// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html #include "test_precomp.hpp" namespace opencv_test { namespace { static void dilateFrame(Mat& image, Mat& depth) { CV_Assert(!image.empty()); CV_Assert(image.type() == CV_8UC1); CV_Assert(!depth.empty()); CV_Assert(depth.type() == CV_32FC1); CV_Assert(depth.size() == image.size()); Mat mask(image.size(), CV_8UC1, Scalar(255)); for(int y = 0; y < depth.rows; y++) for(int x = 0; x < depth.cols; x++) if(cvIsNaN(depth.at(y,x)) || depth.at(y,x) > 10 || depth.at(y,x) <= FLT_EPSILON) mask.at(y,x) = 0; image.setTo(255, ~mask); Mat minImage; erode(image, minImage, Mat()); image.setTo(0, ~mask); Mat maxImage; dilate(image, maxImage, Mat()); depth.setTo(FLT_MAX, ~mask); Mat minDepth; erode(depth, minDepth, Mat()); depth.setTo(0, ~mask); Mat maxDepth; dilate(depth, maxDepth, Mat()); Mat dilatedMask; dilate(mask, dilatedMask, Mat(), Point(-1,-1), 1); for(int y = 0; y < depth.rows; y++) for(int x = 0; x < depth.cols; x++) if(!mask.at(y,x) && dilatedMask.at(y,x)) { image.at(y,x) = static_cast(0.5f * (static_cast(minImage.at(y,x)) + static_cast(maxImage.at(y,x)))); depth.at(y,x) = 0.5f * (minDepth.at(y,x) + maxDepth.at(y,x)); } } class OdometryTest { public: OdometryTest(OdometryType _otype, OdometryAlgoType _algtype, double _maxError1, double _maxError5, double _idError = DBL_EPSILON) : otype(_otype), algtype(_algtype), maxError1(_maxError1), maxError5(_maxError5), idError(_idError) { } void readData(Mat& image, Mat& depth) const; static Mat getCameraMatrix() { float fx = 525.0f, // default fy = 525.0f, cx = 319.5f, cy = 239.5f; Matx33f K(fx, 0, cx, 0, fy, cy, 0, 0, 1); return Mat(K); } static void generateRandomTransformation(Mat& R, Mat& t); void run(); void checkUMats(); void prepareFrameCheck(); OdometryType otype; OdometryAlgoType algtype; double maxError1; double maxError5; double idError; }; void OdometryTest::readData(Mat& image, Mat& depth) const { std::string dataPath = cvtest::TS::ptr()->get_data_path(); std::string imageFilename = dataPath + "/cv/rgbd/rgb.png"; std::string depthFilename = dataPath + "/cv/rgbd/depth.png"; image = imread(imageFilename, 0); depth = imread(depthFilename, -1); ASSERT_FALSE(image.empty()) << "Image " << imageFilename.c_str() << " can not be read" << std::endl; ASSERT_FALSE(depth.empty()) << "Depth " << depthFilename.c_str() << "can not be read" << std::endl; CV_DbgAssert(image.type() == CV_8UC1); CV_DbgAssert(depth.type() == CV_16UC1); { Mat depth_flt; depth.convertTo(depth_flt, CV_32FC1, 1.f/5000.f); depth_flt.setTo(std::numeric_limits::quiet_NaN(), depth_flt < FLT_EPSILON); depth = depth_flt; } } void OdometryTest::generateRandomTransformation(Mat& rvec, Mat& tvec) { const float maxRotation = (float)(3.f / 180.f * CV_PI); //rad const float maxTranslation = 0.02f; //m RNG& rng = theRNG(); rvec.create(3, 1, CV_64FC1); tvec.create(3, 1, CV_64FC1); randu(rvec, Scalar(-1000), Scalar(1000)); normalize(rvec, rvec, rng.uniform(0.007f, maxRotation)); randu(tvec, Scalar(-1000), Scalar(1000)); normalize(tvec, tvec, rng.uniform(0.008f, maxTranslation)); } void OdometryTest::checkUMats() { Mat K = getCameraMatrix(); Mat image, depth; readData(image, depth); UMat