/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "opencv2/core/core.hpp" #include "opencv2/calib3d/calib3d.hpp" #include "opencv2/highgui/highgui.hpp" #include "precomp.hpp" #include #ifdef HAVE_EIGEN #include #include #include #endif using namespace cv; inline static void computeC( double* C, double dIdx, double dIdy, const Point3f& p3d, double fx, double fy ) { double invz = 1. / p3d.z, v0 = dIdx * fx * invz, v1 = dIdy * fy * invz, v2 = -(v0 * p3d.x + v1 * p3d.y) * invz; C[0] = -p3d.z * v1 + p3d.y * v2; C[1] = p3d.z * v0 - p3d.x * v2; C[2] = -p3d.y * v0 + p3d.x * v1; C[3] = v0; C[4] = v1; C[5] = v2; } inline static void computeProjectiveMatrix( const Mat& ksi, Mat& Rt ) { CV_Assert( ksi.size() == Size(1,6) && ksi.type() == CV_64FC1 ); #ifdef HAVE_EIGEN const double* ksi_ptr = reinterpret_cast(ksi.ptr(0)); Eigen::Matrix twist, g; twist << 0., -ksi_ptr[2], ksi_ptr[1], ksi_ptr[3], ksi_ptr[2], 0., -ksi_ptr[0], ksi_ptr[4], -ksi_ptr[1], ksi_ptr[0], 0, ksi_ptr[5], 0., 0., 0., 0.; g = twist.exp(); eigen2cv(g, Rt); #else // for infinitesimal transformation Rt = Mat::eye(4, 4, CV_64FC1); Mat R = Rt(Rect(0,0,3,3)); Mat rvec = ksi.rowRange(0,3); Rodrigues( rvec, R ); Rt.at(0,3) = ksi.at(3); Rt.at(1,3) = ksi.at(4); Rt.at(2,3) = ksi.at(5); #endif } static void cvtDepth2Cloud( const Mat& depth, Mat& cloud, const Mat& cameraMatrix ) { CV_Assert( cameraMatrix.type() == CV_64FC1 ); const double inv_fx = 1.f/cameraMatrix.at(0,0); const double inv_fy = 1.f/cameraMatrix.at(1,1); const double ox = cameraMatrix.at(0,2); const double oy = cameraMatrix.at(1,2); cloud.create( depth.size(), CV_32FC3 ); for( int y = 0; y < cloud.rows; y++ ) { Point3f* cloud_ptr = reinterpret_cast(cloud.ptr(y)); const float* depth_prt = reinterpret_cast(depth.ptr(y)); for( int x = 0; x < cloud.cols; x++ ) { float z = depth_prt[x]; cloud_ptr[x].x = (x - ox) * z * inv_fx; cloud_ptr[x].y = (y - oy) * z * inv_fy; cloud_ptr[x].z = z; } } } static inline void set2shorts( int& dst, int short_v1, int short_v2 ) { unsigned short* ptr = reinterpret_cast(&dst); ptr[0] = static_cast(short_v1); ptr[1] = static_cast(short_v2); } static inline void get2shorts( int src, int& short_v1, int& short_v2 ) { unsigned short* ptr = reinterpret_cast(&src); short_v1 = ptr[0]; short_v2 = ptr[1]; } static int computeCorresp( const Mat& K, const Mat& K_inv, const Mat& Rt, const Mat& depth0, const Mat& depth1, const Mat& texturedMask1, float maxDepthDiff, Mat& corresps ) { CV_Assert( K.type() == CV_64FC1 ); CV_Assert( K_inv.type() == CV_64FC1 ); CV_Assert( Rt.type() == CV_64FC1 ); corresps.create( depth1.size(), CV_32SC1 ); Mat R = Rt(Rect(0,0,3,3)).clone(); Mat KRK_inv = K * R * K_inv; const double * KRK_inv_ptr = reinterpret_cast(KRK_inv.ptr()); Mat Kt = Rt(Rect(3,0,1,3)).clone(); Kt = K * Kt; const double * Kt_ptr = reinterpret_cast(Kt.ptr()); Rect r(0, 0, depth1.cols, depth1.rows); corresps = Scalar(-1); int correspCount = 0; for( int v1 = 0; v1 < depth1.rows; v1++ ) { for( int u1 = 0; u1 < depth1.cols; u1++ ) { float d1 = depth1.at(v1,u1); if( !cvIsNaN(d1) && texturedMask1.at(v1,u1) ) { float transformed_d1 = d1 * (KRK_inv_ptr[6] * u1 + KRK_inv_ptr[7] * v1 + KRK_inv_ptr[8]) + Kt_ptr[2]; int u0 = cvRound((d1 * (KRK_inv_ptr[0] * u1 + KRK_inv_ptr[1] * v1 + KRK_inv_ptr[2]) + Kt_ptr[0]) / transformed_d1); int v0 = cvRound((d1 * (KRK_inv_ptr[3] * u1 + KRK_inv_ptr[4] * v1 + KRK_inv_ptr[5]) + Kt_ptr[1]) / transformed_d1); if( r.contains(Point(u0,v0)) ) { float d0 = depth0.at(v0,u0); if( !cvIsNaN(d0) && std::abs(transformed_d1 - d0) < maxDepthDiff ) { int c = corresps.at(v0,u0); if( c != -1 ) { int exist_u1, exist_v1; get2shorts( c, exist_u1, exist_v1); float exist_d1 = depth1.at(exist_v1,exist_u1) * (KRK_inv_ptr[6] * exist_u1 + KRK_inv_ptr[7] * exist_v1 + KRK_inv_ptr[8]) + Kt_ptr[2]; if( transformed_d1 > exist_d1 ) continue; } else correspCount++; set2shorts( corresps.at(v0,u0), u1, v1 ); } } } } } return correspCount; } static inline void preprocessDepth( Mat depth0, Mat depth1, const Mat& validMask0, const Mat& validMask1, float minDepth, float maxDepth ) { CV_DbgAssert( depth0.size() == depth1.size() ); for( int y = 0; y < depth0.rows; y++ ) { for( int x = 0; x < depth0.cols; x++ ) { float& d0 = depth0.at(y,x); if( !cvIsNaN(d0) && (d0 > maxDepth || d0 < minDepth || d0 <= 0 || (!validMask0.empty() && !validMask0.at(y,x))) ) d0 = NAN; float& d1 = depth1.at(y,x); if( !cvIsNaN(d1) && (d1 > maxDepth || d1 < minDepth || d1 <= 0 || (!validMask1.empty() && !validMask1.at(y,x))) ) d1 = NAN; } } } static void buildPyramids( const Mat& image0, const Mat& image1, const Mat& depth0, const Mat& depth1, const Mat& cameraMatrix, double sobelScale, const vector& minGradMagnitudes, vector& pyramidImage0, vector& pyramidDepth0, vector& pyramidImage1, vector& pyramidDepth1, vector& pyramid_dI_dx1, vector& pyramid_dI_dy1, vector& pyramidTexturedMask1, vector& pyramidCameraMatrix ) { const int pyramidMaxLevel = minGradMagnitudes.size() - 1; buildPyramid( image0, pyramidImage0, pyramidMaxLevel ); buildPyramid( image1, pyramidImage1, pyramidMaxLevel ); pyramid_dI_dx1.resize( pyramidImage1.size() ); pyramid_dI_dy1.resize( pyramidImage1.size() ); pyramidTexturedMask1.resize( pyramidImage1.size() ); pyramidCameraMatrix.reserve( pyramidImage1.size() ); Mat cameraMatrix_dbl; cameraMatrix.convertTo( cameraMatrix_dbl, CV_64FC1 ); for( size_t i = 0; i < pyramidImage1.size(); i++ ) { Sobel( pyramidImage1[i], pyramid_dI_dx1[i], CV_16S, 1, 0 ); Sobel( pyramidImage1[i], pyramid_dI_dy1[i], CV_16S, 0, 1 ); const Mat& dx = pyramid_dI_dx1[i]; const Mat& dy = pyramid_dI_dy1[i]; Mat texturedMask( dx.size(), CV_8UC1, Scalar(0) ); const float minScalesGradMagnitude2 = (minGradMagnitudes[i] * minGradMagnitudes[i]) / (sobelScale * sobelScale); for( int y = 0; y < dx.rows; y++ ) { for( int x = 0; x < dx.cols; x++ ) { float m2 = dx.at(y,x)*dx.at(y,x) + dy.at(y,x)*dy.at(y,x); if( m2 >= minScalesGradMagnitude2 ) texturedMask.at(y,x) = 255; } } pyramidTexturedMask1[i] = texturedMask; Mat levelCameraMatrix = i == 0 ? cameraMatrix_dbl : 0.5f * pyramidCameraMatrix[i-1]; levelCameraMatrix.at(2,2) = 1.; pyramidCameraMatrix.push_back( levelCameraMatrix ); } buildPyramid( depth0, pyramidDepth0, pyramidMaxLevel ); buildPyramid( depth1, pyramidDepth1, pyramidMaxLevel ); } static bool solveSystem( const Mat& C, const Mat& dI_dt, double detThreshold, Mat& Rt ) { Mat ksi; #ifdef HAVE_EIGEN Eigen::Matrix eC, eCt, edI_dt; cv2eigen(C, eC); cv2eigen(dI_dt, edI_dt); eCt = eC.transpose(); Eigen::Matrix A, B, eksi; A = eCt * eC; double det = A.determinant(); if( fabs (det) < detThreshold || cvIsNaN(det) || cvIsInf(det) ) return false; B = -eCt * edI_dt; eksi = A.ldlt().solve(B); eigen2cv( eksi, ksi ); #else Mat A = C.t() * C; double det = cv::determinant(A); if( fabs (det) < detThreshold || cvIsNaN(det) || cvIsInf(det) ) return false; Mat B = -C.t() * dI_dt; cv::solve( A, B, ksi, DECOMP_CHOLESKY ); #endif computeProjectiveMatrix( ksi, Rt ); return true; } bool