3, 3, CV_64F, e2_x); CvMat E2_111 = cvMat(3, 3, CV_64F, e2_111); cvMatMulAdd(&E2_x, &F, &E2_111, &H0 ); cvMatMul(&H2, &H0, &H0); CvMat E1=cvMat(3, 1, CV_64F, V.data.db+6); cvMatMul(&H0, &E1, &E1); cvPerspectiveTransform( _m1, _m1, &H0 ); cvPerspectiveTransform( _m2, _m2, &H2 ); CvMat A = cvMat( 1, npoints, CV_64FC3, lines1 ), BxBy, B; double x[3] = {0}; CvMat X = cvMat( 3, 1, CV_64F, x ); cvConvertPointsHomogeneous( _m1, &A ); cvReshape( &A, &A, 1, npoints ); cvReshape( _m2, &BxBy, 1, npoints ); cvGetCol( &BxBy, &B, 0 ); cvSolve( &A, &B, &X, CV_SVD ); double ha[] = { x[0], x[1], x[2], 0, 1, 0, 0, 0, 1 }; CvMat Ha = cvMat(3, 3, CV_64F, ha); cvMatMul( &Ha, &H0, &H1 ); cvPerspectiveTransform( _m1, _m1, &Ha ); if( mirror ) { double mm[] = { -1, 0, cx*2, 0, -1, cy*2, 0, 0, 1 }; CvMat MM = cvMat(3, 3, CV_64F, mm); cvMatMul( &MM, &H1, &H1 ); cvMatMul( &MM, &H2, &H2 ); } cvConvert( &H1, _H1 ); cvConvert( &H2, _H2 ); return 1; } void cv::reprojectImageTo3D( InputArray _disparity, OutputArray __3dImage, InputArray _Qmat, bool handleMissingValues, int dtype ) { CV_INSTRUMENT_REGION(); Mat disparity = _disparity.getMat(), Q = _Qmat.getMat(); int stype = disparity.type(); CV_Assert( stype == CV_8UC1 || stype == CV_16SC1 || stype == CV_32SC1 || stype == CV_32FC1 ); CV_Assert( Q.size() == Size(4,4) ); if( dtype < 0 ) dtype = CV_32FC3; else { dtype = CV_MAKETYPE(CV_MAT_DEPTH(dtype), 3); CV_Assert( dtype == CV_16SC3 || dtype == CV_32SC3 || dtype == CV_32FC3 ); } __3dImage.create(disparity.size(), CV_MAKETYPE(dtype, 3)); Mat _3dImage = __3dImage.getMat(); const float bigZ = 10000.f; Matx44d _Q; Q.convertTo(_Q, CV_64F); int x, cols = disparity.cols; CV_Assert( cols >= 0 ); std::vector _sbuf(cols); std::vector _dbuf(cols); float* sbuf = &_sbuf[0]; Vec3f* dbuf = &_dbuf[0]; double minDisparity = FLT_MAX; // NOTE: here we quietly assume that at least one pixel in the disparity map is not defined. // and we set the corresponding Z's to some fixed big value. if( handleMissingValues ) cv::minMaxIdx( disparity, &minDisparity, 0, 0, 0 ); for( int y = 0; y < disparity.rows; y++ ) { float* sptr = sbuf; Vec3f* dptr = dbuf; if( stype == CV_8UC1 ) { const uchar* sptr0 = disparity.ptr(y); for( x = 0; x < cols; x++ ) sptr[x] = (float)sptr0[x]; } else if( stype == CV_16SC1 ) { const short* sptr0 = disparity.ptr(y); for( x = 0; x < cols; x++ ) sptr[x] = (float)sptr0[x]; } else if( stype == CV_32SC1 ) { const int* sptr0 = disparity.ptr(y); for( x = 0; x < cols; x++ ) sptr[x] = (float)sptr0[x]; } else sptr = disparity.ptr(y); if( dtype == CV_32FC3 ) dptr = _3dImage.ptr(y); for( x = 0; x < cols; x++) { double d = sptr[x]; Vec4d homg_pt = _Q*Vec4d(x, y, d, 1.0); dptr[x] = Vec3d(homg_pt.val); dptr[x] /= homg_pt[3]; if( fabs(d-minDisparity) <= FLT_EPSILON ) dptr[x][2] = bigZ; } if( dtype == CV_16SC3 ) { Vec3s* dptr0 = _3dImage.ptr(y); for( x = 0; x < cols; x++ ) { dptr0[x] = dptr[x]; } } else if( dtype == CV_32SC3 ) { Vec3i* dptr0 = _3dImage.ptr(y); for( x = 0; x < cols; x++ ) { dptr0[x] = dptr[x]; } } } } void cvReprojectImageTo3D( const CvArr* disparityImage, CvArr* _3dImage, const CvMat* matQ, int handleMissingValues ) { cv::Mat disp = cv::cvarrToMat(disparityImage); cv::Mat _3dimg = cv::cvarrToMat(_3dImage); cv::Mat mq = cv::cvarrToMat(matQ); CV_Assert( disp.size() == _3dimg.size() ); int dtype = _3dimg.type(); CV_Assert( dtype == CV_16SC3 || dtype == CV_32SC3 || dtype == CV_32FC3 ); cv::reprojectImageTo3D(disp, _3dimg, mq, handleMissingValues != 0, dtype ); } CV_IMPL void cvRQDecomp3x3( const CvMat *matrixM, CvMat *matrixR, CvMat *matrixQ, CvMat *matrixQx, CvMat *matrixQy, CvMat *matrixQz, CvPoint3D64f *eulerAngles) { double matM[3][3], matR[3][3], matQ[3][3]; CvMat M = cvMat(3, 3, CV_64F, matM); CvMat R = cvMat(3, 3, CV_64F, matR); CvMat Q = cvMat(3, 3, CV_64F, matQ); double z, c, s; /* Validate parameters. */ CV_Assert( CV_IS_MAT(matrixM) && CV_IS_MAT(matrixR) && CV_IS_MAT(matrixQ) && matrixM->cols == 3 && matrixM->rows == 3 && CV_ARE_SIZES_EQ(matrixM, matrixR) && CV_ARE_SIZES_EQ(matrixM, matrixQ)); cvConvert(matrixM, &M); /* Find Givens rotation Q_x for x axis (left multiplication). */ /* ( 1 0 0 ) Qx = ( 0 c s ), c = m33/sqrt(m32^2 + m33^2), s = m32/sqrt(m32^2 + m33^2) ( 0 -s c ) */ s = matM[2][1]; c = matM[2][2]; z = 1./std::sqrt(c * c + s * s + DBL_EPSILON); c *= z; s *= z; double _Qx[3][3] = { {1, 0, 