uimage, udepth; image.copyTo(uimage); depth.copyTo(udepth); OdometrySettings ods; ods.setCameraMatrix(K); Odometry odometry = Odometry(otype, ods, algtype); OdometryFrame odf(uimage, udepth); Mat calcRt; uimage.release(); udepth.release(); odometry.prepareFrame(odf); bool isComputed = odometry.compute(odf, odf, calcRt); ASSERT_TRUE(isComputed); double diff = cv::norm(calcRt, Mat::eye(4, 4, CV_64FC1)); ASSERT_LE(diff, idError) << "Incorrect transformation between the same frame (not the identity matrix)" << std::endl; } void OdometryTest::run() { Mat K = getCameraMatrix(); Mat image, depth; readData(image, depth); OdometrySettings ods; ods.setCameraMatrix(K); Odometry odometry = Odometry(otype, ods, algtype); OdometryFrame odf(image, depth); Mat calcRt; // 1. Try to find Rt between the same frame (try masks also). Mat mask(image.size(), CV_8UC1, Scalar(255)); odometry.prepareFrame(odf); bool isComputed = odometry.compute(odf, odf, calcRt); ASSERT_TRUE(isComputed) << "Can not find Rt between the same frame" << std::endl; double ndiff = cv::norm(calcRt, Mat::eye(4,4,CV_64FC1)); ASSERT_LE(ndiff, idError) << "Incorrect transformation between the same frame (not the identity matrix)" << std::endl; // 2. Generate random rigid body motion in some ranges several times (iterCount). // On each iteration an input frame is warped using generated transformation. // Odometry is run on the following pair: the original frame and the warped one. // Comparing a computed transformation with an applied one we compute 2 errors: // better_1time_count - count of poses which error is less than ground truth pose, // better_5times_count - count of poses which error is 5 times less than ground truth pose. int iterCount = 100; int better_1time_count = 0; int better_5times_count = 0; for (int iter = 0; iter < iterCount; iter++) { Mat rvec, tvec; generateRandomTransformation(rvec, tvec); Affine3d rt(rvec, tvec); Mat warpedImage, warpedDepth; warpFrame(depth, image, noArray(), rt.matrix, K, warpedDepth, warpedImage); dilateFrame(warpedImage, warpedDepth); // due to inaccuracy after warping OdometryFrame odfSrc(image, depth); OdometryFrame odfDst(warpedImage, warpedDepth); odometry.prepareFrames(odfSrc, odfDst); isComputed = odometry.compute(odfSrc, odfDst, calcRt); if (!isComputed) { CV_LOG_INFO(NULL, "Iter " << iter << "; Odometry compute returned false"); continue; } Mat calcR = calcRt(Rect(0, 0, 3, 3)), calcRvec; cv::Rodrigues(calcR, calcRvec); calcRvec = calcRvec.reshape(rvec.channels(), rvec.rows); Mat calcTvec = calcRt(Rect(3,0,1,3)); if (cvtest::debugLevel >= 10) { imshow("image", image); imshow("warpedImage", warpedImage); Mat resultImage, resultDepth; warpFrame(depth, image, noArray(), calcRt, K, resultDepth, resultImage); imshow("resultImage", resultImage); waitKey(100); } // compare rotation double possibleError = algtype == OdometryAlgoType::COMMON ? 