// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html #include "precomp.hpp" #include "opencl_kernels_core.hpp" namespace cv { namespace hal { #if CV_SIMD template static void vecsplit_( const T* src, T** dst, int len, int cn ) { int i; T* dst0 = dst[0]; T* dst1 = dst[1]; const int VECSZ = VecT::nlanes; if( cn == 2 ) { for( i = 0; i < len; i += VECSZ ) { i = std::min( len - VECSZ, i ); VecT a, b; v_load_deinterleave(src + i*cn, a, b); v_store(dst0 + i, a); v_store(dst1 + i, b); } } else if( cn == 3 ) { T* dst2 = dst[2]; for( i = 0; i < len; i += VECSZ ) { i = std::min( len - VECSZ, i ); VecT a, b, c; v_load_deinterleave(src + i*cn, a, b, c); v_store(dst0 + i, a); v_store(dst1 + i, b); v_store(dst2 + i, c); } } else { CV_Assert( cn == 4 ); T* dst2 = dst[2]; T* dst3 = dst[3]; for( i = 0; i < len; i += VECSZ ) { i = std::min( len - VECSZ, i ); VecT a, b, c, d; v_load_deinterleave(src + i*cn, a, b, c, d); v_store(dst0 + i, a); v_store(dst1 + i, b); v_store(dst2 + i, c); v_store(dst3 + i, d); } } vx_cleanup(); } #endif template static void split_( const T* src, T** dst, int len, int cn ) { int k = cn % 4 ? cn % 4 : 4; int i, j; if( k == 1 ) { T* dst0 = dst[0]; if(cn == 1) { memcpy(dst0, src, len * sizeof(T)); } else { for( i = 0, j = 0 ; i < len; i++, j += cn ) dst0[i] = src[j]; } } else if( k == 2 ) { T *dst0 = dst[0], *dst1 = dst[1]; i = j = 0; for( ; i < len; i++, j += cn ) { dst0[i] = src[j]; dst1[i] = src[j+1]; } } else if( k == 3 ) { T *dst0 = dst[0], *dst1 = dst[1], *dst2 = dst[2]; i = j = 0; for( ; i < len; i++, j += cn ) { dst0[i] = src[j]; dst1[i] = src[j+1]; dst2[i] = src[j+2]; } } else { T *dst0 = dst[0], *dst1 = dst[1], *dst2 = dst[2], *dst3 = dst[3]; i = j = 0; for( ; i < len; i++, j += cn ) { dst0[i] = src[j]; dst1[i] = src[j+1]; dst2[i] = src[j+2]; dst3[i] = src[j+3]; } } for( ; k < cn; k += 4 ) { T *dst0 = dst[k], *dst1 = dst[k+1], *dst2 = dst[k+2], *dst3 = dst[k+3]; for( i = 0, j = k; i < len; i++, j += cn ) { dst0[i] = src[j]; dst1[i] = src[j+1]; dst2[i] = src[j+2]; dst3[i] = src[j+3]; } } } void split8u(const uchar* src, uchar** dst, int len, int cn ) { CALL_HAL(split8u, cv_hal_split8u, src,dst, len, cn) #if CV_SIMD if( len >= v_uint8::nlanes && 2 <= cn && cn <= 4 ) vecsplit_(src, dst, len, cn); else #endif split_(src, dst, len, cn); } void split16u(const ushort* src, ushort** dst, int len, int cn ) { CALL_HAL(split16u, cv_hal_split16u, src,dst, len, cn) #if CV_SIMD if( len >= v_uint16::nlanes && 2 <= cn && cn <= 4 ) vecsplit_(src, dst, len, cn); else #endif split_(src, dst, len, cn); } void split32s(const int* src, int** dst, int len, int cn ) { CALL_HAL(split32s, cv_hal_split32s, src,dst, len, cn) #if CV_SIMD if( len >= v_uint32::nlanes && 2 <= cn && cn <= 4 ) vecsplit_(src, dst, len, cn); else #endif split_(src, dst, len, cn); } void split64s(const int64* src, int64** dst, int len, int cn ) { CALL_HAL(split64s, cv_hal_split64s, src,dst, len, cn) #if CV_SIMD if( len >= v_int64::nlanes && 2 <= cn && cn <= 4 ) vecsplit_(src, dst, len, cn); else #endif split_(src, dst, len, cn); } }} // cv::hal:: /****************************************************************************************\ * split & merge * \****************************************************************************************/ typedef void (*SplitFunc)(const uchar* src, uchar** dst, int len, int cn); static SplitFunc getSplitFunc(int depth) { static SplitFunc splitTab[] = { (SplitFunc)GET_OPTIMIZED(cv::hal::split8u), (SplitFunc)GET_OPTIMIZED(cv::hal::split8u), (SplitFunc)GET_OPTIMIZED(cv::hal::split16u), (SplitFunc)GET_OPTIMIZED(cv::hal::split16u), (SplitFunc)GET_OPTIMIZED(cv::hal::split32s), (SplitFunc)GET_OPTIMIZED(cv::hal::split32s), (SplitFunc)GET_OPTIMIZED(cv::hal::split64s), 0 }; return splitTab[depth]; } #ifdef HAVE_IPP namespace