0}, {0, c, s}, {0, -s, c} }; CvMat Qx = cvMat(3, 3, CV_64F, _Qx); cvMatMul(&M, &Qx, &R); assert(fabs(matR[2][1]) < FLT_EPSILON); matR[2][1] = 0; /* Find Givens rotation for y axis. */ /* ( c 0 -s ) Qy = ( 0 1 0 ), c = m33/sqrt(m31^2 + m33^2), s = -m31/sqrt(m31^2 + m33^2) ( s 0 c ) */ s = -matR[2][0]; c = matR[2][2]; z = 1./std::sqrt(c * c + s * s + DBL_EPSILON); c *= z; s *= z; double _Qy[3][3] = { {c, 0, -s}, {0, 1, 0}, {s, 0, c} }; CvMat Qy = cvMat(3, 3, CV_64F, _Qy); cvMatMul(&R, &Qy, &M); assert(fabs(matM[2][0]) < FLT_EPSILON); matM[2][0] = 0; /* Find Givens rotation for z axis. */ /* ( c s 0 ) Qz = (-s c 0 ), c = m22/sqrt(m21^2 + m22^2), s = m21/sqrt(m21^2 + m22^2) ( 0 0 1 ) */ s = matM[1][0]; c = matM[1][1]; z = 1./std::sqrt(c * c + s * s + DBL_EPSILON); c *= z; s *= z; double _Qz[3][3] = { {c, s, 0}, {-s, c, 0}, {0, 0, 1} }; CvMat Qz = cvMat(3, 3, CV_64F, _Qz); cvMatMul(&M, &Qz, &R); assert(fabs(matR[1][0]) < FLT_EPSILON); matR[1][0] = 0; // Solve the decomposition ambiguity. // Diagonal entries of R, except the last one, shall be positive. // Further rotate R by 180 degree if necessary if( matR[0][0] < 0 ) { if( matR[1][1] < 0 ) { // rotate around z for 180 degree, i.e. a rotation matrix of // [-1, 0, 0], // [ 0, -1, 0], // [ 0, 0, 1] matR[0][0] *= -1; matR[0][1] *= -1; matR[1][1] *= -1; _Qz[0][0] *= -1; _Qz[0][1] *= -1; _Qz[1][0] *= -1; _Qz[1][1] *= -1; } else { // rotate around y for 180 degree, i.e. a rotation matrix of // [-1, 0, 0], // [ 0, 1, 0], // [ 0, 0, -1] matR[0][0] *= -1; matR[0][2] *= -1; matR[1][2] *= -1; matR[2][2] *= -1; cvTranspose( &Qz, &Qz ); _Qy[0][0] *= -1; _Qy[0][2] *= -1; _Qy[2][0] *= -1; _Qy[2][2] *= -1; } } else if( matR[1][1] < 0 ) { // ??? for some reason, we never get here ??? // rotate around x for 180 degree, i.e. a rotation matrix of // [ 1, 0, 0], // [ 0, -1, 0], // [ 0, 0, -1] matR[0][1] *= -1; matR[0][2] *= -1; matR[1][1] *= -1; matR[1][2] *= -1; matR[2][2] *= -1; cvTranspose( &Qz, &Qz ); cvTranspose( &Qy, &Qy ); _Qx[1][1] *= -1; _Qx[1][2] *= -1; _Qx[2][1] *= -1; _Qx[2][2] *= -1; } // calculate the euler angle if( eulerAngles ) { eulerAngles->x = acos(_Qx[1][1]) * (_Qx[1][2] >= 0 ? 1 : -1) * (180.0 / CV_PI); eulerAngles->y = acos(_Qy[0][0]) * (_Qy[2][0] >= 0 ? 1 : -1) * (180.0 / CV_PI); eulerAngles->z = acos(_Qz[0][0]) * (_Qz[0][1] >= 0 ? 1 : -1) * (180.0 / CV_PI); } /* Calculate orthogonal matrix. */ /* Q = QzT * QyT * QxT */ cvGEMM( &Qz, &Qy, 1, 0, 0, &M, CV_GEMM_A_T + CV_GEMM_B_T ); cvGEMM( &M, &Qx, 1, 0, 0, &Q, CV_GEMM_B_T ); /* Save R and Q matrices. */ cvConvert( &R, matrixR ); cvConvert( &Q, matrixQ ); if( matrixQx ) cvConvert(&Qx, matrixQx); if( matrixQy ) cvConvert(&Qy, matrixQy); if( matrixQz ) cvConvert(&Qz, matrixQz); } CV_IMPL void cvDecomposeProjectionMatrix( const CvMat *projMatr, CvMat *calibMatr, CvMat *rotMatr, CvMat *posVect, CvMat *rotMatrX, CvMat *rotMatrY, CvMat *rotMatrZ, CvPoint3D64f *eulerAngles) { double tmpProjMatrData[16], tmpMatrixDData[16], tmpMatrixVData[16]; CvMat tmpProjMatr = cvMat(4, 4, CV_64F, tmpProjMatrData); CvMat tmpMatrixD = cvMat(4, 4, CV_64F, tmpMatrixDData); CvMat tmpMatrixV = cvMat(4, 4, CV_64F, tmpMatrixVData); CvMat tmpMatrixM; /* Validate parameters. */ if(projMatr == 0 || calibMatr == 0 || rotMatr == 0 || posVect == 0) CV_Error(CV_StsNullPtr, "Some of parameters is a NULL pointer!"); if(!CV_IS_MAT(projMatr) || !CV_IS_MAT(calibMatr) || !CV_IS_MAT(rotMatr) || !CV_IS_MAT(posVect)) CV_Error(CV_StsUnsupportedFormat, "Input parameters must be a matrices!"); if(projMatr->cols != 4 || projMatr->rows != 3) CV_Error(CV_StsUnmatchedSizes, "Size of projection matrix must be 3x4!"); if(calibMatr->cols != 3 || calibMatr->rows != 3 || rotMatr->cols != 3 || rotMatr->rows != 3) CV_Error(CV_StsUnmatchedSizes, "Size of calibration and rotation matrices must be 3x3!"); if(posVect->cols != 1 || posVect->rows != 4) CV_Error(CV_StsUnmatchedSizes, "Size of position vector must be 4x1!"); /* Compute position vector. */ cvSetZero(&tmpProjMatr); // Add zero row to make matrix square. int i, k; for(i = 0; i < 3; i++) for(k = 0; k < 4; k++) cvmSet(&tmpProjMatr, i, k, cvmGet(projMatr, i, k)); cvSVD(&tmpProjMatr, &tmpMatrixD, NULL, &tmpMatrixV, CV_SVD_MODIFY_A + CV_SVD_V_T); /* Save position vector. */ for(i = 0; i < 4; i++) cvmSet(posVect, i, 0, cvmGet(&tmpMatrixV, 3, i)); // Solution is last row of V. /* Compute calibration