0.015f : 0.01f; Affine3f src = Affine3f(Vec3f(rvec), Vec3f(tvec)); Affine3f res = Affine3f(Vec3f(calcRvec), Vec3f(calcTvec)); Affine3f src_inv = src.inv(); Affine3f diff = res * src_inv; double rdiffnorm = cv::norm(diff.rvec()); double tdiffnorm = cv::norm(diff.translation()); if (rdiffnorm < possibleError && tdiffnorm < possibleError) better_1time_count++; if (5. * rdiffnorm < possibleError && 5 * tdiffnorm < possibleError) better_5times_count++; CV_LOG_INFO(NULL, "Iter " << iter); CV_LOG_INFO(NULL, "rdiff: " << Vec3f(diff.rvec()) << "; rdiffnorm: " << rdiffnorm); CV_LOG_INFO(NULL, "tdiff: " << Vec3f(diff.translation()) << "; tdiffnorm: " << tdiffnorm); CV_LOG_INFO(NULL, "better_1time_count " << better_1time_count << "; better_5time_count " << better_5times_count); } if(static_cast(better_1time_count) < maxError1 * static_cast(iterCount)) { FAIL() << "Incorrect count of accurate poses [1st case]: " << static_cast(better_1time_count) << " / " << maxError1 * static_cast(iterCount) << std::endl; } if(static_cast(better_5times_count) < maxError5 * static_cast(iterCount)) { FAIL() << "Incorrect count of accurate poses [2nd case]: " << static_cast(better_5times_count) << " / " << maxError5 * static_cast(iterCount) << std::endl; } } void OdometryTest::prepareFrameCheck() { Mat K = getCameraMatrix(); Mat gtImage, gtDepth; readData(gtImage, gtDepth); OdometrySettings ods; ods.setCameraMatrix(K); Odometry odometry = Odometry(otype, ods, algtype); OdometryFrame odf(gtImage, gtDepth); odometry.prepareFrame(odf); std::vector iters; ods.getIterCounts(iters); size_t nlevels = iters.size(); Mat points, mask, depth, gray, rgb, scaled; odf.getMask(mask); int masknz = countNonZero(mask); ASSERT_GT(masknz, 0); odf.getDepth(depth); Mat patchedDepth = depth.clone(); patchNaNs(patchedDepth, 0); int depthnz = countNonZero(patchedDepth); double depthNorm = cv::norm(depth, gtDepth, NORM_INF, mask); ASSERT_LE(depthNorm, 0.0); Mat gtGray; if (otype == OdometryType::RGB || otype == OdometryType::RGB_DEPTH) { odf.getGrayImage(gray); odf.getImage(rgb); double rgbNorm = cv::norm(rgb, gtImage); ASSERT_LE(rgbNorm, 0.0); if (gtImage.channels() == 3) cvtColor(gtImage, gtGray, COLOR_BGR2GRAY); else gtGray = gtImage; gtGray.convertTo(gtGray, CV_8U); double grayNorm = cv::norm(gray, gtGray); ASSERT_LE(grayNorm, 0.0); } //TODO: remove it when scale issue is fixed odf.getScaledDepth(scaled); int scalednz = countNonZero(scaled); EXPECT_EQ(scalednz, depthnz); std::vector gtPyrDepth, gtPyrMask; //TODO: this depth calculation would become incorrect when we implement bilateral filtering, fixit buildPyramid(gtDepth, gtPyrDepth, nlevels - 1); for (const auto& gd : gtPyrDepth) { Mat pm = (gd > ods.getMinDepth()) & (gd < ods.getMaxDepth()); gtPyrMask.push_back(pm); } size_t npyr = odf.getPyramidLevels(); ASSERT_EQ(npyr, nlevels); Matx33f levelK = K; for (size_t i = 0; i < nlevels; i++) { Mat depthi, cloudi, maski; odf.getPyramidAt(maski, OdometryFramePyramidType::PYR_MASK, i); ASSERT_FALSE(maski.empty()); double mnorm = cv::norm(maski, gtPyrMask[i]); EXPECT_LE(mnorm, 16 * 255.0) << "Mask diff is too big at pyr level " << i; odf.getPyramidAt(depthi, OdometryFramePyramidType::PYR_DEPTH, i); ASSERT_FALSE(depthi.empty()); double dnorm = cv::norm(depthi, gtPyrDepth[i], NORM_INF, maski); EXPECT_LE(dnorm, 8.e-7) << "Depth diff norm is too big at pyr level " << i; odf.getPyramidAt(cloudi, OdometryFramePyramidType::PYR_CLOUD, i); ASSERT_FALSE(cloudi.empty()); Mat