cv::RGBDOdometry( cv::Mat& Rt, const cv::Mat& image0, const cv::Mat& _depth0, const cv::Mat& validMask0, const cv::Mat& image1, const cv::Mat& _depth1, const cv::Mat& validMask1, const cv::Mat& cameraMatrix, const std::vector& iterCounts, const std::vector& minGradientMagnitudes, float minDepth, float maxDepth, float maxDepthDiff ) { const double sobelScale = 1./8; Mat depth0 = _depth0.clone(), depth1 = _depth1.clone(); // check RGB-D input data CV_Assert( !image0.empty() ); CV_Assert( image0.type() == CV_8UC1 ); CV_Assert( depth0.type() == CV_32FC1 && depth0.size() == image0.size() ); CV_Assert( image1.size() == image0.size() ); CV_Assert( image1.type() == CV_8UC1 ); CV_Assert( depth1.type() == CV_32FC1 && depth1.size() == image0.size() ); // check masks CV_Assert( validMask0.empty() || (validMask0.type() == CV_8UC1 && validMask0.size() == image0.size()) ); CV_Assert( validMask1.empty() || (validMask1.type() == CV_8UC1 && validMask1.size() == image0.size()) ); // check camera params CV_Assert( cameraMatrix.type() == CV_32FC1 && cameraMatrix.size() == Size(3,3) ); // other checks CV_Assert( !iterCounts.empty() ); CV_Assert( minGradientMagnitudes.size() == iterCounts.size() ); preprocessDepth( depth0, depth1, validMask0, validMask1, minDepth, maxDepth ); vector pyramidImage0, pyramidDepth0, pyramidImage1, pyramidDepth1, pyramid_dI_dx1, pyramid_dI_dy1, pyramidTexturedMask1, pyramidCameraMatrix; buildPyramids( image0, image1, depth0, depth1, cameraMatrix, sobelScale, minGradientMagnitudes, pyramidImage0, pyramidDepth0, pyramidImage1, pyramidDepth1, pyramid_dI_dx1, pyramid_dI_dy1, pyramidTexturedMask1, pyramidCameraMatrix ); Mat resultRt = Mat::eye(4,4,CV_64FC1); for( int level = iterCounts.size() - 1; level >= 0; level-- ) { const Mat& levelCameraMatrix = pyramidCameraMatrix[level]; const Mat& levelImage0 = pyramidImage0[level]; const Mat& levelDepth0 = pyramidDepth0[level]; Mat levelCloud0; cvtDepth2Cloud( pyramidDepth0[level], levelCloud0, levelCameraMatrix ); const Mat& levelImage1 = pyramidImage1[level]; const Mat& levelDepth1 = pyramidDepth1[level]; const Mat& level_dI_dx1 = pyramid_dI_dx1[level]; const Mat& level_dI_dy1 = pyramid_dI_dy1[level]; CV_Assert( level_dI_dx1.type() == CV_16S ); CV_Assert( level_dI_dy1.type() == CV_16S ); Mat corresp( levelImage0.size(), levelImage0.type(), CV_32SC1 ); // Run transformation search on current level iteratively. for( int iter = 0; iter < iterCounts[level]; iter ++ ) { int correspCount = computeCorresp( levelCameraMatrix, levelCameraMatrix.inv(), resultRt.inv(DECOMP_SVD), levelDepth0, levelDepth1, pyramidTexturedMask1[level], maxDepthDiff, corresp ); if( correspCount == 0 ) break; Mat C( correspCount, 6, CV_64FC1 ); Mat dI_dt( correspCount, 1, CV_64FC1 ); const double fx = levelCameraMatrix.at(0,0); const double fy = levelCameraMatrix.at(1,1); int pointCount = 0; for( int v0 = 0; v0 < corresp.rows; v0++ ) { for( int u0 = 0; u0 < corresp.cols; u0++ ) { if( corresp.at(v0,u0) != -1 ) { int u1, v1; get2shorts( corresp.at(v0,u0), u1, v1 ); computeC( (double*)C.ptr(pointCount), sobelScale * level_dI_dx1.at(v1,u1), sobelScale * level_dI_dy1.at(v1,u1), levelCloud0.at(v0,u0), fx, fy); dI_dt.at(pointCount) = static_cast(levelImage1.at(v1,u1)) - static_cast(levelImage0.at(v0,u0)); pointCount++; } } } const double detThreshold = 1.e-6; Mat currRt; bool solutionExist = solveSystem( C, dI_dt, detThreshold, currRt ); if( !solutionExist ) break; resultRt = currRt * resultRt; } } Rt = resultRt; return !Rt.empty(); }