and rotation matrices via RQ decomposition. */ cvGetCols(projMatr, &tmpMatrixM, 0, 3); // M is first square matrix of P. CV_Assert(cvDet(&tmpMatrixM) != 0.0); // So far only finite cameras could be decomposed, so M has to be nonsingular [det(M) != 0]. cvRQDecomp3x3(&tmpMatrixM, calibMatr, rotMatr, rotMatrX, rotMatrY, rotMatrZ, eulerAngles); } namespace cv { static void collectCalibrationData( InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2, Mat& objPtMat, Mat& imgPtMat1, Mat* imgPtMat2, Mat& npoints ) { int nimages = (int)objectPoints.total(); int total = 0; CV_Assert(nimages > 0); CV_CheckEQ(nimages, (int)imagePoints1.total(), ""); if (imgPtMat2) CV_CheckEQ(nimages, (int)imagePoints2.total(), ""); for (int i = 0; i < nimages; i++) { Mat objectPoint = objectPoints.getMat(i); if (objectPoint.empty()) CV_Error(CV_StsBadSize, "objectPoints should not contain empty vector of vectors of points"); int numberOfObjectPoints = objectPoint.checkVector(3, CV_32F); if (numberOfObjectPoints <= 0) CV_Error(CV_StsUnsupportedFormat, "objectPoints should contain vector of vectors of points of type Point3f"); Mat imagePoint1 = imagePoints1.getMat(i); if (imagePoint1.empty()) CV_Error(CV_StsBadSize, "imagePoints1 should not contain empty vector of vectors of points"); int numberOfImagePoints = imagePoint1.checkVector(2, CV_32F); if (numberOfImagePoints <= 0) CV_Error(CV_StsUnsupportedFormat, "imagePoints1 should contain vector of vectors of points of type Point2f"); CV_CheckEQ(numberOfObjectPoints, numberOfImagePoints, "Number of object and image points must be equal"); total += numberOfObjectPoints; } npoints.create(1, (int)nimages, CV_32S); objPtMat.create(1, (int)total, CV_32FC3); imgPtMat1.create(1, (int)total, CV_32FC2); Point2f* imgPtData2 = 0; if (imgPtMat2) { imgPtMat2->create(1, (int)total, CV_32FC2); imgPtData2 = imgPtMat2->ptr(); } Point3f* objPtData = objPtMat.ptr(); Point2f* imgPtData1 = imgPtMat1.ptr(); for (int i = 0, j = 0; i < nimages; i++) { Mat objpt = objectPoints.getMat(i); Mat imgpt1 = imagePoints1.getMat(i); int numberOfObjectPoints = objpt.checkVector(3, CV_32F); npoints.at(i) = numberOfObjectPoints; for (int n = 0; n < numberOfObjectPoints; ++n) { objPtData[j + n] = objpt.ptr()[n]; imgPtData1[j + n] = imgpt1.ptr()[n]; } if (imgPtData2) { Mat imgpt2 = imagePoints2.getMat(i); int numberOfImage2Points = imgpt2.checkVector(2, CV_32F); CV_CheckEQ(numberOfObjectPoints, numberOfImage2Points, "Number of object and image(2) points must be equal"); for (int n = 0; n < numberOfImage2Points; ++n) { imgPtData2[j + n] = imgpt2.ptr()[n]; } } j += numberOfObjectPoints; } } static Mat prepareCameraMatrix(Mat& cameraMatrix0, int rtype) { Mat cameraMatrix = Mat::eye(3, 3, rtype); if( cameraMatrix0.size() == cameraMatrix.size() ) cameraMatrix0.convertTo(cameraMatrix, rtype); return cameraMatrix; } static Mat prepareDistCoeffs(Mat& distCoeffs0, int rtype, int outputSize = 14) { CV_Assert((int)distCoeffs0.total() <= outputSize); Mat distCoeffs = Mat::zeros(distCoeffs0.cols == 1 ? Size(1, outputSize) : Size(outputSize, 1), rtype); if( distCoeffs0.size() == Size(1, 4) || distCoeffs0.size() == Size(1, 5) || distCoeffs0.size() == Size(1, 8) || distCoeffs0.size() == Size(1, 12) || distCoeffs0.size() == Size(1, 14) || distCoeffs0.size() == Size(4, 1) || distCoeffs0.size() == Size(5, 1) || distCoeffs0.size() == Size(8, 1) || distCoeffs0.size() == Size(12, 1) || distCoeffs0.size() == Size(14, 1) ) { Mat dstCoeffs(distCoeffs, Rect(0, 0, distCoeffs0.cols, distCoeffs0.rows)); distCoeffs0.convertTo(dstCoeffs, rtype); } return distCoeffs; } } // namespace cv void cv::Rodrigues(InputArray _src, OutputArray _dst, OutputArray _jacobian) { CV_INSTRUMENT_REGION(); Mat src = _src.getMat(); const Size srcSz = src.size(); CV_Check(srcSz, srcSz == Size(3, 1) || srcSz == Size(1, 3) || (srcSz == Size(1, 1) && src.channels() == 3) || srcSz == Size(3, 3), "Input matrix must be 1x3 or 3x1 for a rotation vector, or 3x3 for a rotation matrix"); bool v2m = src.cols == 1 || src.rows == 1; _dst.create(3, v2m ? 