gtCloud; depthTo3d(depthi, levelK, gtCloud); double cnorm = cv::norm(cloudi, gtCloud, NORM_INF, maski); EXPECT_LE(cnorm, 0.0) << "Cloud diff norm is too big at pyr level " << i; // downscale camera matrix for next pyramid level levelK = 0.5f * levelK; levelK(2, 2) = 1.f; } if (otype == OdometryType::RGB || otype == OdometryType::RGB_DEPTH) { std::vector gtPyrImage; buildPyramid(gtGray, gtPyrImage, nlevels - 1); for (size_t i = 0; i < nlevels; i++) { Mat rgbi, texi, dixi, diyi, maski; odf.getPyramidAt(maski, OdometryFramePyramidType::PYR_MASK, i); odf.getPyramidAt(rgbi, OdometryFramePyramidType::PYR_IMAGE, i); ASSERT_FALSE(rgbi.empty()); double rnorm = cv::norm(rgbi, gtPyrImage[i], NORM_INF); EXPECT_LE(rnorm, 1.0) << "RGB diff is too big at pyr level " << i; odf.getPyramidAt(texi, OdometryFramePyramidType::PYR_TEXMASK, i); ASSERT_FALSE(texi.empty()); int tnz = countNonZero(texi); EXPECT_GE(tnz, 1000) << "Texture mask has too few valid pixels at pyr level " << i; Mat gtDixi, gtDiyi; Sobel(rgbi, gtDixi, CV_16S, 1, 0, ods.getSobelSize()); odf.getPyramidAt(dixi, OdometryFramePyramidType::PYR_DIX, i); ASSERT_FALSE(dixi.empty()); double dixnorm = cv::norm(dixi, gtDixi, NORM_INF, maski); EXPECT_LE(dixnorm, 0) << "dI/dx diff is too big at pyr level " << i; Sobel(rgbi, gtDiyi, CV_16S, 0, 1, ods.getSobelSize()); odf.getPyramidAt(diyi, OdometryFramePyramidType::PYR_DIY, i); ASSERT_FALSE(diyi.empty()); double diynorm = cv::norm(diyi, gtDiyi, NORM_INF, maski); EXPECT_LE(diynorm, 0) << "dI/dy diff is too big at pyr level " << i; } } if (otype == OdometryType::DEPTH || otype == OdometryType::RGB_DEPTH) { Ptr normalComputer = odometry.getNormalsComputer(); ASSERT_FALSE(normalComputer.empty()); Mat normals; odf.getNormals(normals); std::vector gtPyrNormals; buildPyramid(normals, gtPyrNormals, nlevels - 1); for (size_t i = 0; i < nlevels; i++) { Mat gtNormal = gtPyrNormals[i]; CV_Assert(gtNormal.type() == CV_32FC4); for (int y = 0; y < gtNormal.rows; y++) { Vec4f *normals_row = gtNormal.ptr(y); for (int x = 0; x < gtNormal.cols; x++) { Vec4f n4 = normals_row[x]; Point3f n(n4[0], n4[1], n4[2]); double nrm = cv::norm(n); n *= 1.f / nrm; normals_row[x] = Vec4f(n.x, n.y, n.z, 0); } } Mat normmaski; odf.getPyramidAt(normmaski, OdometryFramePyramidType::PYR_NORMMASK, i); ASSERT_FALSE(normmaski.empty()); int nnm = countNonZero(normmaski); EXPECT_GE(nnm, 1000) << "Normals mask has too few valid pixels at pyr level " << i; Mat ptsi; odf.getPyramidAt(ptsi, OdometryFramePyramidType::PYR_CLOUD, i); Mat normi; odf.getPyramidAt(normi, OdometryFramePyramidType::PYR_NORM, i); ASSERT_FALSE(normi.empty()); double nnorm = cv::norm(normi, gtNormal, NORM_INF, normmaski); EXPECT_LE(nnorm, 1.8e-7) << "Normals diff is too big at pyr level " << i; if (i == 0) { double pnnorm = cv::norm(normals, normi, NORM_INF, normmaski); EXPECT_GE(pnnorm, 0); } } } } /****************************************************************************************\ * Tests registrations * \****************************************************************************************/ TEST(RGBD_Odometry_Rgb, algorithmic) { OdometryTest test(OdometryType::RGB, OdometryAlgoType::COMMON, 0.99, 