cv { static bool ipp_split(const Mat& src, Mat* mv, int channels) { #ifdef HAVE_IPP_IW CV_INSTRUMENT_REGION_IPP() if(channels != 3 && channels != 4) return false; if(src.dims <= 2) { IppiSize size = ippiSize(src.size()); void *dstPtrs[4] = {NULL}; size_t dstStep = mv[0].step; for(int i = 0; i < channels; i++) { dstPtrs[i] = mv[i].ptr(); if(dstStep != mv[i].step) return false; } return CV_INSTRUMENT_FUN_IPP(llwiCopySplit, src.ptr(), (int)src.step, dstPtrs, (int)dstStep, size, (int)src.elemSize1(), channels, 0) >= 0; } else { const Mat *arrays[5] = {NULL}; uchar *ptrs[5] = {NULL}; arrays[0] = &src; for(int i = 1; i < channels; i++) { arrays[i] = &mv[i-1]; } NAryMatIterator it(arrays, ptrs); IppiSize size = { (int)it.size, 1 }; for( size_t i = 0; i < it.nplanes; i++, ++it ) { if(CV_INSTRUMENT_FUN_IPP(llwiCopySplit, ptrs[0], 0, (void**)&ptrs[1], 0, size, (int)src.elemSize1(), channels, 0) < 0) return false; } return true; } #else CV_UNUSED(src); CV_UNUSED(mv); CV_UNUSED(channels); return false; #endif } } #endif void cv::split(const Mat& src, Mat* mv) { CV_INSTRUMENT_REGION() int k, depth = src.depth(), cn = src.channels(); if( cn == 1 ) { src.copyTo(mv[0]); return; } for( k = 0; k < cn; k++ ) { mv[k].create(src.dims, src.size, depth); } CV_IPP_RUN_FAST(ipp_split(src, mv, cn)); SplitFunc func = getSplitFunc(depth); CV_Assert( func != 0 ); size_t esz = src.elemSize(), esz1 = src.elemSize1(); size_t blocksize0 = (BLOCK_SIZE + esz-1)/esz; AutoBuffer _buf((cn+1)*(sizeof(Mat*) + sizeof(uchar*)) + 16); const Mat** arrays = (const Mat**)_buf.data(); uchar** ptrs = (uchar**)alignPtr(arrays + cn + 1, 16); arrays[0] = &src; for( k = 0; k < cn; k++ ) { arrays[k+1] = &mv[k]; } NAryMatIterator it(arrays, ptrs, cn+1); size_t total = it.size; size_t blocksize = std::min((size_t)CV_SPLIT_MERGE_MAX_BLOCK_SIZE(cn), cn <= 4 ? total : std::min(total, blocksize0)); for( size_t i = 0; i < it.nplanes; i++, ++it ) { for( size_t j = 0; j < total; j += blocksize ) { size_t bsz = std::min(total - j, blocksize); func( ptrs[0], &ptrs[1], (int)bsz, cn ); if( j + blocksize < total ) { ptrs[0] += bsz*esz; for( k = 0; k < cn; k++ ) ptrs[k+1] += bsz*esz1; } } } } #ifdef HAVE_OPENCL namespace cv { static bool ocl_split( InputArray _m, OutputArrayOfArrays _mv ) { int type = _m.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1; String dstargs, processelem, indexdecl; for (int i = 0; i < cn; ++i) { dstargs += format("DECLARE_DST_PARAM(%d)", i); indexdecl += format("DECLARE_INDEX(%d)", i); processelem += format("PROCESS_ELEM(%d)", i); } ocl::Kernel k("split", ocl::core::split_merge_oclsrc, format("-D T=%s -D OP_SPLIT -D cn=%d -D DECLARE_DST_PARAMS=%s" " -D PROCESS_ELEMS_N=%s -D DECLARE_INDEX_N=%s", ocl::memopTypeToStr(depth), cn, dstargs.c_str(), processelem.c_str(), indexdecl.c_str())); if (k.empty()) return false; Size size = _m.size(); _mv.create(cn, 1, depth); for (int i = 0; i < cn; ++i) _mv.create(size, depth, i); std::vector dst; _mv.getUMatVector(dst); int argidx = k.set(0, ocl::KernelArg::ReadOnly(_m.getUMat())); for (int i = 0; i < cn; ++i) argidx = k.set(argidx, ocl::KernelArg::WriteOnlyNoSize(dst[i])); k.set(argidx, rowsPerWI); size_t globalsize[2] = { (size_t)size.width, ((size_t)size.height + rowsPerWI - 1) / rowsPerWI }; return k.run(2, globalsize, NULL, false); } } #endif void cv::split(InputArray _m, OutputArrayOfArrays _mv) { CV_INSTRUMENT_REGION() CV_OCL_RUN(_m.dims() <= 2 && _mv.isUMatVector(), ocl_split(_m, _mv)) Mat m = _m.getMat(); if( m.empty() ) { _mv.release(); return; } CV_Assert( !_mv.fixedType() || _mv.empty() || _mv.type() == m.depth() ); int depth = m.depth(), cn = m.channels(); _mv.create(cn, 1, depth); for (int i = 0; i < cn; ++i) _mv.create(m.dims, m.size.p, depth, i); std::vector dst; _mv.getMatVector(dst); split(m, &dst[0]); }