3 : 1, src.depth()); Mat dst = _dst.getMat(); CvMat _csrc = cvMat(src), _cdst = cvMat(dst), _cjacobian; if( _jacobian.needed() ) { _jacobian.create(v2m ? Size(9, 3) : Size(3, 9), src.depth()); _cjacobian = cvMat(_jacobian.getMat()); } bool ok = cvRodrigues2(&_csrc, &_cdst, _jacobian.needed() ? &_cjacobian : 0) > 0; if( !ok ) dst = Scalar(0); } void cv::matMulDeriv( InputArray _Amat, InputArray _Bmat, OutputArray _dABdA, OutputArray _dABdB ) { CV_INSTRUMENT_REGION(); Mat A = _Amat.getMat(), B = _Bmat.getMat(); _dABdA.create(A.rows*B.cols, A.rows*A.cols, A.type()); _dABdB.create(A.rows*B.cols, B.rows*B.cols, A.type()); Mat dABdA = _dABdA.getMat(), dABdB = _dABdB.getMat(); CvMat matA = cvMat(A), matB = cvMat(B), c_dABdA = cvMat(dABdA), c_dABdB = cvMat(dABdB); cvCalcMatMulDeriv(&matA, &matB, &c_dABdA, &c_dABdB); } void cv::composeRT( InputArray _rvec1, InputArray _tvec1, InputArray _rvec2, InputArray _tvec2, OutputArray _rvec3, OutputArray _tvec3, OutputArray _dr3dr1, OutputArray _dr3dt1, OutputArray _dr3dr2, OutputArray _dr3dt2, OutputArray _dt3dr1, OutputArray _dt3dt1, OutputArray _dt3dr2, OutputArray _dt3dt2 ) { Mat rvec1 = _rvec1.getMat(), tvec1 = _tvec1.getMat(); Mat rvec2 = _rvec2.getMat(), tvec2 = _tvec2.getMat(); int rtype = rvec1.type(); _rvec3.create(rvec1.size(), rtype); _tvec3.create(tvec1.size(), rtype); Mat rvec3 = _rvec3.getMat(), tvec3 = _tvec3.getMat(); CvMat c_rvec1 = cvMat(rvec1), c_tvec1 = cvMat(tvec1), c_rvec2 = cvMat(rvec2), c_tvec2 = cvMat(tvec2), c_rvec3 = cvMat(rvec3), c_tvec3 = cvMat(tvec3); CvMat c_dr3dr1, c_dr3dt1, c_dr3dr2, c_dr3dt2, c_dt3dr1, c_dt3dt1, c_dt3dr2, c_dt3dt2; CvMat *p_dr3dr1=0, *p_dr3dt1=0, *p_dr3dr2=0, *p_dr3dt2=0, *p_dt3dr1=0, *p_dt3dt1=0, *p_dt3dr2=0, *p_dt3dt2=0; #define CV_COMPOSE_RT_PARAM(name) \ Mat name; \ if (_ ## name.needed())\ { \ _ ## name.create(3, 3, rtype); \ name = _ ## name.getMat(); \ p_ ## name = &(c_ ## name = cvMat(name)); \ } CV_COMPOSE_RT_PARAM(dr3dr1); CV_COMPOSE_RT_PARAM(dr3dt1); CV_COMPOSE_RT_PARAM(dr3dr2); CV_COMPOSE_RT_PARAM(dr3dt2); CV_COMPOSE_RT_PARAM(dt3dr1); CV_COMPOSE_RT_PARAM(dt3dt1); CV_COMPOSE_RT_PARAM(dt3dr2); CV_COMPOSE_RT_PARAM(dt3dt2); #undef CV_COMPOSE_RT_PARAM cvComposeRT(&c_rvec1, &c_tvec1, &c_rvec2, &c_tvec2, &c_rvec3, &c_tvec3, p_dr3dr1, p_dr3dt1, p_dr3dr2, p_dr3dt2, p_dt3dr1, p_dt3dt1, p_dt3dr2, p_dt3dt2); } void cv::projectPoints( InputArray _opoints, InputArray _rvec, InputArray _tvec, InputArray _cameraMatrix, InputArray _distCoeffs, OutputArray _ipoints, OutputArray _jacobian, double aspectRatio ) { Mat opoints = _opoints.getMat(); int npoints = opoints.checkVector(3), depth = opoints.depth(); if (npoints < 0) opoints = opoints.t(); npoints = opoints.checkVector(3); CV_Assert(npoints >= 0 && (depth == CV_32F || depth == CV_64F)); if (opoints.cols == 3) opoints = opoints.reshape(3); CvMat dpdrot, dpdt, dpdf, dpdc, dpddist; CvMat *pdpdrot=0, *pdpdt=0, *pdpdf=0, *pdpdc=0, *pdpddist=0; _ipoints.create(npoints, 1, CV_MAKETYPE(depth, 2), -1, true); Mat imagePoints = _ipoints.getMat(); CvMat c_imagePoints = cvMat(imagePoints); CvMat c_objectPoints = cvMat(opoints); Mat cameraMatrix = _cameraMatrix.getMat(); Mat rvec = _rvec.getMat(), tvec = _tvec.getMat(); CvMat c_cameraMatrix = cvMat(cameraMatrix); CvMat c_rvec = cvMat(rvec), c_tvec = cvMat(tvec); double dc0buf[5]={0}; Mat dc0(5,1,CV_64F,dc0buf); Mat distCoeffs = _distCoeffs.getMat(); if( distCoeffs.empty() ) distCoeffs = dc0; CvMat c_distCoeffs = cvMat(distCoeffs); int ndistCoeffs = distCoeffs.rows + distCoeffs.cols - 1; Mat jacobian; if( _jacobian.needed() ) { _jacobian.create(npoints*2, 3+3+2+2+ndistCoeffs, CV_64F); jacobian = _jacobian.getMat(); pdpdrot = &(dpdrot = cvMat(jacobian.colRange(0, 3))); pdpdt = &(dpdt = cvMat(jacobian.colRange(3, 6))); pdpdf = &(dpdf = cvMat(jacobian.colRange(6, 8))); pdpdc = &(dpdc = cvMat(jacobian.colRange(8, 10))); pdpddist = &(dpddist = cvMat(jacobian.colRange(10, 10+ndistCoeffs))); } cvProjectPoints2( &c_objectPoints, &c_rvec, &c_tvec, &c_cameraMatrix, &c_distCoeffs, &c_imagePoints, pdpdrot, pdpdt, pdpdf, pdpdc, pdpddist, aspectRatio ); } cv::Mat cv::initCameraMatrix2D( InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, Size imageSize, double aspectRatio ) { CV_INSTRUMENT_REGION(); Mat objPt, imgPt, npoints, cameraMatrix(3, 3, CV_64F); collectCalibrationData( objectPoints, imagePoints, noArray(), objPt, imgPt, 0, npoints ); CvMat _objPt = cvMat(objPt), _imgPt = cvMat(imgPt), _npoints = cvMat(npoints), _cameraMatrix = cvMat(cameraMatrix); cvInitIntrinsicParams2D( &_objPt, &_imgPt, &_npoints, cvSize(imageSize), &_cameraMatrix, aspectRatio ); return cameraMatrix; } double cv::calibrateCamera( InputArrayOfArrays _objectPoints, InputArrayOfArrays _imagePoints, Size imageSize, InputOutputArray _cameraMatrix, InputOutputArray _distCoeffs, OutputArrayOfArrays _rvecs, OutputArrayOfArrays _tvecs, int flags, TermCriteria criteria ) { CV_INSTRUMENT_REGION(); return calibrateCamera(_objectPoints, _imagePoints, imageSize, _cameraMatrix, _distCoeffs, _rvecs, _tvecs, noArray(), noArray(), noArray(), flags, criteria); } double cv::calibrateCamera(InputArrayOfArrays _objectPoints, InputArrayOfArrays _imagePoints, Size imageSize, InputOutputArray _cameraMatrix, InputOutputArray _distCoeffs, OutputArrayOfArrays _rvecs, OutputArrayOfArrays _tvecs, OutputArray stdDeviationsIntrinsics, OutputArray stdDeviationsExtrinsics, OutputArray _perViewErrors, int flags, TermCriteria criteria ) { CV_INSTRUMENT_REGION(); int rtype = CV_64F; Mat cameraMatrix = _cameraMatrix.getMat(); cameraMatrix = prepareCameraMatrix(cameraMatrix, rtype); Mat distCoeffs = _distCoeffs.getMat(); distCoeffs = (flags & CALIB_THIN_PRISM_MODEL) && !(flags & CALIB_TILTED_MODEL) ? prepareDistCoeffs(distCoeffs, rtype, 12) : prepareDistCoeffs(distCoeffs, rtype); if( !(flags & CALIB_RATIONAL_MODEL) && (!(flags & CALIB_THIN_PRISM_MODEL)) && (!(flags & CALIB_TILTED_MODEL))) distCoeffs = distCoeffs.rows == 1 ? distCoeffs.colRange(0, 5) : distCoeffs.rowRange(0, 5); int nimages = int(_objectPoints.total()); CV_Assert( nimages > 0 ); Mat objPt, imgPt, npoints, rvecM, tvecM, stdDeviationsM, errorsM; bool rvecs_needed = _rvecs.needed(), tvecs_needed = _tvecs.needed(), stddev_needed = stdDeviationsIntrinsics.needed(), errors_needed = _perViewErrors.needed(), stddev_ext_needed = stdDeviationsExtrinsics.needed(); bool rvecs_mat_vec = _rvecs.isMatVector(); bool tvecs_mat_vec = _tvecs.isMatVector(); if( rvecs_needed ) { _rvecs.create(nimages, 1, CV_64FC3); if(rvecs_mat_vec) rvecM.create(nimages, 3, CV_64F); else rvecM = _rvecs.getMat(); } if( tvecs_needed ) { _tvecs.create(nimages, 1, CV_64FC3); if(tvecs_mat_vec) tvecM.create(nimages, 3, CV_64F); else tvecM = _tvecs.getMat(); } if( stddev_needed || stddev_ext_needed ) { stdDeviationsM.create(nimages*6 + CV_CALIB_NINTRINSIC, 1, CV_64F); } if( errors_needed ) { _perViewErrors.create(nimages, 1, CV_64F); errorsM = _perViewErrors.getMat(); } collectCalibrationData( _objectPoints, _imagePoints, noArray(), objPt, imgPt, 0, npoints ); CvMat c_objPt = cvMat(objPt), c_imgPt = cvMat(imgPt), c_npoints = cvMat(npoints); CvMat c_cameraMatrix = cvMat(cameraMatrix), c_distCoeffs = cvMat(distCoeffs); CvMat c_rvecM = cvMat(rvecM), c_tvecM = cvMat(tvecM), c_stdDev = cvMat(stdDeviationsM), c_errors = cvMat(errorsM); double reprojErr = cvCalibrateCamera2Internal(&c_objPt, &c_imgPt, &c_npoints, cvSize(imageSize), &c_cameraMatrix, &c_distCoeffs, rvecs_needed ? &c_rvecM : NULL, tvecs_needed ? &c_tvecM : NULL, stddev_needed ? &c_stdDev : NULL, errors_needed ? &c_errors : NULL, flags, cvTermCriteria(criteria)); if( stddev_needed ) { stdDeviationsIntrinsics.create(CV_CALIB_NINTRINSIC, 1, CV_64F); Mat stdDeviationsIntrinsicsMat = stdDeviationsIntrinsics.getMat(); std::memcpy(stdDeviationsIntrinsicsMat.ptr(), stdDeviationsM.ptr(), CV_CALIB_NINTRINSIC*sizeof(double)); } if ( stddev_ext_needed ) { stdDeviationsExtrinsics.create(nimages*6, 1, CV_64F); Mat stdDeviationsExtrinsicsMat = stdDeviationsExtrinsics.getMat(); std::memcpy(stdDeviationsExtrinsicsMat.ptr(), stdDeviationsM.ptr() + CV_CALIB_NINTRINSIC*sizeof(double), nimages*6*sizeof(double)); } // overly complicated and inefficient rvec/ tvec handling to support vector for(int i = 0; i < nimages; i++ ) { if( rvecs_needed && rvecs_mat_vec) { _rvecs.create(3, 1, CV_64F, i, true); Mat rv = _rvecs.getMat(i); memcpy(rv.ptr(), rvecM.ptr(i), 3*sizeof(double)); } if( tvecs_needed && tvecs_mat_vec) { _tvecs.create(3, 1, CV_64F, i, true); Mat tv = _tvecs.getMat(i); memcpy(tv.ptr(), tvecM.ptr(i), 3*sizeof(double)); } } cameraMatrix.copyTo(_cameraMatrix); distCoeffs.copyTo(_distCoeffs); return reprojErr; } void cv::calibrationMatrixValues( InputArray _cameraMatrix, Size imageSize, double apertureWidth, double apertureHeight, double& fovx, double& fovy, double& focalLength, Point2d& principalPoint, double& aspectRatio ) { CV_INSTRUMENT_REGION(); if(_cameraMatrix.size() != Size(3, 3)) CV_Error(CV_StsUnmatchedSizes, "Size of cameraMatrix must be 3x3!"); Matx33d K = _cameraMatrix.getMat(); CV_DbgAssert(imageSize.width != 0 && imageSize.height != 0 && K(0, 0) != 0.0 && K(1, 1) != 0.0); /* Calculate pixel aspect ratio. */ aspectRatio = K(1, 1) / K(0, 0); /* Calculate number of pixel per realworld unit. */ double mx, my; if(apertureWidth != 0.0 && apertureHeight != 0.0) { mx = imageSize.width / apertureWidth; my = imageSize.height / apertureHeight; } else { mx = 1.0; my = aspectRatio; } /* Calculate fovx and fovy. */ fovx = atan2(K(0, 2), K(0, 0)) + atan2(imageSize.width - K(0, 2), K(0, 0)); fovy = atan2(K(1, 2), K(1, 1)) + atan2(imageSize.height - K(1, 2), K(1, 1)); fovx *= 180.0 / CV_PI; fovy *= 180.0 / CV_PI; /* Calculate focal length. */ focalLength = K(0, 0) / mx; /* Calculate principle point. */ principalPoint = Point2d(K(0, 2) / mx, K(1, 2) / my); } double cv::stereoCalibrate( InputArrayOfArrays _objectPoints, InputArrayOfArrays _imagePoints1, InputArrayOfArrays _imagePoints2, InputOutputArray _cameraMatrix1, InputOutputArray _distCoeffs1, InputOutputArray _cameraMatrix2, InputOutputArray _distCoeffs2, Size imageSize, OutputArray _Rmat, OutputArray _Tmat, OutputArray _Emat, OutputArray _Fmat, int flags, TermCriteria criteria) { if (flags & CALIB_USE_EXTRINSIC_GUESS) CV_Error(Error::StsBadFlag, "stereoCalibrate does not support CALIB_USE_EXTRINSIC_GUESS."); Mat Rmat, Tmat; double ret = stereoCalibrate(_objectPoints, _imagePoints1, _imagePoints2, _cameraMatrix1, _distCoeffs1, _cameraMatrix2, _distCoeffs2, imageSize, Rmat, Tmat, _Emat, _Fmat, noArray(), flags, criteria); Rmat.copyTo(_Rmat); Tmat.copyTo(_Tmat); return ret; } double cv::stereoCalibrate( InputArrayOfArrays _objectPoints, InputArrayOfArrays _imagePoints1, InputArrayOfArrays _imagePoints2, InputOutputArray _cameraMatrix1, InputOutputArray _distCoeffs1, InputOutputArray _cameraMatrix2, InputOutputArray _distCoeffs2, Size imageSize, InputOutputArray _Rmat, InputOutputArray _Tmat, OutputArray _Emat, OutputArray _Fmat, OutputArray _perViewErrors, int flags , TermCriteria criteria) { int rtype = CV_64F; Mat cameraMatrix1 = _cameraMatrix1.getMat(); Mat cameraMatrix2 = _cameraMatrix2.getMat(); Mat distCoeffs1 = _distCoeffs1.getMat(); Mat distCoeffs2 = _distCoeffs2.getMat(); cameraMatrix1 = prepareCameraMatrix(cameraMatrix1, rtype); cameraMatrix2 = prepareCameraMatrix(cameraMatrix2, rtype); distCoeffs1 = prepareDistCoeffs(distCoeffs1, rtype); distCoeffs2 = prepareDistCoeffs(distCoeffs2, rtype); if( !(flags & CALIB_RATIONAL_MODEL) && (!(flags & CALIB_THIN_PRISM_MODEL)) && (!(flags & CALIB_TILTED_MODEL))) { distCoeffs1 = distCoeffs1.rows == 1 ? distCoeffs1.colRange(0, 5) : distCoeffs1.rowRange(0, 5); distCoeffs2 = distCoeffs2.rows == 1 ? distCoeffs2.colRange(0, 5) : distCoeffs2.rowRange(0, 5); } if((flags & CALIB_USE_EXTRINSIC_GUESS) == 0) { _Rmat.create(3, 3, rtype); _Tmat.create(3, 1, rtype); } Mat objPt, imgPt, imgPt2, npoints; collectCalibrationData( _objectPoints, _imagePoints1, _imagePoints2, objPt, imgPt, &imgPt2, npoints ); CvMat c_objPt = cvMat(objPt), c_imgPt = cvMat(imgPt), c_imgPt2 = cvMat(imgPt2), c_npoints = cvMat(npoints); CvMat c_cameraMatrix1 = cvMat(cameraMatrix1), c_distCoeffs1 = cvMat(distCoeffs1); CvMat c_cameraMatrix2 = cvMat(cameraMatrix2), c_distCoeffs2 = cvMat(distCoeffs2); Mat matR_ = _Rmat.getMat(), matT_ = _Tmat.getMat(); CvMat c_matR = cvMat(matR_), c_matT = cvMat(matT_), c_matE, c_matF, c_matErr; bool E_needed = _Emat.needed(), F_needed = _Fmat.needed(), errors_needed = _perViewErrors.needed(); Mat matE_, matF_, matErr_; if( E_needed ) { _Emat.create(3, 3, rtype); matE_ = _Emat.getMat(); c_matE = cvMat(matE_); } if( F_needed ) { _Fmat.create(3, 3, rtype); matF_ = _Fmat.getMat(); c_matF = cvMat(matF_); } if( errors_needed ) { int nimages = int(_objectPoints.total()); _perViewErrors.create(nimages, 2, CV_64F); matErr_ = _perViewErrors.getMat(); c_matErr = cvMat(matErr_); } double err = cvStereoCalibrateImpl(&c_objPt, &c_imgPt, &c_imgPt2, &c_npoints, &c_cameraMatrix1, &c_distCoeffs1, &c_cameraMatrix2, &c_distCoeffs2, cvSize(imageSize), &c_matR, &c_matT, E_needed ? &c_matE : NULL, F_needed ? &c_matF : NULL, errors_needed ? &c_matErr : NULL, flags, cvTermCriteria(criteria)); cameraMatrix1.copyTo(_cameraMatrix1); cameraMatrix2.copyTo(_cameraMatrix2); distCoeffs1.copyTo(_distCoeffs1); distCoeffs2.copyTo(_distCoeffs2); return err; } void cv::stereoRectify( InputArray _cameraMatrix1, InputArray _distCoeffs1, InputArray _cameraMatrix2, InputArray _distCoeffs2, Size imageSize, InputArray _Rmat, InputArray _Tmat, OutputArray _Rmat1, OutputArray _Rmat2, OutputArray _Pmat1, OutputArray _Pmat2, OutputArray _Qmat, int flags, double alpha, Size newImageSize, Rect* validPixROI1, Rect* validPixROI2 ) { Mat cameraMatrix1 = _cameraMatrix1.getMat(), cameraMatrix2 = _cameraMatrix2.getMat(); Mat distCoeffs1 = _distCoeffs1.getMat(), distCoeffs2 = _distCoeffs2.getMat(); Mat Rmat = _Rmat.getMat(), Tmat = _Tmat.getMat(); CvMat c_cameraMatrix1 = cvMat(cameraMatrix1); CvMat c_cameraMatrix2 = cvMat(cameraMatrix2); CvMat c_distCoeffs1 = cvMat(distCoeffs1); CvMat c_distCoeffs2 = cvMat(distCoeffs2); CvMat c_R = cvMat(Rmat), c_T = cvMat(Tmat); int rtype = CV_64F; _Rmat1.create(3, 3, rtype); _Rmat2.create(3, 3, rtype); _Pmat1.create(3, 4, rtype); _Pmat2.create(3, 4, rtype); Mat R1 = _Rmat1.getMat(), R2 = _Rmat2.getMat(), P1 = _Pmat1.getMat(), P2 = _Pmat2.getMat(), Q; CvMat c_R1 = cvMat(R1), c_R2 = cvMat(R2), c_P1 = cvMat(P1), c_P2 = cvMat(P2); CvMat c_Q, *p_Q = 0; if( _Qmat.needed() ) { _Qmat.create(4, 4, rtype); p_Q = &(c_Q = cvMat(Q = _Qmat.getMat())); } CvMat *p_distCoeffs1 = distCoeffs1.empty() ? NULL : &c_distCoeffs1; CvMat *p_distCoeffs2 = distCoeffs2.empty() ? NULL : &c_distCoeffs2; cvStereoRectify( &c_cameraMatrix1, &c_cameraMatrix2, p_distCoeffs1, p_distCoeffs2, cvSize(imageSize), &c_R, &c_T, &c_R1, &c_R2, &c_P1, &c_P2, p_Q, flags, alpha, cvSize(newImageSize), (CvRect*)validPixROI1, (CvRect*)validPixROI2); } bool cv::stereoRectifyUncalibrated( InputArray _points1, InputArray _points2, InputArray _Fmat, Size imgSize, OutputArray _Hmat1, OutputArray _Hmat2, double threshold ) { CV_INSTRUMENT_REGION(); int rtype = CV_64F; _Hmat1.create(3, 3, rtype); _Hmat2.create(3, 3, rtype); Mat F = _Fmat.getMat(); Mat points1 = _points1.getMat(), points2 = _points2.getMat(); CvMat c_pt1 = cvMat(points1), c_pt2 = cvMat(points2); Mat H1 = _Hmat1.getMat(), H2 = _Hmat2.getMat(); CvMat c_F, *p_F=0, c_H1 = cvMat(H1), c_H2 = cvMat(H2); if( F.size() == Size(3, 3) ) p_F = &(c_F = cvMat(F)); return cvStereoRectifyUncalibrated(&c_pt1, &c_pt2, p_F, cvSize(imgSize), &c_H1, &c_H2, threshold) > 0; } cv::Mat cv::getOptimalNewCameraMatrix( InputArray _cameraMatrix, InputArray _distCoeffs, Size imgSize, double alpha, Size newImgSize, Rect* validPixROI, bool centerPrincipalPoint ) { CV_INSTRUMENT_REGION(); Mat cameraMatrix = _cameraMatrix.getMat(), distCoeffs = _distCoeffs.getMat(); CvMat c_cameraMatrix = cvMat(cameraMatrix), c_distCoeffs = cvMat(distCoeffs); Mat newCameraMatrix(3, 3, CV_MAT_TYPE(c_cameraMatrix.type)); CvMat c_newCameraMatrix = cvMat(newCameraMatrix); cvGetOptimalNewCameraMatrix(&c_cameraMatrix, &c_distCoeffs, cvSize(imgSize), alpha, &c_newCameraMatrix, cvSize(newImgSize), (CvRect*)validPixROI, (int)centerPrincipalPoint); return newCameraMatrix; } cv::Vec3d cv::RQDecomp3x3( InputArray _Mmat, OutputArray _Rmat, OutputArray _Qmat, OutputArray _Qx, OutputArray _Qy, OutputArray _Qz ) { CV_INSTRUMENT_REGION(); Mat M = _Mmat.getMat(); _Rmat.create(3, 3, M.type()); _Qmat.create(3, 3, M.type()); Mat Rmat = _Rmat.getMat(); Mat Qmat = _Qmat.getMat(); Vec3d eulerAngles; CvMat matM = cvMat(M), matR = cvMat(Rmat), matQ = cvMat(Qmat); #define CV_RQDecomp3x3_PARAM(name) \ Mat name; \ CvMat c_ ## name, *p ## name = NULL; \ if( _ ## name.needed() ) \ { \ _ ## name.create(3, 3, M.type()); \ name = _ ## name.getMat(); \ c_ ## name = cvMat(name); p ## name = &c_ ## name; \ } CV_RQDecomp3x3_PARAM(Qx); CV_RQDecomp3x3_PARAM(Qy); CV_RQDecomp3x3_PARAM(Qz); #undef CV_RQDecomp3x3_PARAM cvRQDecomp3x3(&matM, &matR, &matQ, pQx, pQy, pQz, (CvPoint3D64f*)&eulerAngles[0]); return eulerAngles; } void cv::decomposeProjectionMatrix( InputArray _projMatrix, OutputArray _cameraMatrix, OutputArray _rotMatrix, OutputArray _transVect, OutputArray _rotMatrixX, OutputArray _rotMatrixY, OutputArray _rotMatrixZ, OutputArray _eulerAngles ) { CV_INSTRUMENT_REGION(); Mat projMatrix = _projMatrix.getMat(); int type = projMatrix.type(); _cameraMatrix.create(3, 3, type); _rotMatrix.create(3, 3, type); _transVect.create(4, 1, type); Mat cameraMatrix = _cameraMatrix.getMat(); Mat rotMatrix = _rotMatrix.getMat(); Mat transVect = _transVect.getMat(); CvMat c_projMatrix = cvMat(projMatrix), c_cameraMatrix = cvMat(cameraMatrix); CvMat c_rotMatrix = cvMat(rotMatrix), c_transVect = cvMat(transVect); CvPoint3D64f *p_eulerAngles = 0; #define CV_decomposeProjectionMatrix_PARAM(name) \ Mat name; \ CvMat c_ ## name, *p_ ## name = NULL; \ if( _ ## name.needed() ) \ { \ _ ## name.create(3, 3, type); \ name = _ ## name.getMat(); \ c_ ## name = cvMat(name); p_ ## name = &c_ ## name; \ } CV_decomposeProjectionMatrix_PARAM(rotMatrixX); CV_decomposeProjectionMatrix_PARAM(rotMatrixY); CV_decomposeProjectionMatrix_PARAM(rotMatrixZ); #undef CV_decomposeProjectionMatrix_PARAM if( _eulerAngles.needed() ) { _eulerAngles.create(3, 1, CV_64F, -1, true); p_eulerAngles = _eulerAngles.getMat().ptr(); } cvDecomposeProjectionMatrix(&c_projMatrix, &c_cameraMatrix, &c_rotMatrix, &c_transVect, p_rotMatrixX, p_rotMatrixY, p_rotMatrixZ, p_eulerAngles); } namespace cv { static void adjust3rdMatrix(InputArrayOfArrays _imgpt1_0, InputArrayOfArrays _imgpt3_0, const Mat& cameraMatrix1, const Mat& distCoeffs1, const Mat& cameraMatrix3, const Mat& distCoeffs3, const Mat& R1, const Mat& R3, const Mat& P1, Mat& P3 ) { size_t n1 = _imgpt1_0.total(), n3 = _imgpt3_0.total(); std::vector imgpt1, imgpt3; for( int i = 0; i < (int)std::min(n1, n3); i++ ) { Mat pt1 = _imgpt1_0.getMat(i), pt3 = _imgpt3_0.getMat(i); int ni1 = pt1.checkVector(2, CV_32F), ni3 = pt3.checkVector(2, CV_32F); CV_Assert( ni1 > 0 && ni1 == ni3 ); const Point2f* pt1data = pt1.ptr(); const Point2f* pt3data = pt3.ptr(); std::copy(pt1data, pt1data + ni1, std::back_inserter(imgpt1)); std::copy(pt3data, pt3data + ni3, std::back_inserter(imgpt3)); } undistortPoints(imgpt1, imgpt1, cameraMatrix1, distCoeffs1, R1, P1); undistortPoints(imgpt3, imgpt3, cameraMatrix3, distCoeffs3, R3, P3); double y1_ = 0, y2_ = 0, y1y1_ = 0, y1y2_ = 0; size_t n = imgpt1.size(); for( size_t i = 0; i < n; i++ ) { double y1 = imgpt3[i].y, y2 = imgpt1[i].y; y1_ += y1; y2_ += y2; y1y1_ += y1*y1; y1y2_ += y1*y2; } y1_ /= n; y2_ /= n; y1y1_ /= n; y1y2_ /= n; double a = (y1y2_ - y1_*y2_)/(y1y1_ - y1_*y1_); double b = y2_ - a*y1_; P3.at(0,0) *= a; P3.at(1,1) *= a; P3.at(0,2) = P3.at(0,2)*a; P3.at(1,2) = P3.at(1,2)*a + b; P3.at(0,3) *= a; P3.at(1,3) *= a; } } float cv::rectify3Collinear( InputArray _cameraMatrix1, InputArray _distCoeffs1, InputArray _cameraMatrix2, InputArray _distCoeffs2, InputArray _cameraMatrix3, InputArray _distCoeffs3, InputArrayOfArrays _imgpt1, InputArrayOfArrays _imgpt3, Size imageSize, InputArray _Rmat12, InputArray _Tmat12, InputArray _Rmat13, InputArray _Tmat13, OutputArray _Rmat1, OutputArray _Rmat2, OutputArray _Rmat3, OutputArray _Pmat1, OutputArray _Pmat2, OutputArray _Pmat3, OutputArray _Qmat, double alpha, Size newImgSize, Rect* roi1, Rect* roi2, int flags ) { // first, rectify the 1-2 stereo pair stereoRectify( _cameraMatrix1, _distCoeffs1, _cameraMatrix2, _distCoeffs2, imageSize, _Rmat12, _Tmat12, _Rmat1, _Rmat2, _Pmat1, _Pmat2, _Qmat, flags, alpha, newImgSize, roi1, roi2 ); Mat R12 = _Rmat12.getMat(), R13 = _Rmat13.getMat(), T12 = _Tmat12.getMat(), T13 = _Tmat13.getMat(); _Rmat3.create(3, 3, CV_64F); _Pmat3.create(3, 4, CV_64F); Mat P1 = _Pmat1.getMat(), P2 = _Pmat2.getMat(); Mat R3 = _Rmat3.getMat(), P3 = _Pmat3.getMat(); // recompute rectification transforms for cameras 1 & 2. Mat om, r_r, r_r13; if( R13.size() != Size(3,3) ) Rodrigues(R13, r_r13); else R13.copyTo(r_r13); if( R12.size() == Size(3,3) ) Rodrigues(R12, om); else R12.copyTo(om); om *= -0.5; Rodrigues(om, r_r); // rotate cameras to same orientation by averaging Mat_ t12 = r_r * T12; int idx = fabs(t12(0,0)) > fabs(t12(1,0)) ? 0 : 1; double c = t12(idx,0), nt = norm(t12, CV_L2); CV_Assert(fabs(nt) > 0); Mat_ uu = Mat_::zeros(3,1); uu(idx, 0) = c > 0 ? 1 : -1; // calculate global Z rotation Mat_ ww = t12.cross(uu), wR; double nw = norm(ww, CV_L2); CV_Assert(fabs(nw) > 0); ww *= acos(fabs(c)/nt)/nw; Rodrigues(ww, wR); // now rotate camera 3 to make its optical axis parallel to cameras 1 and 2. R3 = wR*r_r.t()*r_r13.t(); Mat_ t13 = R3 * T13; P2.copyTo(P3); Mat t = P3.col(3); t13.copyTo(t); P3.at(0,3) *= P3.at(0,0); P3.at(1,3) *= P3.at(1,1); if( !_imgpt1.empty() && !_imgpt3.empty() ) adjust3rdMatrix(_imgpt1, _imgpt3, _cameraMatrix1.getMat(), _distCoeffs1.getMat(), _cameraMatrix3.getMat(), _distCoeffs3.getMat(), _Rmat1.getMat(), R3, P1, P3); return (float)((P3.at(idx,3)/P3.at(idx,idx))/ (P2.at(idx,3)/P2.at(idx,idx))); } /* End of file. */