0.99); test.run(); } TEST(RGBD_Odometry_ICP, algorithmic) { OdometryTest test(OdometryType::DEPTH, OdometryAlgoType::COMMON, 0.99, 0.99); test.run(); } TEST(RGBD_Odometry_RgbdICP, algorithmic) { OdometryTest test(OdometryType::RGB_DEPTH, OdometryAlgoType::COMMON, 0.99, 0.99); test.run(); } TEST(RGBD_Odometry_FastICP, algorithmic) { OdometryTest test(OdometryType::DEPTH, OdometryAlgoType::FAST, 0.99, 0.87, 1.84e-5); test.run(); } TEST(RGBD_Odometry_Rgb, UMats) { OdometryTest test(OdometryType::RGB, OdometryAlgoType::COMMON, 0.99, 0.99); test.checkUMats(); } TEST(RGBD_Odometry_ICP, UMats) { OdometryTest test(OdometryType::DEPTH, OdometryAlgoType::COMMON, 0.99, 0.99); test.checkUMats(); } TEST(RGBD_Odometry_RgbdICP, UMats) { OdometryTest test(OdometryType::RGB_DEPTH, OdometryAlgoType::COMMON, 0.99, 0.99); test.checkUMats(); } TEST(RGBD_Odometry_FastICP, UMats) { // OpenCL version has slightly less accuracy than CPU version OdometryTest test(OdometryType::DEPTH, OdometryAlgoType::FAST, 0.99, 0.99, 1.84e-5); test.checkUMats(); } TEST(RGBD_Odometry_Rgb, prepareFrame) { OdometryTest test(OdometryType::RGB, OdometryAlgoType::COMMON, 0.99, 0.99); test.prepareFrameCheck(); } TEST(RGBD_Odometry_ICP, prepareFrame) { OdometryTest test(OdometryType::DEPTH, OdometryAlgoType::COMMON, 0.99, 0.99); test.prepareFrameCheck(); } TEST(RGBD_Odometry_RgbdICP, prepareFrame) { OdometryTest test(OdometryType::RGB_DEPTH, OdometryAlgoType::COMMON, 0.99, 0.99); test.prepareFrameCheck(); } TEST(RGBD_Odometry_FastICP, prepareFrame) { OdometryTest test(OdometryType::DEPTH, OdometryAlgoType::FAST, 0.99, 0.99, FLT_EPSILON); test.prepareFrameCheck(); } struct WarpFrameTest { WarpFrameTest() : srcDepth(), srcRgb(), srcMask(), dstDepth(), dstRgb(), dstMask(), warpedDepth(), warpedRgb(), warpedMask() {} void run(bool needRgb, bool scaleDown, bool checkMask, bool identityTransform, int depthType, int imageType); Mat srcDepth, srcRgb, srcMask; Mat dstDepth, dstRgb, dstMask; Mat warpedDepth, warpedRgb, warpedMask; }; void WarpFrameTest::run(bool needRgb, bool scaleDown, bool checkMask, bool identityTransform, int depthType, int rgbType) { std::string dataPath = cvtest::TS::ptr()->get_data_path(); std::string srcDepthFilename = dataPath + "/cv/rgbd/depth.png"; std::string srcRgbFilename = dataPath + "/cv/rgbd/rgb.png"; // The depth was generated using the script at testdata/cv/rgbd/warped_depth_generator/warp_test.py std::string warpedDepthFilename = dataPath + "/cv/rgbd/warpedDepth.png"; std::string warpedRgbFilename = dataPath + "/cv/rgbd/warpedRgb.png"; srcDepth = imread(srcDepthFilename, IMREAD_UNCHANGED); ASSERT_FALSE(srcDepth.empty()) << "Depth " << srcDepthFilename.c_str() << "can not be read" << std::endl; if (identityTransform) { warpedDepth = srcDepth; } else { warpedDepth = imread(warpedDepthFilename, IMREAD_UNCHANGED); ASSERT_FALSE(warpedDepth.empty()) << "Depth " << warpedDepthFilename.c_str() << "can not be read" << std::endl; } ASSERT_TRUE(srcDepth.type() == CV_16UC1); ASSERT_TRUE(warpedDepth.type() == CV_16UC1); Mat epsSrc = srcDepth > 0, epsWarped = warpedDepth > 0; const double depthFactor = 5000.0; // scale float types only double depthScaleCoeff = scaleDown ? ( depthType == CV_16U ? 1. : 1./depthFactor ) : 1.; double transScaleCoeff = scaleDown ? ( depthType == CV_16U ? depthFactor : 1. ) : depthFactor; Mat srcDepthCvt, warpedDepthCvt; srcDepth.convertTo(srcDepthCvt, depthType, depthScaleCoeff); srcDepth = srcDepthCvt; warpedDepth.convertTo(warpedDepthCvt, depthType, depthScaleCoeff); warpedDepth = warpedDepthCvt; Scalar badVal; switch (depthType) { case CV_16U: badVal = 0; break; case CV_32F: badVal = std::numeric_limits::quiet_NaN(); break; case CV_64F: badVal = std::numeric_limits::quiet_NaN(); break; default: CV_Error(Error::StsBadArg, "Unsupported depth data type"); } srcDepth.setTo(badVal, ~epsSrc); warpedDepth.setTo(badVal, ~epsWarped); if (checkMask) { srcMask = epsSrc; warpedMask = epsWarped; } else { srcMask = Mat(); warpedMask = Mat(); } if (needRgb) { srcRgb = imread(srcRgbFilename, rgbType == CV_8UC1 ? IMREAD_GRAYSCALE : IMREAD_COLOR); ASSERT_FALSE(srcRgb.empty()) << "Image " << srcRgbFilename.c_str() << "can not be read" << std::endl; if (identityTransform) { srcRgb.copyTo(warpedRgb, epsSrc); } else { warpedRgb = imread(warpedRgbFilename, rgbType == CV_8UC1 ? IMREAD_GRAYSCALE : IMREAD_COLOR); ASSERT_FALSE (warpedRgb.empty()) << "Image " << warpedRgbFilename.c_str() << "can not be read" << std::endl; } if (rgbType == CV_8UC4) { Mat newSrcRgb, newWarpedRgb; cvtColor(srcRgb, newSrcRgb, COLOR_RGB2RGBA); srcRgb = newSrcRgb; // let's keep alpha channel std::vector warpedRgbChannels; split(warpedRgb, warpedRgbChannels); warpedRgbChannels.push_back(epsWarped); merge(warpedRgbChannels, newWarpedRgb); warpedRgb = newWarpedRgb; } ASSERT_TRUE(srcRgb.type() == rgbType); ASSERT_TRUE(warpedRgb.type() == rgbType); } else { srcRgb = Mat(); warpedRgb = Mat(); } // test data used to generate warped depth and rgb // the script used to generate is in opencv_extra repo // at testdata/cv/rgbd/warped_depth_generator/warp_test.py double fx = 525.0, fy = 525.0, cx = 319.5, cy = 239.5; Matx33d K(fx, 0, cx, 0, fy, cy, 0, 0, 1); cv::Affine3d rt; cv::Vec3d tr(-0.04, 0.05, 0.6); rt = identityTransform ? cv::Affine3d() : cv::Affine3d(cv::Vec3d(0.1, 0.2, 0.3), tr * transScaleCoeff); warpFrame(srcDepth, srcRgb, srcMask, rt.matrix, K, dstDepth, dstRgb, dstMask); } typedef std::pair WarpFrameInputTypes; typedef testing::TestWithParam WarpFrameInputs; TEST_P(WarpFrameInputs, checkTypes) { const double shortl2diff = 233.983; const double shortlidiff = 1; const double floatl2diff = 0.038209; const double floatlidiff = 0.00020004; int depthType = GetParam().first; int rgbType = GetParam().second; WarpFrameTest w; // scale down does not happen on CV_16U // to avoid integer overflow w.run(/* needRgb */ true, /* scaleDown*/ true, /* checkMask */ true, /* identityTransform */ false, depthType, rgbType); double rgbDiff = cv::norm(w.dstRgb, w.warpedRgb, NORM_L2); double maskDiff = cv::norm(w.dstMask, w.warpedMask, NORM_L2); EXPECT_EQ(0, maskDiff); EXPECT_EQ(0, rgbDiff); double l2diff = cv::norm(w.dstDepth, w.warpedDepth, NORM_L2, w.warpedMask); double lidiff = cv::norm(w.dstDepth, w.warpedDepth, NORM_INF, w.warpedMask); double l2threshold = depthType == CV_16U ? shortl2diff : floatl2diff; double lithreshold = depthType == CV_16U ? shortlidiff : floatlidiff; EXPECT_LE(l2diff, l2threshold); EXPECT_LE(lidiff, lithreshold); } INSTANTIATE_TEST_CASE_P(RGBD_Odometry, WarpFrameInputs, ::testing::Values( WarpFrameInputTypes { CV_16U, CV_8UC3 }, WarpFrameInputTypes { CV_32F, CV_8UC3 }, WarpFrameInputTypes { CV_64F, CV_8UC3 }, WarpFrameInputTypes { CV_32F, CV_8UC1 }, WarpFrameInputTypes { CV_32F, CV_8UC4 })); TEST(RGBD_Odometry_WarpFrame, identity) { WarpFrameTest w; w.run(/* needRgb */ true, /* scaleDown*/ true, /* checkMask */ true, /* identityTransform */ true, CV_32F, CV_8UC3); double rgbDiff = cv::norm(w.dstRgb, w.warpedRgb, NORM_L2); double maskDiff = cv::norm(w.dstMask, w.warpedMask, NORM_L2); ASSERT_EQ(0, rgbDiff); ASSERT_EQ(0, maskDiff); double depthDiff = cv::norm(w.dstDepth, w.warpedDepth, NORM_L2, w.dstMask); ASSERT_LE(depthDiff, DBL_EPSILON); } TEST(RGBD_Odometry_WarpFrame, noRgb) { WarpFrameTest w; w.run(/* needRgb */ false, /* scaleDown*/ true, /* checkMask */ true, /* identityTransform */ false, CV_32F, CV_8UC3); double maskDiff = cv::norm(w.dstMask, w.warpedMask, NORM_L2); ASSERT_EQ(0, maskDiff); double l2diff = cv::norm(w.dstDepth, w.warpedDepth, NORM_L2, w.warpedMask); double lidiff = cv::norm(w.dstDepth, w.warpedDepth, NORM_INF, w.warpedMask); ASSERT_LE(l2diff, 0.038209); ASSERT_LE(lidiff, 0.00020004); } TEST(RGBD_Odometry_WarpFrame, nansAreMasked) { WarpFrameTest w; w.run(/* needRgb */ true, /* scaleDown*/ true, /* checkMask */ false, /* identityTransform */ false, CV_32F, CV_8UC3); double rgbDiff = cv::norm(w.dstRgb, w.warpedRgb, NORM_L2); ASSERT_EQ(0, rgbDiff); Mat goodVals = (w.warpedDepth == w.warpedDepth); double l2diff = cv::norm(w.dstDepth, w.warpedDepth, NORM_L2, goodVals); double lidiff = cv::norm(w.dstDepth, w.warpedDepth, NORM_INF, goodVals); ASSERT_LE(l2diff, 0.038209); ASSERT_LE(lidiff, 0.00020004); } TEST(RGBD_Odometry_WarpFrame, bigScale) { WarpFrameTest w; w.run(/* needRgb */ true, /* scaleDown*/ false, /* checkMask */ true, /* identityTransform */ false, CV_32F, CV_8UC3); double rgbDiff = cv::norm(w.dstRgb, w.warpedRgb, NORM_L2); double maskDiff = cv::norm(w.dstMask, w.warpedMask, NORM_L2); ASSERT_EQ(0, maskDiff); ASSERT_EQ(0, rgbDiff); double l2diff = cv::norm(w.dstDepth, w.warpedDepth, NORM_L2, w.warpedMask); double lidiff = cv::norm(w.dstDepth, w.warpedDepth, NORM_INF, w.warpedMask); ASSERT_LE(l2diff, 191.026565); ASSERT_LE(lidiff, 0.99951172); } TEST(RGBD_DepthTo3D, mask) { std::string dataPath = cvtest::TS::ptr()->get_data_path(); std::string srcDepthFilename = dataPath + "/cv/rgbd/depth.png"; Mat srcDepth = imread(srcDepthFilename, IMREAD_UNCHANGED); ASSERT_FALSE(srcDepth.empty()) << "Depth " << srcDepthFilename.c_str() << "can not be read" << std::endl; ASSERT_TRUE(srcDepth.type() == CV_16UC1); Mat srcMask = srcDepth > 0; // test data used to generate warped depth and rgb // the script used to generate is in opencv_extra repo // at testdata/cv/rgbd/warped_depth_generator/warp_test.py double fx = 525.0, fy = 525.0, cx = 319.5, cy = 239.5; Matx33d intr(fx, 0, cx, 0, fy, cy, 0, 0, 1); Mat srcCloud; depthTo3d(srcDepth, intr, srcCloud, srcMask); size_t npts = countNonZero(srcMask); ASSERT_EQ(npts, srcCloud.total()); } }} // namespace